Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 270 | 100.00% | 2 | 100.00% |
Total | 270 | 2 |
/* * Copyright 2016,2017 IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _ASM_POWERPC_XIVE_REGS_H #define _ASM_POWERPC_XIVE_REGS_H /* * "magic" Event State Buffer (ESB) MMIO offsets. * * Each interrupt source has a 2-bit state machine called ESB * which can be controlled by MMIO. It's made of 2 bits, P and * Q. P indicates that an interrupt is pending (has been sent * to a queue and is waiting for an EOI). Q indicates that the * interrupt has been triggered while pending. * * This acts as a coalescing mechanism in order to guarantee * that a given interrupt only occurs at most once in a queue. * * When doing an EOI, the Q bit will indicate if the interrupt * needs to be re-triggered. * * The following offsets into the ESB MMIO allow to read or * manipulate the PQ bits. They must be used with an 8-bytes * load instruction. They all return the previous state of the * interrupt (atomically). * * Additionally, some ESB pages support doing an EOI via a * store at 0 and some ESBs support doing a trigger via a * separate trigger page. */ #define XIVE_ESB_STORE_EOI 0x400 /* Store */ #define XIVE_ESB_LOAD_EOI 0x000 /* Load */ #define XIVE_ESB_GET 0x800 /* Load */ #define XIVE_ESB_SET_PQ_00 0xc00 /* Load */ #define XIVE_ESB_SET_PQ_01 0xd00 /* Load */ #define XIVE_ESB_SET_PQ_10 0xe00 /* Load */ #define XIVE_ESB_SET_PQ_11 0xf00 /* Load */ #define XIVE_ESB_VAL_P 0x2 #define XIVE_ESB_VAL_Q 0x1 /* * Thread Management (aka "TM") registers */ /* TM register offsets */ #define TM_QW0_USER 0x000 /* All rings */ #define TM_QW1_OS 0x010 /* Ring 0..2 */ #define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */ #define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */ /* Byte offsets inside a QW QW0 QW1 QW2 QW3 */ #define TM_NSR 0x0 /* + + - + */ #define TM_CPPR 0x1 /* - + - + */ #define TM_IPB 0x2 /* - + + + */ #define TM_LSMFB 0x3 /* - + + + */ #define TM_ACK_CNT 0x4 /* - + - - */ #define TM_INC 0x5 /* - + - + */ #define TM_AGE 0x6 /* - + - + */ #define TM_PIPR 0x7 /* - + - + */ #define TM_WORD0 0x0 #define TM_WORD1 0x4 /* * QW word 2 contains the valid bit at the top and other fields * depending on the QW. */ #define TM_WORD2 0x8 #define TM_QW0W2_VU PPC_BIT32(0) #define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1,31) // XX 2,31 ? #define TM_QW1W2_VO PPC_BIT32(0) #define TM_QW1W2_OS_CAM PPC_BITMASK32(8,31) #define TM_QW2W2_VP PPC_BIT32(0) #define TM_QW2W2_POOL_CAM PPC_BITMASK32(8,31) #define TM_QW3W2_VT PPC_BIT32(0) #define TM_QW3W2_LP PPC_BIT32(6) #define TM_QW3W2_LE PPC_BIT32(7) #define TM_QW3W2_T PPC_BIT32(31) /* * In addition to normal loads to "peek" and writes (only when invalid) * using 4 and 8 bytes accesses, the above registers support these * "special" byte operations: * * - Byte load from QW0[NSR] - User level NSR (EBB) * - Byte store to QW0[NSR] - User level NSR (EBB) * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0 * otherwise VT||0000000 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present) * * Then we have all these "special" CI ops at these offset that trigger * all sorts of side effects: */ #define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/ #define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */ #define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */ #define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user context */ #define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */ #define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS context to reg */ #define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool context to reg*/ #define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */ #define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd line */ #define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */ #define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even line */ #define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */ /* XXX more... */ /* NSR fields for the various QW ack types */ #define TM_QW0_NSR_EB PPC_BIT8(0) #define TM_QW1_NSR_EO PPC_BIT8(0) #define TM_QW3_NSR_HE PPC_BITMASK8(0,1) #define TM_QW3_NSR_HE_NONE 0 #define TM_QW3_NSR_HE_POOL 1 #define TM_QW3_NSR_HE_PHYS 2 #define TM_QW3_NSR_HE_LSI 3 #define TM_QW3_NSR_I PPC_BIT8(2) #define TM_QW3_NSR_GRP_LVL PPC_BIT8(3,7) #endif /* _ASM_POWERPC_XIVE_REGS_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1