Contributors: 41
	  
        
          | Author | 
          Tokens | 
          Token Proportion | 
          Commits | 
          Commit Proportion | 
        
	  
	  
        
        
          | Américo Wang | 
          278 | 
          12.09% | 
          2 | 
          2.82% | 
        
        
          | Jens Axboe | 
          272 | 
          11.83% | 
          2 | 
          2.82% | 
        
        
          | Juergen Gross | 
          223 | 
          9.70% | 
          2 | 
          2.82% | 
        
        
          | Gilad Ben-Yossef | 
          219 | 
          9.52% | 
          2 | 
          2.82% | 
        
        
          | Rusty Russell | 
          200 | 
          8.70% | 
          3 | 
          4.23% | 
        
        
          | Linus Torvalds | 
          147 | 
          6.39% | 
          3 | 
          4.23% | 
        
        
          | Peter Zijlstra | 
          141 | 
          6.13% | 
          5 | 
          7.04% | 
        
        
          | Frédéric Weisbecker | 
          136 | 
          5.91% | 
          6 | 
          8.45% | 
        
        
          | Srivatsa S. Bhat | 
          106 | 
          4.61% | 
          2 | 
          2.82% | 
        
        
          | Shaohua Li | 
          90 | 
          3.91% | 
          1 | 
          1.41% | 
        
        
          | Aaron Lu | 
          66 | 
          2.87% | 
          1 | 
          1.41% | 
        
        
          | Michael Ellerman | 
          55 | 
          2.39% | 
          3 | 
          4.23% | 
        
        
          | Richard Weinberger | 
          45 | 
          1.96% | 
          1 | 
          1.41% | 
        
        
          | Chuansheng Liu | 
          44 | 
          1.91% | 
          1 | 
          1.41% | 
        
        
          | Thomas Gleixner | 
          42 | 
          1.83% | 
          3 | 
          4.23% | 
        
        
          | Ingo Molnar | 
          32 | 
          1.39% | 
          3 | 
          4.23% | 
        
        
          | Christoph Hellwig | 
          29 | 
          1.26% | 
          2 | 
          2.82% | 
        
        
          | Andrew Morton | 
          27 | 
          1.17% | 
          1 | 
          1.41% | 
        
        
          | Milton D. Miller II | 
          26 | 
          1.13% | 
          3 | 
          4.23% | 
        
        
          | Tejun Heo | 
          19 | 
          0.83% | 
          2 | 
          2.82% | 
        
        
          | Suresh B. Siddha | 
          18 | 
          0.78% | 
          2 | 
          2.82% | 
        
        
          | Huang Ying | 
          16 | 
          0.70% | 
          1 | 
          1.41% | 
        
        
          | David Daney | 
          13 | 
          0.57% | 
          1 | 
          1.41% | 
        
        
          | Jan Kara | 
          11 | 
          0.48% | 
          1 | 
          1.41% | 
        
        
          | Davidlohr Bueso A | 
          5 | 
          0.22% | 
          2 | 
          2.82% | 
        
        
          | David Howells | 
          4 | 
          0.17% | 
          1 | 
          1.41% | 
        
        
          | H. Peter Anvin | 
          4 | 
          0.17% | 
          1 | 
          1.41% | 
        
        
          | Christoph Lameter | 
          4 | 
          0.17% | 
          1 | 
          1.41% | 
        
        
          | Nicholas Piggin | 
          4 | 
          0.17% | 
          1 | 
          1.41% | 
        
        
          | Sheng Yang | 
          3 | 
          0.13% | 
          1 | 
          1.41% | 
        
        
          | Chen Gang S | 
          3 | 
          0.13% | 
          1 | 
          1.41% | 
        
        
          | Takao Indoh | 
          3 | 
          0.13% | 
          1 | 
          1.41% | 
        
        
          | Mel Gorman | 
          3 | 
          0.13% | 
          1 | 
          1.41% | 
        
        
          | David John | 
          3 | 
          0.13% | 
          1 | 
          1.41% | 
        
        
          | Akinobu Mita | 
          2 | 
          0.09% | 
          1 | 
          1.41% | 
        
        
          | Steven Rostedt | 
          2 | 
          0.09% | 
          1 | 
          1.41% | 
        
        
          | Alexey Dobriyan | 
          1 | 
          0.04% | 
          1 | 
          1.41% | 
        
        
          | Paul Gortmaker | 
          1 | 
          0.04% | 
          1 | 
          1.41% | 
        
        
          | Xie XiuQi | 
          1 | 
          0.04% | 
          1 | 
          1.41% | 
        
        
          | Yinghai Lu | 
          1 | 
          0.04% | 
          1 | 
          1.41% | 
        
        
          | liguang | 
          1 | 
          0.04% | 
          1 | 
          1.41% | 
        
	  
	  
        
          | Total | 
          2300 | 
           | 
          71 | 
           | 
	    
	  
    
 
/*
 * Generic helpers for smp ipi calls
 *
 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/irq_work.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/sched/idle.h>
#include <linux/hypervisor.h>
#include "smpboot.h"
enum {
	CSD_FLAG_LOCK		= 0x01,
	CSD_FLAG_SYNCHRONOUS	= 0x02,
};
struct call_function_data {
	call_single_data_t	__percpu *csd;
	cpumask_var_t		cpumask;
	cpumask_var_t		cpumask_ipi;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
static void flush_smp_call_function_queue(bool warn_cpu_offline);
int smpcfd_prepare_cpu(unsigned int cpu)
{
	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
				     cpu_to_node(cpu)))
		return -ENOMEM;
	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
				     cpu_to_node(cpu))) {
		free_cpumask_var(cfd->cpumask);
		return -ENOMEM;
	}
	cfd->csd = alloc_percpu(call_single_data_t);
	if (!cfd->csd) {
		free_cpumask_var(cfd->cpumask);
		free_cpumask_var(cfd->cpumask_ipi);
		return -ENOMEM;
	}
	return 0;
}
int smpcfd_dead_cpu(unsigned int cpu)
{
	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
	free_cpumask_var(cfd->cpumask);
	free_cpumask_var(cfd->cpumask_ipi);
	free_percpu(cfd->csd);
	return 0;
}
int smpcfd_dying_cpu(unsigned int cpu)
{
	/*
	 * The IPIs for the smp-call-function callbacks queued by other
	 * CPUs might arrive late, either due to hardware latencies or
	 * because this CPU disabled interrupts (inside stop-machine)
	 * before the IPIs were sent. So flush out any pending callbacks
	 * explicitly (without waiting for the IPIs to arrive), to
	 * ensure that the outgoing CPU doesn't go offline with work
	 * still pending.
	 */
	flush_smp_call_function_queue(false);
	return 0;
}
void __init call_function_init(void)
{
	int i;
	for_each_possible_cpu(i)
		init_llist_head(&per_cpu(call_single_queue, i));
	smpcfd_prepare_cpu(smp_processor_id());
}
/*
 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 *
 * For non-synchronous ipi calls the csd can still be in use by the
 * previous function call. For multi-cpu calls its even more interesting
 * as we'll have to ensure no other cpu is observing our csd.
 */
static __always_inline void csd_lock_wait(call_single_data_t *csd)
{
	smp_cond_load_acquire(&csd->flags, !(VAL & CSD_FLAG_LOCK));
}
static __always_inline void csd_lock(call_single_data_t *csd)
{
	csd_lock_wait(csd);
	csd->flags |= CSD_FLAG_LOCK;
	/*
	 * prevent CPU from reordering the above assignment
	 * to ->flags with any subsequent assignments to other
	 * fields of the specified call_single_data_t structure:
	 */
	smp_wmb();
}
static __always_inline void csd_unlock(call_single_data_t *csd)
{
	WARN_ON(!(csd->flags & CSD_FLAG_LOCK));
	/*
	 * ensure we're all done before releasing data:
	 */
	smp_store_release(&csd->flags, 0);
}
static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
/*
 * Insert a previously allocated call_single_data_t element
 * for execution on the given CPU. data must already have
 * ->func, ->info, and ->flags set.
 */
static int generic_exec_single(int cpu, call_single_data_t *csd,
			       smp_call_func_t func, void *info)
{
	if (cpu == smp_processor_id()) {
		unsigned long flags;
		/*
		 * We can unlock early even for the synchronous on-stack case,
		 * since we're doing this from the same CPU..
		 */
		csd_unlock(csd);
		local_irq_save(flags);
		func(info);
		local_irq_restore(flags);
		return 0;
	}
	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
		csd_unlock(csd);
		return -ENXIO;
	}
	csd->func = func;
	csd->info = info;
	/*
	 * The list addition should be visible before sending the IPI
	 * handler locks the list to pull the entry off it because of
	 * normal cache coherency rules implied by spinlocks.
	 *
	 * If IPIs can go out of order to the cache coherency protocol
	 * in an architecture, sufficient synchronisation should be added
	 * to arch code to make it appear to obey cache coherency WRT
	 * locking and barrier primitives. Generic code isn't really
	 * equipped to do the right thing...
	 */
	if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
		arch_send_call_function_single_ipi(cpu);
	return 0;
}
/**
 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
 *
 * Invoked by arch to handle an IPI for call function single.
 * Must be called with interrupts disabled.
 */
void generic_smp_call_function_single_interrupt(void)
{
	flush_smp_call_function_queue(true);
}
/**
 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 *
 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
 *		      offline CPU. Skip this check if set to 'false'.
 *
 * Flush any pending smp-call-function callbacks queued on this CPU. This is
 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
 * to ensure that all pending IPI callbacks are run before it goes completely
 * offline.
 *
 * Loop through the call_single_queue and run all the queued callbacks.
 * Must be called with interrupts disabled.
 */
static void flush_smp_call_function_queue(bool warn_cpu_offline)
{
	struct llist_head *head;
	struct llist_node *entry;
	call_single_data_t *csd, *csd_next;
	static bool warned;
	lockdep_assert_irqs_disabled();
	head = this_cpu_ptr(&call_single_queue);
	entry = llist_del_all(head);
	entry = llist_reverse_order(entry);
	/* There shouldn't be any pending callbacks on an offline CPU. */
	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
		     !warned && !llist_empty(head))) {
		warned = true;
		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
		/*
		 * We don't have to use the _safe() variant here
		 * because we are not invoking the IPI handlers yet.
		 */
		llist_for_each_entry(csd, entry, llist)
			pr_warn("IPI callback %pS sent to offline CPU\n",
				csd->func);
	}
	llist_for_each_entry_safe(csd, csd_next, entry, llist) {
		smp_call_func_t func = csd->func;
		void *info = csd->info;
		/* Do we wait until *after* callback? */
		if (csd->flags & CSD_FLAG_SYNCHRONOUS) {
			func(info);
			csd_unlock(csd);
		} else {
			csd_unlock(csd);
			func(info);
		}
	}
	/*
	 * Handle irq works queued remotely by irq_work_queue_on().
	 * Smp functions above are typically synchronous so they
	 * better run first since some other CPUs may be busy waiting
	 * for them.
	 */
	irq_work_run();
}
/*
 * smp_call_function_single - Run a function on a specific CPU
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait until function has completed on other CPUs.
 *
 * Returns 0 on success, else a negative status code.
 */
int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
			     int wait)
{
	call_single_data_t *csd;
	call_single_data_t csd_stack = {
		.flags = CSD_FLAG_LOCK | CSD_FLAG_SYNCHRONOUS,
	};
	int this_cpu;
	int err;
	/*
	 * prevent preemption and reschedule on another processor,
	 * as well as CPU removal
	 */
	this_cpu = get_cpu();
	/*
	 * Can deadlock when called with interrupts disabled.
	 * We allow cpu's that are not yet online though, as no one else can
	 * send smp call function interrupt to this cpu and as such deadlocks
	 * can't happen.
	 */
	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
		     && !oops_in_progress);
	csd = &csd_stack;
	if (!wait) {
		csd = this_cpu_ptr(&csd_data);
		csd_lock(csd);
	}
	err = generic_exec_single(cpu, csd, func, info);
	if (wait)
		csd_lock_wait(csd);
	put_cpu();
	return err;
}
EXPORT_SYMBOL(smp_call_function_single);
/**
 * smp_call_function_single_async(): Run an asynchronous function on a
 * 			         specific CPU.
 * @cpu: The CPU to run on.
 * @csd: Pre-allocated and setup data structure
 *
 * Like smp_call_function_single(), but the call is asynchonous and
 * can thus be done from contexts with disabled interrupts.
 *
 * The caller passes his own pre-allocated data structure
 * (ie: embedded in an object) and is responsible for synchronizing it
 * such that the IPIs performed on the @csd are strictly serialized.
 *
 * NOTE: Be careful, there is unfortunately no current debugging facility to
 * validate the correctness of this serialization.
 */
int smp_call_function_single_async(int cpu, call_single_data_t *csd)
{
	int err = 0;
	preempt_disable();
	/* We could deadlock if we have to wait here with interrupts disabled! */
	if (WARN_ON_ONCE(csd->flags & CSD_FLAG_LOCK))
		csd_lock_wait(csd);
	csd->flags = CSD_FLAG_LOCK;
	smp_wmb();
	err = generic_exec_single(cpu, csd, csd->func, csd->info);
	preempt_enable();
	return err;
}
EXPORT_SYMBOL_GPL(smp_call_function_single_async);
/*
 * smp_call_function_any - Run a function on any of the given cpus
 * @mask: The mask of cpus it can run on.
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait until function has completed.
 *
 * Returns 0 on success, else a negative status code (if no cpus were online).
 *
 * Selection preference:
 *	1) current cpu if in @mask
 *	2) any cpu of current node if in @mask
 *	3) any other online cpu in @mask
 */
int smp_call_function_any(const struct cpumask *mask,
			  smp_call_func_t func, void *info, int wait)
{
	unsigned int cpu;
	const struct cpumask *nodemask;
	int ret;
	/* Try for same CPU (cheapest) */
	cpu = get_cpu();
	if (cpumask_test_cpu(cpu, mask))
		goto call;
	/* Try for same node. */
	nodemask = cpumask_of_node(cpu_to_node(cpu));
	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
		if (cpu_online(cpu))
			goto call;
	}
	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
	cpu = cpumask_any_and(mask, cpu_online_mask);
call:
	ret = smp_call_function_single(cpu, func, info, wait);
	put_cpu();
	return ret;
}
EXPORT_SYMBOL_GPL(smp_call_function_any);
/**
 * smp_call_function_many(): Run a function on a set of other CPUs.
 * @mask: The set of cpus to run on (only runs on online subset).
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait (atomically) until function has completed
 *        on other CPUs.
 *
 * If @wait is true, then returns once @func has returned.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler. Preemption
 * must be disabled when calling this function.
 */
void smp_call_function_many(const struct cpumask *mask,
			    smp_call_func_t func, void *info, bool wait)
{
	struct call_function_data *cfd;
	int cpu, next_cpu, this_cpu = smp_processor_id();
	/*
	 * Can deadlock when called with interrupts disabled.
	 * We allow cpu's that are not yet online though, as no one else can
	 * send smp call function interrupt to this cpu and as such deadlocks
	 * can't happen.
	 */
	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
		     && !oops_in_progress && !early_boot_irqs_disabled);
	/* Try to fastpath.  So, what's a CPU they want? Ignoring this one. */
	cpu = cpumask_first_and(mask, cpu_online_mask);
	if (cpu == this_cpu)
		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
	/* No online cpus?  We're done. */
	if (cpu >= nr_cpu_ids)
		return;
	/* Do we have another CPU which isn't us? */
	next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
	if (next_cpu == this_cpu)
		next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask);
	/* Fastpath: do that cpu by itself. */
	if (next_cpu >= nr_cpu_ids) {
		smp_call_function_single(cpu, func, info, wait);
		return;
	}
	cfd = this_cpu_ptr(&cfd_data);
	cpumask_and(cfd->cpumask, mask, cpu_online_mask);
	__cpumask_clear_cpu(this_cpu, cfd->cpumask);
	/* Some callers race with other cpus changing the passed mask */
	if (unlikely(!cpumask_weight(cfd->cpumask)))
		return;
	cpumask_clear(cfd->cpumask_ipi);
	for_each_cpu(cpu, cfd->cpumask) {
		call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
		csd_lock(csd);
		if (wait)
			csd->flags |= CSD_FLAG_SYNCHRONOUS;
		csd->func = func;
		csd->info = info;
		if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
			__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
	}
	/* Send a message to all CPUs in the map */
	arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
	if (wait) {
		for_each_cpu(cpu, cfd->cpumask) {
			call_single_data_t *csd;
			csd = per_cpu_ptr(cfd->csd, cpu);
			csd_lock_wait(csd);
		}
	}
}
EXPORT_SYMBOL(smp_call_function_many);
/**
 * smp_call_function(): Run a function on all other CPUs.
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait (atomically) until function has completed
 *        on other CPUs.
 *
 * Returns 0.
 *
 * If @wait is true, then returns once @func has returned; otherwise
 * it returns just before the target cpu calls @func.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler.
 */
int smp_call_function(smp_call_func_t func, void *info, int wait)
{
	preempt_disable();
	smp_call_function_many(cpu_online_mask, func, info, wait);
	preempt_enable();
	return 0;
}
EXPORT_SYMBOL(smp_call_function);
/* Setup configured maximum number of CPUs to activate */
unsigned int setup_max_cpus = NR_CPUS;
EXPORT_SYMBOL(setup_max_cpus);
/*
 * Setup routine for controlling SMP activation
 *
 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 * activation entirely (the MPS table probe still happens, though).
 *
 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 * greater than 0, limits the maximum number of CPUs activated in
 * SMP mode to <NUM>.
 */
void __weak arch_disable_smp_support(void) { }
static int __init nosmp(char *str)
{
	setup_max_cpus = 0;
	arch_disable_smp_support();
	return 0;
}
early_param("nosmp", nosmp);
/* this is hard limit */
static int __init nrcpus(char *str)
{
	int nr_cpus;
	get_option(&str, &nr_cpus);
	if (nr_cpus > 0 && nr_cpus < nr_cpu_ids)
		nr_cpu_ids = nr_cpus;
	return 0;
}
early_param("nr_cpus", nrcpus);
static int __init maxcpus(char *str)
{
	get_option(&str, &setup_max_cpus);
	if (setup_max_cpus == 0)
		arch_disable_smp_support();
	return 0;
}
early_param("maxcpus", maxcpus);
/* Setup number of possible processor ids */
unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);
/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
void __init setup_nr_cpu_ids(void)
{
	nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
}
/* Called by boot processor to activate the rest. */
void __init smp_init(void)
{
	int num_nodes, num_cpus;
	unsigned int cpu;
	idle_threads_init();
	cpuhp_threads_init();
	pr_info("Bringing up secondary CPUs ...\n");
	/* FIXME: This should be done in userspace --RR */
	for_each_present_cpu(cpu) {
		if (num_online_cpus() >= setup_max_cpus)
			break;
		if (!cpu_online(cpu))
			cpu_up(cpu);
	}
	num_nodes = num_online_nodes();
	num_cpus  = num_online_cpus();
	pr_info("Brought up %d node%s, %d CPU%s\n",
		num_nodes, (num_nodes > 1 ? "s" : ""),
		num_cpus,  (num_cpus  > 1 ? "s" : ""));
	/* Final decision about SMT support */
	cpu_smt_check_topology();
	/* Any cleanup work */
	smp_cpus_done(setup_max_cpus);
}
/*
 * Call a function on all processors.  May be used during early boot while
 * early_boot_irqs_disabled is set.  Use local_irq_save/restore() instead
 * of local_irq_disable/enable().
 */
int on_each_cpu(void (*func) (void *info), void *info, int wait)
{
	unsigned long flags;
	int ret = 0;
	preempt_disable();
	ret = smp_call_function(func, info, wait);
	local_irq_save(flags);
	func(info);
	local_irq_restore(flags);
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL(on_each_cpu);
/**
 * on_each_cpu_mask(): Run a function on processors specified by
 * cpumask, which may include the local processor.
 * @mask: The set of cpus to run on (only runs on online subset).
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait (atomically) until function has completed
 *        on other CPUs.
 *
 * If @wait is true, then returns once @func has returned.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler.  The
 * exception is that it may be used during early boot while
 * early_boot_irqs_disabled is set.
 */
void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
			void *info, bool wait)
{
	int cpu = get_cpu();
	smp_call_function_many(mask, func, info, wait);
	if (cpumask_test_cpu(cpu, mask)) {
		unsigned long flags;
		local_irq_save(flags);
		func(info);
		local_irq_restore(flags);
	}
	put_cpu();
}
EXPORT_SYMBOL(on_each_cpu_mask);
/*
 * on_each_cpu_cond(): Call a function on each processor for which
 * the supplied function cond_func returns true, optionally waiting
 * for all the required CPUs to finish. This may include the local
 * processor.
 * @cond_func:	A callback function that is passed a cpu id and
 *		the the info parameter. The function is called
 *		with preemption disabled. The function should
 *		return a blooean value indicating whether to IPI
 *		the specified CPU.
 * @func:	The function to run on all applicable CPUs.
 *		This must be fast and non-blocking.
 * @info:	An arbitrary pointer to pass to both functions.
 * @wait:	If true, wait (atomically) until function has
 *		completed on other CPUs.
 * @gfp_flags:	GFP flags to use when allocating the cpumask
 *		used internally by the function.
 *
 * The function might sleep if the GFP flags indicates a non
 * atomic allocation is allowed.
 *
 * Preemption is disabled to protect against CPUs going offline but not online.
 * CPUs going online during the call will not be seen or sent an IPI.
 *
 * You must not call this function with disabled interrupts or
 * from a hardware interrupt handler or from a bottom half handler.
 */
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
			smp_call_func_t func, void *info, bool wait,
			gfp_t gfp_flags)
{
	cpumask_var_t cpus;
	int cpu, ret;
	might_sleep_if(gfpflags_allow_blocking(gfp_flags));
	if (likely(zalloc_cpumask_var(&cpus, (gfp_flags|__GFP_NOWARN)))) {
		preempt_disable();
		for_each_online_cpu(cpu)
			if (cond_func(cpu, info))
				cpumask_set_cpu(cpu, cpus);
		on_each_cpu_mask(cpus, func, info, wait);
		preempt_enable();
		free_cpumask_var(cpus);
	} else {
		/*
		 * No free cpumask, bother. No matter, we'll
		 * just have to IPI them one by one.
		 */
		preempt_disable();
		for_each_online_cpu(cpu)
			if (cond_func(cpu, info)) {
				ret = smp_call_function_single(cpu, func,
								info, wait);
				WARN_ON_ONCE(ret);
			}
		preempt_enable();
	}
}
EXPORT_SYMBOL(on_each_cpu_cond);
static void do_nothing(void *unused)
{
}
/**
 * kick_all_cpus_sync - Force all cpus out of idle
 *
 * Used to synchronize the update of pm_idle function pointer. It's
 * called after the pointer is updated and returns after the dummy
 * callback function has been executed on all cpus. The execution of
 * the function can only happen on the remote cpus after they have
 * left the idle function which had been called via pm_idle function
 * pointer. So it's guaranteed that nothing uses the previous pointer
 * anymore.
 */
void kick_all_cpus_sync(void)
{
	/* Make sure the change is visible before we kick the cpus */
	smp_mb();
	smp_call_function(do_nothing, NULL, 1);
}
EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
/**
 * wake_up_all_idle_cpus - break all cpus out of idle
 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
 * including idle polling cpus, for non-idle cpus, we will do nothing
 * for them.
 */
void wake_up_all_idle_cpus(void)
{
	int cpu;
	preempt_disable();
	for_each_online_cpu(cpu) {
		if (cpu == smp_processor_id())
			continue;
		wake_up_if_idle(cpu);
	}
	preempt_enable();
}
EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
/**
 * smp_call_on_cpu - Call a function on a specific cpu
 *
 * Used to call a function on a specific cpu and wait for it to return.
 * Optionally make sure the call is done on a specified physical cpu via vcpu
 * pinning in order to support virtualized environments.
 */
struct smp_call_on_cpu_struct {
	struct work_struct	work;
	struct completion	done;
	int			(*func)(void *);
	void			*data;
	int			ret;
	int			cpu;
};
static void smp_call_on_cpu_callback(struct work_struct *work)
{
	struct smp_call_on_cpu_struct *sscs;
	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
	if (sscs->cpu >= 0)
		hypervisor_pin_vcpu(sscs->cpu);
	sscs->ret = sscs->func(sscs->data);
	if (sscs->cpu >= 0)
		hypervisor_pin_vcpu(-1);
	complete(&sscs->done);
}
int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
{
	struct smp_call_on_cpu_struct sscs = {
		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
		.func = func,
		.data = par,
		.cpu  = phys ? cpu : -1,
	};
	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
		return -ENXIO;
	queue_work_on(cpu, system_wq, &sscs.work);
	wait_for_completion(&sscs.done);
	return sscs.ret;
}
EXPORT_SYMBOL_GPL(smp_call_on_cpu);