Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Roland McGrath | 2103 | 39.17% | 6 | 4.84% |
Frank Mayhar | 1002 | 18.66% | 2 | 1.61% |
Frédéric Weisbecker | 584 | 10.88% | 18 | 14.52% |
Stanislaw Gruszka | 338 | 6.30% | 13 | 10.48% |
Peter Zijlstra | 301 | 5.61% | 8 | 6.45% |
Jason Low | 220 | 4.10% | 6 | 4.84% |
Thomas Gleixner | 173 | 3.22% | 18 | 14.52% |
Toyo Abe | 103 | 1.92% | 2 | 1.61% |
Juri Lelli | 82 | 1.53% | 1 | 0.81% |
Oleg Nesterov | 75 | 1.40% | 7 | 5.65% |
Jiri Slaby | 61 | 1.14% | 3 | 2.42% |
Martin Schwidefsky | 57 | 1.06% | 2 | 1.61% |
Al Viro | 52 | 0.97% | 3 | 2.42% |
Arun Raghavan | 44 | 0.82% | 1 | 0.81% |
Deepa Dinamani | 27 | 0.50% | 6 | 4.84% |
Xiao Guangrong | 18 | 0.34% | 1 | 0.81% |
Linus Torvalds | 16 | 0.30% | 4 | 3.23% |
Hidetoshi Seto | 15 | 0.28% | 1 | 0.81% |
Krzysztof Opasiak | 15 | 0.28% | 1 | 0.81% |
Ingo Molnar | 13 | 0.24% | 3 | 2.42% |
Hiroshi Shimamoto | 12 | 0.22% | 1 | 0.81% |
Laura Abbott | 11 | 0.20% | 1 | 0.81% |
Sergey Senozhatsky | 10 | 0.19% | 1 | 0.81% |
Christoph Hellwig | 7 | 0.13% | 1 | 0.81% |
Eric W. Biedermann | 6 | 0.11% | 2 | 1.61% |
Roman Zippel | 4 | 0.07% | 1 | 0.81% |
H Hartley Sweeten | 3 | 0.06% | 1 | 0.81% |
Petr Tesarik | 3 | 0.06% | 1 | 0.81% |
Pavel Emelyanov | 3 | 0.06% | 2 | 1.61% |
Max R. P. Grossmann | 3 | 0.06% | 1 | 0.81% |
Nick Desaulniers | 2 | 0.04% | 1 | 0.81% |
Nick Kossifidis | 2 | 0.04% | 1 | 0.81% |
Lucas De Marchi | 1 | 0.02% | 1 | 0.81% |
Andrew Lutomirski | 1 | 0.02% | 1 | 0.81% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.81% |
Alexey Dobriyan | 1 | 0.02% | 1 | 0.81% |
Total | 5369 | 124 |
// SPDX-License-Identifier: GPL-2.0 /* * Implement CPU time clocks for the POSIX clock interface. */ #include <linux/sched/signal.h> #include <linux/sched/cputime.h> #include <linux/posix-timers.h> #include <linux/errno.h> #include <linux/math64.h> #include <linux/uaccess.h> #include <linux/kernel_stat.h> #include <trace/events/timer.h> #include <linux/tick.h> #include <linux/workqueue.h> #include <linux/compat.h> #include <linux/sched/deadline.h> #include "posix-timers.h" static void posix_cpu_timer_rearm(struct k_itimer *timer); /* * Called after updating RLIMIT_CPU to run cpu timer and update * tsk->signal->cputime_expires expiration cache if necessary. Needs * siglock protection since other code may update expiration cache as * well. */ void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) { u64 nsecs = rlim_new * NSEC_PER_SEC; spin_lock_irq(&task->sighand->siglock); set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); spin_unlock_irq(&task->sighand->siglock); } static int check_clock(const clockid_t which_clock) { int error = 0; struct task_struct *p; const pid_t pid = CPUCLOCK_PID(which_clock); if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) return -EINVAL; if (pid == 0) return 0; rcu_read_lock(); p = find_task_by_vpid(pid); if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? same_thread_group(p, current) : has_group_leader_pid(p))) { error = -EINVAL; } rcu_read_unlock(); return error; } /* * Update expiry time from increment, and increase overrun count, * given the current clock sample. */ static void bump_cpu_timer(struct k_itimer *timer, u64 now) { int i; u64 delta, incr; if (timer->it.cpu.incr == 0) return; if (now < timer->it.cpu.expires) return; incr = timer->it.cpu.incr; delta = now + incr - timer->it.cpu.expires; /* Don't use (incr*2 < delta), incr*2 might overflow. */ for (i = 0; incr < delta - incr; i++) incr = incr << 1; for (; i >= 0; incr >>= 1, i--) { if (delta < incr) continue; timer->it.cpu.expires += incr; timer->it_overrun += 1LL << i; delta -= incr; } } /** * task_cputime_zero - Check a task_cputime struct for all zero fields. * * @cputime: The struct to compare. * * Checks @cputime to see if all fields are zero. Returns true if all fields * are zero, false if any field is nonzero. */ static inline int task_cputime_zero(const struct task_cputime *cputime) { if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) return 1; return 0; } static inline u64 prof_ticks(struct task_struct *p) { u64 utime, stime; task_cputime(p, &utime, &stime); return utime + stime; } static inline u64 virt_ticks(struct task_struct *p) { u64 utime, stime; task_cputime(p, &utime, &stime); return utime; } static int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { int error = check_clock(which_clock); if (!error) { tp->tv_sec = 0; tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { /* * If sched_clock is using a cycle counter, we * don't have any idea of its true resolution * exported, but it is much more than 1s/HZ. */ tp->tv_nsec = 1; } } return error; } static int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp) { /* * You can never reset a CPU clock, but we check for other errors * in the call before failing with EPERM. */ int error = check_clock(which_clock); if (error == 0) { error = -EPERM; } return error; } /* * Sample a per-thread clock for the given task. */ static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, u64 *sample) { switch (CPUCLOCK_WHICH(which_clock)) { default: return -EINVAL; case CPUCLOCK_PROF: *sample = prof_ticks(p); break; case CPUCLOCK_VIRT: *sample = virt_ticks(p); break; case CPUCLOCK_SCHED: *sample = task_sched_runtime(p); break; } return 0; } /* * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg * to avoid race conditions with concurrent updates to cputime. */ static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) { u64 curr_cputime; retry: curr_cputime = atomic64_read(cputime); if (sum_cputime > curr_cputime) { if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) goto retry; } } static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) { __update_gt_cputime(&cputime_atomic->utime, sum->utime); __update_gt_cputime(&cputime_atomic->stime, sum->stime); __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); } /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ static inline void sample_cputime_atomic(struct task_cputime *times, struct task_cputime_atomic *atomic_times) { times->utime = atomic64_read(&atomic_times->utime); times->stime = atomic64_read(&atomic_times->stime); times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); } void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct task_cputime sum; /* Check if cputimer isn't running. This is accessed without locking. */ if (!READ_ONCE(cputimer->running)) { /* * The POSIX timer interface allows for absolute time expiry * values through the TIMER_ABSTIME flag, therefore we have * to synchronize the timer to the clock every time we start it. */ thread_group_cputime(tsk, &sum); update_gt_cputime(&cputimer->cputime_atomic, &sum); /* * We're setting cputimer->running without a lock. Ensure * this only gets written to in one operation. We set * running after update_gt_cputime() as a small optimization, * but barriers are not required because update_gt_cputime() * can handle concurrent updates. */ WRITE_ONCE(cputimer->running, true); } sample_cputime_atomic(times, &cputimer->cputime_atomic); } /* * Sample a process (thread group) clock for the given group_leader task. * Must be called with task sighand lock held for safe while_each_thread() * traversal. */ static int cpu_clock_sample_group(const clockid_t which_clock, struct task_struct *p, u64 *sample) { struct task_cputime cputime; switch (CPUCLOCK_WHICH(which_clock)) { default: return -EINVAL; case CPUCLOCK_PROF: thread_group_cputime(p, &cputime); *sample = cputime.utime + cputime.stime; break; case CPUCLOCK_VIRT: thread_group_cputime(p, &cputime); *sample = cputime.utime; break; case CPUCLOCK_SCHED: thread_group_cputime(p, &cputime); *sample = cputime.sum_exec_runtime; break; } return 0; } static int posix_cpu_clock_get_task(struct task_struct *tsk, const clockid_t which_clock, struct timespec64 *tp) { int err = -EINVAL; u64 rtn; if (CPUCLOCK_PERTHREAD(which_clock)) { if (same_thread_group(tsk, current)) err = cpu_clock_sample(which_clock, tsk, &rtn); } else { if (tsk == current || thread_group_leader(tsk)) err = cpu_clock_sample_group(which_clock, tsk, &rtn); } if (!err) *tp = ns_to_timespec64(rtn); return err; } static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) { const pid_t pid = CPUCLOCK_PID(which_clock); int err = -EINVAL; if (pid == 0) { /* * Special case constant value for our own clocks. * We don't have to do any lookup to find ourselves. */ err = posix_cpu_clock_get_task(current, which_clock, tp); } else { /* * Find the given PID, and validate that the caller * should be able to see it. */ struct task_struct *p; rcu_read_lock(); p = find_task_by_vpid(pid); if (p) err = posix_cpu_clock_get_task(p, which_clock, tp); rcu_read_unlock(); } return err; } /* * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. * This is called from sys_timer_create() and do_cpu_nanosleep() with the * new timer already all-zeros initialized. */ static int posix_cpu_timer_create(struct k_itimer *new_timer) { int ret = 0; const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); struct task_struct *p; if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) return -EINVAL; new_timer->kclock = &clock_posix_cpu; INIT_LIST_HEAD(&new_timer->it.cpu.entry); rcu_read_lock(); if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { if (pid == 0) { p = current; } else { p = find_task_by_vpid(pid); if (p && !same_thread_group(p, current)) p = NULL; } } else { if (pid == 0) { p = current->group_leader; } else { p = find_task_by_vpid(pid); if (p && !has_group_leader_pid(p)) p = NULL; } } new_timer->it.cpu.task = p; if (p) { get_task_struct(p); } else { ret = -EINVAL; } rcu_read_unlock(); return ret; } /* * Clean up a CPU-clock timer that is about to be destroyed. * This is called from timer deletion with the timer already locked. * If we return TIMER_RETRY, it's necessary to release the timer's lock * and try again. (This happens when the timer is in the middle of firing.) */ static int posix_cpu_timer_del(struct k_itimer *timer) { int ret = 0; unsigned long flags; struct sighand_struct *sighand; struct task_struct *p = timer->it.cpu.task; WARN_ON_ONCE(p == NULL); /* * Protect against sighand release/switch in exit/exec and process/ * thread timer list entry concurrent read/writes. */ sighand = lock_task_sighand(p, &flags); if (unlikely(sighand == NULL)) { /* * We raced with the reaping of the task. * The deletion should have cleared us off the list. */ WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); } else { if (timer->it.cpu.firing) ret = TIMER_RETRY; else list_del(&timer->it.cpu.entry); unlock_task_sighand(p, &flags); } if (!ret) put_task_struct(p); return ret; } static void cleanup_timers_list(struct list_head *head) { struct cpu_timer_list *timer, *next; list_for_each_entry_safe(timer, next, head, entry) list_del_init(&timer->entry); } /* * Clean out CPU timers still ticking when a thread exited. The task * pointer is cleared, and the expiry time is replaced with the residual * time for later timer_gettime calls to return. * This must be called with the siglock held. */ static void cleanup_timers(struct list_head *head) { cleanup_timers_list(head); cleanup_timers_list(++head); cleanup_timers_list(++head); } /* * These are both called with the siglock held, when the current thread * is being reaped. When the final (leader) thread in the group is reaped, * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. */ void posix_cpu_timers_exit(struct task_struct *tsk) { cleanup_timers(tsk->cpu_timers); } void posix_cpu_timers_exit_group(struct task_struct *tsk) { cleanup_timers(tsk->signal->cpu_timers); } static inline int expires_gt(u64 expires, u64 new_exp) { return expires == 0 || expires > new_exp; } /* * Insert the timer on the appropriate list before any timers that * expire later. This must be called with the sighand lock held. */ static void arm_timer(struct k_itimer *timer) { struct task_struct *p = timer->it.cpu.task; struct list_head *head, *listpos; struct task_cputime *cputime_expires; struct cpu_timer_list *const nt = &timer->it.cpu; struct cpu_timer_list *next; if (CPUCLOCK_PERTHREAD(timer->it_clock)) { head = p->cpu_timers; cputime_expires = &p->cputime_expires; } else { head = p->signal->cpu_timers; cputime_expires = &p->signal->cputime_expires; } head += CPUCLOCK_WHICH(timer->it_clock); listpos = head; list_for_each_entry(next, head, entry) { if (nt->expires < next->expires) break; listpos = &next->entry; } list_add(&nt->entry, listpos); if (listpos == head) { u64 exp = nt->expires; /* * We are the new earliest-expiring POSIX 1.b timer, hence * need to update expiration cache. Take into account that * for process timers we share expiration cache with itimers * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. */ switch (CPUCLOCK_WHICH(timer->it_clock)) { case CPUCLOCK_PROF: if (expires_gt(cputime_expires->prof_exp, exp)) cputime_expires->prof_exp = exp; break; case CPUCLOCK_VIRT: if (expires_gt(cputime_expires->virt_exp, exp)) cputime_expires->virt_exp = exp; break; case CPUCLOCK_SCHED: if (expires_gt(cputime_expires->sched_exp, exp)) cputime_expires->sched_exp = exp; break; } if (CPUCLOCK_PERTHREAD(timer->it_clock)) tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); else tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); } } /* * The timer is locked, fire it and arrange for its reload. */ static void cpu_timer_fire(struct k_itimer *timer) { if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { /* * User don't want any signal. */ timer->it.cpu.expires = 0; } else if (unlikely(timer->sigq == NULL)) { /* * This a special case for clock_nanosleep, * not a normal timer from sys_timer_create. */ wake_up_process(timer->it_process); timer->it.cpu.expires = 0; } else if (timer->it.cpu.incr == 0) { /* * One-shot timer. Clear it as soon as it's fired. */ posix_timer_event(timer, 0); timer->it.cpu.expires = 0; } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { /* * The signal did not get queued because the signal * was ignored, so we won't get any callback to * reload the timer. But we need to keep it * ticking in case the signal is deliverable next time. */ posix_cpu_timer_rearm(timer); ++timer->it_requeue_pending; } } /* * Sample a process (thread group) timer for the given group_leader task. * Must be called with task sighand lock held for safe while_each_thread() * traversal. */ static int cpu_timer_sample_group(const clockid_t which_clock, struct task_struct *p, u64 *sample) { struct task_cputime cputime; thread_group_cputimer(p, &cputime); switch (CPUCLOCK_WHICH(which_clock)) { default: return -EINVAL; case CPUCLOCK_PROF: *sample = cputime.utime + cputime.stime; break; case CPUCLOCK_VIRT: *sample = cputime.utime; break; case CPUCLOCK_SCHED: *sample = cputime.sum_exec_runtime; break; } return 0; } /* * Guts of sys_timer_settime for CPU timers. * This is called with the timer locked and interrupts disabled. * If we return TIMER_RETRY, it's necessary to release the timer's lock * and try again. (This happens when the timer is in the middle of firing.) */ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, struct itimerspec64 *new, struct itimerspec64 *old) { unsigned long flags; struct sighand_struct *sighand; struct task_struct *p = timer->it.cpu.task; u64 old_expires, new_expires, old_incr, val; int ret; WARN_ON_ONCE(p == NULL); /* * Use the to_ktime conversion because that clamps the maximum * value to KTIME_MAX and avoid multiplication overflows. */ new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); /* * Protect against sighand release/switch in exit/exec and p->cpu_timers * and p->signal->cpu_timers read/write in arm_timer() */ sighand = lock_task_sighand(p, &flags); /* * If p has just been reaped, we can no * longer get any information about it at all. */ if (unlikely(sighand == NULL)) { return -ESRCH; } /* * Disarm any old timer after extracting its expiry time. */ ret = 0; old_incr = timer->it.cpu.incr; old_expires = timer->it.cpu.expires; if (unlikely(timer->it.cpu.firing)) { timer->it.cpu.firing = -1; ret = TIMER_RETRY; } else list_del_init(&timer->it.cpu.entry); /* * We need to sample the current value to convert the new * value from to relative and absolute, and to convert the * old value from absolute to relative. To set a process * timer, we need a sample to balance the thread expiry * times (in arm_timer). With an absolute time, we must * check if it's already passed. In short, we need a sample. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) { cpu_clock_sample(timer->it_clock, p, &val); } else { cpu_timer_sample_group(timer->it_clock, p, &val); } if (old) { if (old_expires == 0) { old->it_value.tv_sec = 0; old->it_value.tv_nsec = 0; } else { /* * Update the timer in case it has * overrun already. If it has, * we'll report it as having overrun * and with the next reloaded timer * already ticking, though we are * swallowing that pending * notification here to install the * new setting. */ bump_cpu_timer(timer, val); if (val < timer->it.cpu.expires) { old_expires = timer->it.cpu.expires - val; old->it_value = ns_to_timespec64(old_expires); } else { old->it_value.tv_nsec = 1; old->it_value.tv_sec = 0; } } } if (unlikely(ret)) { /* * We are colliding with the timer actually firing. * Punt after filling in the timer's old value, and * disable this firing since we are already reporting * it as an overrun (thanks to bump_cpu_timer above). */ unlock_task_sighand(p, &flags); goto out; } if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { new_expires += val; } /* * Install the new expiry time (or zero). * For a timer with no notification action, we don't actually * arm the timer (we'll just fake it for timer_gettime). */ timer->it.cpu.expires = new_expires; if (new_expires != 0 && val < new_expires) { arm_timer(timer); } unlock_task_sighand(p, &flags); /* * Install the new reload setting, and * set up the signal and overrun bookkeeping. */ timer->it.cpu.incr = timespec64_to_ns(&new->it_interval); /* * This acts as a modification timestamp for the timer, * so any automatic reload attempt will punt on seeing * that we have reset the timer manually. */ timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING; timer->it_overrun_last = 0; timer->it_overrun = -1; if (new_expires != 0 && !(val < new_expires)) { /* * The designated time already passed, so we notify * immediately, even if the thread never runs to * accumulate more time on this clock. */ cpu_timer_fire(timer); } ret = 0; out: if (old) old->it_interval = ns_to_timespec64(old_incr); return ret; } static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) { u64 now; struct task_struct *p = timer->it.cpu.task; WARN_ON_ONCE(p == NULL); /* * Easy part: convert the reload time. */ itp->it_interval = ns_to_timespec64(timer->it.cpu.incr); if (!timer->it.cpu.expires) return; /* * Sample the clock to take the difference with the expiry time. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) { cpu_clock_sample(timer->it_clock, p, &now); } else { struct sighand_struct *sighand; unsigned long flags; /* * Protect against sighand release/switch in exit/exec and * also make timer sampling safe if it ends up calling * thread_group_cputime(). */ sighand = lock_task_sighand(p, &flags); if (unlikely(sighand == NULL)) { /* * The process has been reaped. * We can't even collect a sample any more. * Call the timer disarmed, nothing else to do. */ timer->it.cpu.expires = 0; return; } else { cpu_timer_sample_group(timer->it_clock, p, &now); unlock_task_sighand(p, &flags); } } if (now < timer->it.cpu.expires) { itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now); } else { /* * The timer should have expired already, but the firing * hasn't taken place yet. Say it's just about to expire. */ itp->it_value.tv_nsec = 1; itp->it_value.tv_sec = 0; } } static unsigned long long check_timers_list(struct list_head *timers, struct list_head *firing, unsigned long long curr) { int maxfire = 20; while (!list_empty(timers)) { struct cpu_timer_list *t; t = list_first_entry(timers, struct cpu_timer_list, entry); if (!--maxfire || curr < t->expires) return t->expires; t->firing = 1; list_move_tail(&t->entry, firing); } return 0; } static inline void check_dl_overrun(struct task_struct *tsk) { if (tsk->dl.dl_overrun) { tsk->dl.dl_overrun = 0; __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); } } /* * Check for any per-thread CPU timers that have fired and move them off * the tsk->cpu_timers[N] list onto the firing list. Here we update the * tsk->it_*_expires values to reflect the remaining thread CPU timers. */ static void check_thread_timers(struct task_struct *tsk, struct list_head *firing) { struct list_head *timers = tsk->cpu_timers; struct task_cputime *tsk_expires = &tsk->cputime_expires; u64 expires; unsigned long soft; if (dl_task(tsk)) check_dl_overrun(tsk); /* * If cputime_expires is zero, then there are no active * per thread CPU timers. */ if (task_cputime_zero(&tsk->cputime_expires)) return; expires = check_timers_list(timers, firing, prof_ticks(tsk)); tsk_expires->prof_exp = expires; expires = check_timers_list(++timers, firing, virt_ticks(tsk)); tsk_expires->virt_exp = expires; tsk_expires->sched_exp = check_timers_list(++timers, firing, tsk->se.sum_exec_runtime); /* * Check for the special case thread timers. */ soft = task_rlimit(tsk, RLIMIT_RTTIME); if (soft != RLIM_INFINITY) { unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); if (hard != RLIM_INFINITY && tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { /* * At the hard limit, we just die. * No need to calculate anything else now. */ if (print_fatal_signals) { pr_info("CPU Watchdog Timeout (hard): %s[%d]\n", tsk->comm, task_pid_nr(tsk)); } __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { /* * At the soft limit, send a SIGXCPU every second. */ if (soft < hard) { soft += USEC_PER_SEC; tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; } if (print_fatal_signals) { pr_info("RT Watchdog Timeout (soft): %s[%d]\n", tsk->comm, task_pid_nr(tsk)); } __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); } } if (task_cputime_zero(tsk_expires)) tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); } static inline void stop_process_timers(struct signal_struct *sig) { struct thread_group_cputimer *cputimer = &sig->cputimer; /* Turn off cputimer->running. This is done without locking. */ WRITE_ONCE(cputimer->running, false); tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); } static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, u64 *expires, u64 cur_time, int signo) { if (!it->expires) return; if (cur_time >= it->expires) { if (it->incr) it->expires += it->incr; else it->expires = 0; trace_itimer_expire(signo == SIGPROF ? ITIMER_PROF : ITIMER_VIRTUAL, task_tgid(tsk), cur_time); __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); } if (it->expires && (!*expires || it->expires < *expires)) *expires = it->expires; } /* * Check for any per-thread CPU timers that have fired and move them * off the tsk->*_timers list onto the firing list. Per-thread timers * have already been taken off. */ static void check_process_timers(struct task_struct *tsk, struct list_head *firing) { struct signal_struct *const sig = tsk->signal; u64 utime, ptime, virt_expires, prof_expires; u64 sum_sched_runtime, sched_expires; struct list_head *timers = sig->cpu_timers; struct task_cputime cputime; unsigned long soft; if (dl_task(tsk)) check_dl_overrun(tsk); /* * If cputimer is not running, then there are no active * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). */ if (!READ_ONCE(tsk->signal->cputimer.running)) return; /* * Signify that a thread is checking for process timers. * Write access to this field is protected by the sighand lock. */ sig->cputimer.checking_timer = true; /* * Collect the current process totals. */ thread_group_cputimer(tsk, &cputime); utime = cputime.utime; ptime = utime + cputime.stime; sum_sched_runtime = cputime.sum_exec_runtime; prof_expires = check_timers_list(timers, firing, ptime); virt_expires = check_timers_list(++timers, firing, utime); sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); /* * Check for the special case process timers. */ check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, SIGPROF); check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, SIGVTALRM); soft = task_rlimit(tsk, RLIMIT_CPU); if (soft != RLIM_INFINITY) { unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); u64 x; if (psecs >= hard) { /* * At the hard limit, we just die. * No need to calculate anything else now. */ if (print_fatal_signals) { pr_info("RT Watchdog Timeout (hard): %s[%d]\n", tsk->comm, task_pid_nr(tsk)); } __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } if (psecs >= soft) { /* * At the soft limit, send a SIGXCPU every second. */ if (print_fatal_signals) { pr_info("CPU Watchdog Timeout (soft): %s[%d]\n", tsk->comm, task_pid_nr(tsk)); } __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); if (soft < hard) { soft++; sig->rlim[RLIMIT_CPU].rlim_cur = soft; } } x = soft * NSEC_PER_SEC; if (!prof_expires || x < prof_expires) prof_expires = x; } sig->cputime_expires.prof_exp = prof_expires; sig->cputime_expires.virt_exp = virt_expires; sig->cputime_expires.sched_exp = sched_expires; if (task_cputime_zero(&sig->cputime_expires)) stop_process_timers(sig); sig->cputimer.checking_timer = false; } /* * This is called from the signal code (via posixtimer_rearm) * when the last timer signal was delivered and we have to reload the timer. */ static void posix_cpu_timer_rearm(struct k_itimer *timer) { struct sighand_struct *sighand; unsigned long flags; struct task_struct *p = timer->it.cpu.task; u64 now; WARN_ON_ONCE(p == NULL); /* * Fetch the current sample and update the timer's expiry time. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) { cpu_clock_sample(timer->it_clock, p, &now); bump_cpu_timer(timer, now); if (unlikely(p->exit_state)) return; /* Protect timer list r/w in arm_timer() */ sighand = lock_task_sighand(p, &flags); if (!sighand) return; } else { /* * Protect arm_timer() and timer sampling in case of call to * thread_group_cputime(). */ sighand = lock_task_sighand(p, &flags); if (unlikely(sighand == NULL)) { /* * The process has been reaped. * We can't even collect a sample any more. */ timer->it.cpu.expires = 0; return; } else if (unlikely(p->exit_state) && thread_group_empty(p)) { /* If the process is dying, no need to rearm */ goto unlock; } cpu_timer_sample_group(timer->it_clock, p, &now); bump_cpu_timer(timer, now); /* Leave the sighand locked for the call below. */ } /* * Now re-arm for the new expiry time. */ arm_timer(timer); unlock: unlock_task_sighand(p, &flags); } /** * task_cputime_expired - Compare two task_cputime entities. * * @sample: The task_cputime structure to be checked for expiration. * @expires: Expiration times, against which @sample will be checked. * * Checks @sample against @expires to see if any field of @sample has expired. * Returns true if any field of the former is greater than the corresponding * field of the latter if the latter field is set. Otherwise returns false. */ static inline int task_cputime_expired(const struct task_cputime *sample, const struct task_cputime *expires) { if (expires->utime && sample->utime >= expires->utime) return 1; if (expires->stime && sample->utime + sample->stime >= expires->stime) return 1; if (expires->sum_exec_runtime != 0 && sample->sum_exec_runtime >= expires->sum_exec_runtime) return 1; return 0; } /** * fastpath_timer_check - POSIX CPU timers fast path. * * @tsk: The task (thread) being checked. * * Check the task and thread group timers. If both are zero (there are no * timers set) return false. Otherwise snapshot the task and thread group * timers and compare them with the corresponding expiration times. Return * true if a timer has expired, else return false. */ static inline int fastpath_timer_check(struct task_struct *tsk) { struct signal_struct *sig; if (!task_cputime_zero(&tsk->cputime_expires)) { struct task_cputime task_sample; task_cputime(tsk, &task_sample.utime, &task_sample.stime); task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) return 1; } sig = tsk->signal; /* * Check if thread group timers expired when the cputimer is * running and no other thread in the group is already checking * for thread group cputimers. These fields are read without the * sighand lock. However, this is fine because this is meant to * be a fastpath heuristic to determine whether we should try to * acquire the sighand lock to check/handle timers. * * In the worst case scenario, if 'running' or 'checking_timer' gets * set but the current thread doesn't see the change yet, we'll wait * until the next thread in the group gets a scheduler interrupt to * handle the timer. This isn't an issue in practice because these * types of delays with signals actually getting sent are expected. */ if (READ_ONCE(sig->cputimer.running) && !READ_ONCE(sig->cputimer.checking_timer)) { struct task_cputime group_sample; sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); if (task_cputime_expired(&group_sample, &sig->cputime_expires)) return 1; } if (dl_task(tsk) && tsk->dl.dl_overrun) return 1; return 0; } /* * This is called from the timer interrupt handler. The irq handler has * already updated our counts. We need to check if any timers fire now. * Interrupts are disabled. */ void run_posix_cpu_timers(struct task_struct *tsk) { LIST_HEAD(firing); struct k_itimer *timer, *next; unsigned long flags; lockdep_assert_irqs_disabled(); /* * The fast path checks that there are no expired thread or thread * group timers. If that's so, just return. */ if (!fastpath_timer_check(tsk)) return; if (!lock_task_sighand(tsk, &flags)) return; /* * Here we take off tsk->signal->cpu_timers[N] and * tsk->cpu_timers[N] all the timers that are firing, and * put them on the firing list. */ check_thread_timers(tsk, &firing); check_process_timers(tsk, &firing); /* * We must release these locks before taking any timer's lock. * There is a potential race with timer deletion here, as the * siglock now protects our private firing list. We have set * the firing flag in each timer, so that a deletion attempt * that gets the timer lock before we do will give it up and * spin until we've taken care of that timer below. */ unlock_task_sighand(tsk, &flags); /* * Now that all the timers on our list have the firing flag, * no one will touch their list entries but us. We'll take * each timer's lock before clearing its firing flag, so no * timer call will interfere. */ list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { int cpu_firing; spin_lock(&timer->it_lock); list_del_init(&timer->it.cpu.entry); cpu_firing = timer->it.cpu.firing; timer->it.cpu.firing = 0; /* * The firing flag is -1 if we collided with a reset * of the timer, which already reported this * almost-firing as an overrun. So don't generate an event. */ if (likely(cpu_firing >= 0)) cpu_timer_fire(timer); spin_unlock(&timer->it_lock); } } /* * Set one of the process-wide special case CPU timers or RLIMIT_CPU. * The tsk->sighand->siglock must be held by the caller. */ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, u64 *newval, u64 *oldval) { u64 now; int ret; WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); ret = cpu_timer_sample_group(clock_idx, tsk, &now); if (oldval && ret != -EINVAL) { /* * We are setting itimer. The *oldval is absolute and we update * it to be relative, *newval argument is relative and we update * it to be absolute. */ if (*oldval) { if (*oldval <= now) { /* Just about to fire. */ *oldval = TICK_NSEC; } else { *oldval -= now; } } if (!*newval) return; *newval += now; } /* * Update expiration cache if we are the earliest timer, or eventually * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. */ switch (clock_idx) { case CPUCLOCK_PROF: if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) tsk->signal->cputime_expires.prof_exp = *newval; break; case CPUCLOCK_VIRT: if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) tsk->signal->cputime_expires.virt_exp = *newval; break; } tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); } static int do_cpu_nanosleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { struct itimerspec64 it; struct k_itimer timer; u64 expires; int error; /* * Set up a temporary timer and then wait for it to go off. */ memset(&timer, 0, sizeof timer); spin_lock_init(&timer.it_lock); timer.it_clock = which_clock; timer.it_overrun = -1; error = posix_cpu_timer_create(&timer); timer.it_process = current; if (!error) { static struct itimerspec64 zero_it; struct restart_block *restart; memset(&it, 0, sizeof(it)); it.it_value = *rqtp; spin_lock_irq(&timer.it_lock); error = posix_cpu_timer_set(&timer, flags, &it, NULL); if (error) { spin_unlock_irq(&timer.it_lock); return error; } while (!signal_pending(current)) { if (timer.it.cpu.expires == 0) { /* * Our timer fired and was reset, below * deletion can not fail. */ posix_cpu_timer_del(&timer); spin_unlock_irq(&timer.it_lock); return 0; } /* * Block until cpu_timer_fire (or a signal) wakes us. */ __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irq(&timer.it_lock); schedule(); spin_lock_irq(&timer.it_lock); } /* * We were interrupted by a signal. */ expires = timer.it.cpu.expires; error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); if (!error) { /* * Timer is now unarmed, deletion can not fail. */ posix_cpu_timer_del(&timer); } spin_unlock_irq(&timer.it_lock); while (error == TIMER_RETRY) { /* * We need to handle case when timer was or is in the * middle of firing. In other cases we already freed * resources. */ spin_lock_irq(&timer.it_lock); error = posix_cpu_timer_del(&timer); spin_unlock_irq(&timer.it_lock); } if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { /* * It actually did fire already. */ return 0; } error = -ERESTART_RESTARTBLOCK; /* * Report back to the user the time still remaining. */ restart = ¤t->restart_block; restart->nanosleep.expires = expires; if (restart->nanosleep.type != TT_NONE) error = nanosleep_copyout(restart, &it.it_value); } return error; } static long posix_cpu_nsleep_restart(struct restart_block *restart_block); static int posix_cpu_nsleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { struct restart_block *restart_block = ¤t->restart_block; int error; /* * Diagnose required errors first. */ if (CPUCLOCK_PERTHREAD(which_clock) && (CPUCLOCK_PID(which_clock) == 0 || CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) return -EINVAL; error = do_cpu_nanosleep(which_clock, flags, rqtp); if (error == -ERESTART_RESTARTBLOCK) { if (flags & TIMER_ABSTIME) return -ERESTARTNOHAND; restart_block->fn = posix_cpu_nsleep_restart; restart_block->nanosleep.clockid = which_clock; } return error; } static long posix_cpu_nsleep_restart(struct restart_block *restart_block) { clockid_t which_clock = restart_block->nanosleep.clockid; struct timespec64 t; t = ns_to_timespec64(restart_block->nanosleep.expires); return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); } #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) static int process_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_getres(PROCESS_CLOCK, tp); } static int process_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_get(PROCESS_CLOCK, tp); } static int process_cpu_timer_create(struct k_itimer *timer) { timer->it_clock = PROCESS_CLOCK; return posix_cpu_timer_create(timer); } static int process_cpu_nsleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); } static int thread_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_getres(THREAD_CLOCK, tp); } static int thread_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_get(THREAD_CLOCK, tp); } static int thread_cpu_timer_create(struct k_itimer *timer) { timer->it_clock = THREAD_CLOCK; return posix_cpu_timer_create(timer); } const struct k_clock clock_posix_cpu = { .clock_getres = posix_cpu_clock_getres, .clock_set = posix_cpu_clock_set, .clock_get = posix_cpu_clock_get, .timer_create = posix_cpu_timer_create, .nsleep = posix_cpu_nsleep, .timer_set = posix_cpu_timer_set, .timer_del = posix_cpu_timer_del, .timer_get = posix_cpu_timer_get, .timer_rearm = posix_cpu_timer_rearm, }; const struct k_clock clock_process = { .clock_getres = process_cpu_clock_getres, .clock_get = process_cpu_clock_get, .timer_create = process_cpu_timer_create, .nsleep = process_cpu_nsleep, }; const struct k_clock clock_thread = { .clock_getres = thread_cpu_clock_getres, .clock_get = thread_cpu_clock_get, .timer_create = thread_cpu_timer_create, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1