Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anju T | 1176 | 88.35% | 2 | 28.57% |
Balbir Singh | 119 | 8.94% | 1 | 14.29% |
Naveen N. Rao | 36 | 2.70% | 4 | 57.14% |
Total | 1331 | 7 |
/* * Code for Kernel probes Jump optimization. * * Copyright 2017, Anju T, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kprobes.h> #include <linux/jump_label.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/list.h> #include <asm/kprobes.h> #include <asm/ptrace.h> #include <asm/cacheflush.h> #include <asm/code-patching.h> #include <asm/sstep.h> #include <asm/ppc-opcode.h> #define TMPL_CALL_HDLR_IDX \ (optprobe_template_call_handler - optprobe_template_entry) #define TMPL_EMULATE_IDX \ (optprobe_template_call_emulate - optprobe_template_entry) #define TMPL_RET_IDX \ (optprobe_template_ret - optprobe_template_entry) #define TMPL_OP_IDX \ (optprobe_template_op_address - optprobe_template_entry) #define TMPL_INSN_IDX \ (optprobe_template_insn - optprobe_template_entry) #define TMPL_END_IDX \ (optprobe_template_end - optprobe_template_entry) DEFINE_INSN_CACHE_OPS(ppc_optinsn); static bool insn_page_in_use; static void *__ppc_alloc_insn_page(void) { if (insn_page_in_use) return NULL; insn_page_in_use = true; return &optinsn_slot; } static void __ppc_free_insn_page(void *page __maybe_unused) { insn_page_in_use = false; } struct kprobe_insn_cache kprobe_ppc_optinsn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_ppc_optinsn_slots.mutex), .pages = LIST_HEAD_INIT(kprobe_ppc_optinsn_slots.pages), /* insn_size initialized later */ .alloc = __ppc_alloc_insn_page, .free = __ppc_free_insn_page, .nr_garbage = 0, }; /* * Check if we can optimize this probe. Returns NIP post-emulation if this can * be optimized and 0 otherwise. */ static unsigned long can_optimize(struct kprobe *p) { struct pt_regs regs; struct instruction_op op; unsigned long nip = 0; /* * kprobe placed for kretprobe during boot time * has a 'nop' instruction, which can be emulated. * So further checks can be skipped. */ if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) return (unsigned long)p->addr + sizeof(kprobe_opcode_t); /* * We only support optimizing kernel addresses, but not * module addresses. * * FIXME: Optimize kprobes placed in module addresses. */ if (!is_kernel_addr((unsigned long)p->addr)) return 0; memset(®s, 0, sizeof(struct pt_regs)); regs.nip = (unsigned long)p->addr; regs.trap = 0x0; regs.msr = MSR_KERNEL; /* * Kprobe placed in conditional branch instructions are * not optimized, as we can't predict the nip prior with * dummy pt_regs and can not ensure that the return branch * from detour buffer falls in the range of address (i.e 32MB). * A branch back from trampoline is set up in the detour buffer * to the nip returned by the analyse_instr() here. * * Ensure that the instruction is not a conditional branch, * and that can be emulated. */ if (!is_conditional_branch(*p->ainsn.insn) && analyse_instr(&op, ®s, *p->ainsn.insn) == 1) { emulate_update_regs(®s, &op); nip = regs.nip; } return nip; } static void optimized_callback(struct optimized_kprobe *op, struct pt_regs *regs) { /* This is possible if op is under delayed unoptimizing */ if (kprobe_disabled(&op->kp)) return; preempt_disable(); if (kprobe_running()) { kprobes_inc_nmissed_count(&op->kp); } else { __this_cpu_write(current_kprobe, &op->kp); regs->nip = (unsigned long)op->kp.addr; get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; opt_pre_handler(&op->kp, regs); __this_cpu_write(current_kprobe, NULL); } preempt_enable_no_resched(); } NOKPROBE_SYMBOL(optimized_callback); void arch_remove_optimized_kprobe(struct optimized_kprobe *op) { if (op->optinsn.insn) { free_ppc_optinsn_slot(op->optinsn.insn, 1); op->optinsn.insn = NULL; } } /* * emulate_step() requires insn to be emulated as * second parameter. Load register 'r4' with the * instruction. */ void patch_imm32_load_insns(unsigned int val, kprobe_opcode_t *addr) { /* addis r4,0,(insn)@h */ patch_instruction(addr, PPC_INST_ADDIS | ___PPC_RT(4) | ((val >> 16) & 0xffff)); addr++; /* ori r4,r4,(insn)@l */ patch_instruction(addr, PPC_INST_ORI | ___PPC_RA(4) | ___PPC_RS(4) | (val & 0xffff)); } /* * Generate instructions to load provided immediate 64-bit value * to register 'r3' and patch these instructions at 'addr'. */ void patch_imm64_load_insns(unsigned long val, kprobe_opcode_t *addr) { /* lis r3,(op)@highest */ patch_instruction(addr, PPC_INST_ADDIS | ___PPC_RT(3) | ((val >> 48) & 0xffff)); addr++; /* ori r3,r3,(op)@higher */ patch_instruction(addr, PPC_INST_ORI | ___PPC_RA(3) | ___PPC_RS(3) | ((val >> 32) & 0xffff)); addr++; /* rldicr r3,r3,32,31 */ patch_instruction(addr, PPC_INST_RLDICR | ___PPC_RA(3) | ___PPC_RS(3) | __PPC_SH64(32) | __PPC_ME64(31)); addr++; /* oris r3,r3,(op)@h */ patch_instruction(addr, PPC_INST_ORIS | ___PPC_RA(3) | ___PPC_RS(3) | ((val >> 16) & 0xffff)); addr++; /* ori r3,r3,(op)@l */ patch_instruction(addr, PPC_INST_ORI | ___PPC_RA(3) | ___PPC_RS(3) | (val & 0xffff)); } int arch_prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) { kprobe_opcode_t *buff, branch_op_callback, branch_emulate_step; kprobe_opcode_t *op_callback_addr, *emulate_step_addr; long b_offset; unsigned long nip, size; int rc, i; kprobe_ppc_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; nip = can_optimize(p); if (!nip) return -EILSEQ; /* Allocate instruction slot for detour buffer */ buff = get_ppc_optinsn_slot(); if (!buff) return -ENOMEM; /* * OPTPROBE uses 'b' instruction to branch to optinsn.insn. * * The target address has to be relatively nearby, to permit use * of branch instruction in powerpc, because the address is specified * in an immediate field in the instruction opcode itself, ie 24 bits * in the opcode specify the address. Therefore the address should * be within 32MB on either side of the current instruction. */ b_offset = (unsigned long)buff - (unsigned long)p->addr; if (!is_offset_in_branch_range(b_offset)) goto error; /* Check if the return address is also within 32MB range */ b_offset = (unsigned long)(buff + TMPL_RET_IDX) - (unsigned long)nip; if (!is_offset_in_branch_range(b_offset)) goto error; /* Setup template */ /* We can optimize this via patch_instruction_window later */ size = (TMPL_END_IDX * sizeof(kprobe_opcode_t)) / sizeof(int); pr_devel("Copying template to %p, size %lu\n", buff, size); for (i = 0; i < size; i++) { rc = patch_instruction(buff + i, *(optprobe_template_entry + i)); if (rc < 0) goto error; } /* * Fixup the template with instructions to: * 1. load the address of the actual probepoint */ patch_imm64_load_insns((unsigned long)op, buff + TMPL_OP_IDX); /* * 2. branch to optimized_callback() and emulate_step() */ op_callback_addr = (kprobe_opcode_t *)ppc_kallsyms_lookup_name("optimized_callback"); emulate_step_addr = (kprobe_opcode_t *)ppc_kallsyms_lookup_name("emulate_step"); if (!op_callback_addr || !emulate_step_addr) { WARN(1, "Unable to lookup optimized_callback()/emulate_step()\n"); goto error; } branch_op_callback = create_branch((unsigned int *)buff + TMPL_CALL_HDLR_IDX, (unsigned long)op_callback_addr, BRANCH_SET_LINK); branch_emulate_step = create_branch((unsigned int *)buff + TMPL_EMULATE_IDX, (unsigned long)emulate_step_addr, BRANCH_SET_LINK); if (!branch_op_callback || !branch_emulate_step) goto error; patch_instruction(buff + TMPL_CALL_HDLR_IDX, branch_op_callback); patch_instruction(buff + TMPL_EMULATE_IDX, branch_emulate_step); /* * 3. load instruction to be emulated into relevant register, and */ patch_imm32_load_insns(*p->ainsn.insn, buff + TMPL_INSN_IDX); /* * 4. branch back from trampoline */ patch_branch(buff + TMPL_RET_IDX, (unsigned long)nip, 0); flush_icache_range((unsigned long)buff, (unsigned long)(&buff[TMPL_END_IDX])); op->optinsn.insn = buff; return 0; error: free_ppc_optinsn_slot(buff, 0); return -ERANGE; } int arch_prepared_optinsn(struct arch_optimized_insn *optinsn) { return optinsn->insn != NULL; } /* * On powerpc, Optprobes always replaces one instruction (4 bytes * aligned and 4 bytes long). It is impossible to encounter another * kprobe in this address range. So always return 0. */ int arch_check_optimized_kprobe(struct optimized_kprobe *op) { return 0; } void arch_optimize_kprobes(struct list_head *oplist) { struct optimized_kprobe *op; struct optimized_kprobe *tmp; list_for_each_entry_safe(op, tmp, oplist, list) { /* * Backup instructions which will be replaced * by jump address */ memcpy(op->optinsn.copied_insn, op->kp.addr, RELATIVEJUMP_SIZE); patch_instruction(op->kp.addr, create_branch((unsigned int *)op->kp.addr, (unsigned long)op->optinsn.insn, 0)); list_del_init(&op->list); } } void arch_unoptimize_kprobe(struct optimized_kprobe *op) { arch_arm_kprobe(&op->kp); } void arch_unoptimize_kprobes(struct list_head *oplist, struct list_head *done_list) { struct optimized_kprobe *op; struct optimized_kprobe *tmp; list_for_each_entry_safe(op, tmp, oplist, list) { arch_unoptimize_kprobe(op); list_move(&op->list, done_list); } } int arch_within_optimized_kprobe(struct optimized_kprobe *op, unsigned long addr) { return ((unsigned long)op->kp.addr <= addr && (unsigned long)op->kp.addr + RELATIVEJUMP_SIZE > addr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1