Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Markos Chandras | 658 | 47.47% | 1 | 8.33% |
Douglas Leung | 434 | 31.31% | 1 | 8.33% |
Aleksandar Markovic | 215 | 15.51% | 8 | 66.67% |
Paul Burton | 79 | 5.70% | 2 | 16.67% |
Total | 1386 | 12 |
/* * IEEE754 floating point arithmetic * double precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <markos.chandras@imgtec.com> * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; version 2 of the License. */ #include "ieee754dp.h" /* 128 bits shift right logical with rounding. */ static void srl128(u64 *hptr, u64 *lptr, int count) { u64 low; if (count >= 128) { *lptr = *hptr != 0 || *lptr != 0; *hptr = 0; } else if (count >= 64) { if (count == 64) { *lptr = *hptr | (*lptr != 0); } else { low = *lptr; *lptr = *hptr >> (count - 64); *lptr |= (*hptr << (128 - count)) != 0 || low != 0; } *hptr = 0; } else { low = *lptr; *lptr = low >> count | *hptr << (64 - count); *lptr |= (low << (64 - count)) != 0; *hptr = *hptr >> count; } } static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y, enum maddf_flags flags) { int re; int rs; unsigned int lxm; unsigned int hxm; unsigned int lym; unsigned int hym; u64 lrm; u64 hrm; u64 lzm; u64 hzm; u64 t; u64 at; int s; COMPXDP; COMPYDP; COMPZDP; EXPLODEXDP; EXPLODEYDP; EXPLODEZDP; FLUSHXDP; FLUSHYDP; FLUSHZDP; ieee754_clearcx(); /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) DPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) || ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y) (in case of MADDF.D instruction) * or product -(x*y) (in MSUBF.D case). The result must be an * infinity, and its sign is determined only by the value of * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y. */ if (flags & MADDF_NEGATE_PRODUCT) return ieee754dp_inf(1 ^ (xs ^ ys)); else return ieee754dp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if ((!(flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))) || ((flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys)))) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; /* fall through */ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); /* continue to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); re = xe + ye; rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; /* shunt to top of word */ xm <<= 64 - (DP_FBITS + 1); ym <<= 64 - (DP_FBITS + 1); /* * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm. */ lxm = xm; hxm = xm >> 32; lym = ym; hym = ym >> 32; lrm = DPXMULT(lxm, lym); hrm = DPXMULT(hxm, hym); t = DPXMULT(lxm, hym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); t = DPXMULT(hxm, lym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); /* Put explicit bit at bit 126 if necessary */ if ((int64_t)hrm < 0) { lrm = (hrm << 63) | (lrm >> 1); hrm = hrm >> 1; re++; } assert(hrm & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 126 to bit 55 since the * ieee754dp_format code expects the mantissa to be * 56 bits wide (53 + 3 rounding bits). */ srl128(&hrm, &lrm, (126 - 55)); return ieee754dp_format(rs, re, lrm); } /* Move explicit bit from bit 52 to bit 126 */ lzm = 0; hzm = zm << 10; assert(hzm & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift y fraction right to align. */ s = ze - re; srl128(&hrm, &lrm, s); re += s; } else if (re > ze) { /* * Have to shift x fraction right to align. */ s = re - ze; srl128(&hzm, &lzm, s); ze += s; } assert(ze == re); assert(ze <= DP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 128 bit result by adding two 127 bit numbers * leaving result in hzm:lzm, zs and ze. */ hzm = hzm + hrm + (lzm > (lzm + lrm)); lzm = lzm + lrm; if ((int64_t)hzm < 0) { /* carry out */ srl128(&hzm, &lzm, 1); ze++; } } else { if (hzm > hrm || (hzm == hrm && lzm >= lrm)) { hzm = hzm - hrm - (lzm < lrm); lzm = lzm - lrm; } else { hzm = hrm - hzm - (lrm < lzm); lzm = lrm - lzm; zs = rs; } if (lzm == 0 && hzm == 0) return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 126 if necessary. */ if (hzm == 0) { /* left shift by 63 or 64 bits */ if ((int64_t)lzm < 0) { /* MSB of lzm is the explicit bit */ hzm = lzm >> 1; lzm = lzm << 63; ze -= 63; } else { hzm = lzm; lzm = 0; ze -= 64; } } t = 0; while ((hzm >> (62 - t)) == 0) t++; assert(t <= 62); if (t) { hzm = hzm << t | lzm >> (64 - t); lzm = lzm << t; ze -= t; } } /* * Move explicit bit from bit 126 to bit 55 since the * ieee754dp_format code expects the mantissa to be * 56 bits wide (53 + 3 rounding bits). */ srl128(&hzm, &lzm, (126 - 55)); return ieee754dp_format(zs, ze, lzm); } union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, 0); } union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1