Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rashmica Gupta | 1349 | 78.25% | 1 | 9.09% |
Christophe Leroy | 246 | 14.27% | 4 | 36.36% |
Oliver O'Halloran | 71 | 4.12% | 1 | 9.09% |
Michael Ellerman | 56 | 3.25% | 4 | 36.36% |
SF Markus Elfring | 2 | 0.12% | 1 | 9.09% |
Total | 1724 | 11 |
/* * Copyright 2016, Rashmica Gupta, IBM Corp. * * This traverses the kernel pagetables and dumps the * information about the used sections of memory to * /sys/kernel/debug/kernel_pagetables. * * Derived from the arm64 implementation: * Copyright (c) 2014, The Linux Foundation, Laura Abbott. * (C) Copyright 2008 Intel Corporation, Arjan van de Ven. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include <linux/debugfs.h> #include <linux/fs.h> #include <linux/hugetlb.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <asm/fixmap.h> #include <asm/pgtable.h> #include <linux/const.h> #include <asm/page.h> #include <asm/pgalloc.h> #include "dump_linuxpagetables.h" #ifdef CONFIG_PPC32 #define KERN_VIRT_START 0 #endif /* * To visualise what is happening, * * - PTRS_PER_P** = how many entries there are in the corresponding P** * - P**_SHIFT = how many bits of the address we use to index into the * corresponding P** * - P**_SIZE is how much memory we can access through the table - not the * size of the table itself. * P**={PGD, PUD, PMD, PTE} * * * Each entry of the PGD points to a PUD. Each entry of a PUD points to a * PMD. Each entry of a PMD points to a PTE. And every PTE entry points to * a page. * * In the case where there are only 3 levels, the PUD is folded into the * PGD: every PUD has only one entry which points to the PMD. * * The page dumper groups page table entries of the same type into a single * description. It uses pg_state to track the range information while * iterating over the PTE entries. When the continuity is broken it then * dumps out a description of the range - ie PTEs that are virtually contiguous * with the same PTE flags are chunked together. This is to make it clear how * different areas of the kernel virtual memory are used. * */ struct pg_state { struct seq_file *seq; const struct addr_marker *marker; unsigned long start_address; unsigned long start_pa; unsigned long last_pa; unsigned int level; u64 current_flags; }; struct addr_marker { unsigned long start_address; const char *name; }; static struct addr_marker address_markers[] = { { 0, "Start of kernel VM" }, { 0, "vmalloc() Area" }, { 0, "vmalloc() End" }, #ifdef CONFIG_PPC64 { 0, "isa I/O start" }, { 0, "isa I/O end" }, { 0, "phb I/O start" }, { 0, "phb I/O end" }, { 0, "I/O remap start" }, { 0, "I/O remap end" }, { 0, "vmemmap start" }, #else { 0, "Early I/O remap start" }, { 0, "Early I/O remap end" }, #ifdef CONFIG_NOT_COHERENT_CACHE { 0, "Consistent mem start" }, { 0, "Consistent mem end" }, #endif #ifdef CONFIG_HIGHMEM { 0, "Highmem PTEs start" }, { 0, "Highmem PTEs end" }, #endif { 0, "Fixmap start" }, { 0, "Fixmap end" }, #endif { -1, NULL }, }; static void dump_flag_info(struct pg_state *st, const struct flag_info *flag, u64 pte, int num) { unsigned int i; for (i = 0; i < num; i++, flag++) { const char *s = NULL; u64 val; /* flag not defined so don't check it */ if (flag->mask == 0) continue; /* Some 'flags' are actually values */ if (flag->is_val) { val = pte & flag->val; if (flag->shift) val = val >> flag->shift; seq_printf(st->seq, " %s:%llx", flag->set, val); } else { if ((pte & flag->mask) == flag->val) s = flag->set; else s = flag->clear; if (s) seq_printf(st->seq, " %s", s); } st->current_flags &= ~flag->mask; } if (st->current_flags != 0) seq_printf(st->seq, " unknown flags:%llx", st->current_flags); } static void dump_addr(struct pg_state *st, unsigned long addr) { static const char units[] = "KMGTPE"; const char *unit = units; unsigned long delta; #ifdef CONFIG_PPC64 seq_printf(st->seq, "0x%016lx-0x%016lx ", st->start_address, addr-1); seq_printf(st->seq, "0x%016lx ", st->start_pa); #else seq_printf(st->seq, "0x%08lx-0x%08lx ", st->start_address, addr - 1); seq_printf(st->seq, "0x%08lx ", st->start_pa); #endif delta = (addr - st->start_address) >> 10; /* Work out what appropriate unit to use */ while (!(delta & 1023) && unit[1]) { delta >>= 10; unit++; } seq_printf(st->seq, "%9lu%c", delta, *unit); } static void note_page(struct pg_state *st, unsigned long addr, unsigned int level, u64 val) { u64 flag = val & pg_level[level].mask; u64 pa = val & PTE_RPN_MASK; /* At first no level is set */ if (!st->level) { st->level = level; st->current_flags = flag; st->start_address = addr; st->start_pa = pa; st->last_pa = pa; seq_printf(st->seq, "---[ %s ]---\n", st->marker->name); /* * Dump the section of virtual memory when: * - the PTE flags from one entry to the next differs. * - we change levels in the tree. * - the address is in a different section of memory and is thus * used for a different purpose, regardless of the flags. * - the pa of this page is not adjacent to the last inspected page */ } else if (flag != st->current_flags || level != st->level || addr >= st->marker[1].start_address || pa != st->last_pa + PAGE_SIZE) { /* Check the PTE flags */ if (st->current_flags) { dump_addr(st, addr); /* Dump all the flags */ if (pg_level[st->level].flag) dump_flag_info(st, pg_level[st->level].flag, st->current_flags, pg_level[st->level].num); seq_putc(st->seq, '\n'); } /* * Address indicates we have passed the end of the * current section of virtual memory */ while (addr >= st->marker[1].start_address) { st->marker++; seq_printf(st->seq, "---[ %s ]---\n", st->marker->name); } st->start_address = addr; st->start_pa = pa; st->last_pa = pa; st->current_flags = flag; st->level = level; } else { st->last_pa = pa; } } static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start) { pte_t *pte = pte_offset_kernel(pmd, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PTE; i++, pte++) { addr = start + i * PAGE_SIZE; note_page(st, addr, 4, pte_val(*pte)); } } static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start) { pmd_t *pmd = pmd_offset(pud, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PMD; i++, pmd++) { addr = start + i * PMD_SIZE; if (!pmd_none(*pmd) && !pmd_huge(*pmd)) /* pmd exists */ walk_pte(st, pmd, addr); else note_page(st, addr, 3, pmd_val(*pmd)); } } static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start) { pud_t *pud = pud_offset(pgd, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PUD; i++, pud++) { addr = start + i * PUD_SIZE; if (!pud_none(*pud) && !pud_huge(*pud)) /* pud exists */ walk_pmd(st, pud, addr); else note_page(st, addr, 2, pud_val(*pud)); } } static void walk_pagetables(struct pg_state *st) { pgd_t *pgd = pgd_offset_k(0UL); unsigned int i; unsigned long addr; addr = st->start_address; /* * Traverse the linux pagetable structure and dump pages that are in * the hash pagetable. */ for (i = 0; i < PTRS_PER_PGD; i++, pgd++, addr += PGDIR_SIZE) { if (!pgd_none(*pgd) && !pgd_huge(*pgd)) /* pgd exists */ walk_pud(st, pgd, addr); else note_page(st, addr, 1, pgd_val(*pgd)); } } static void populate_markers(void) { int i = 0; address_markers[i++].start_address = PAGE_OFFSET; address_markers[i++].start_address = VMALLOC_START; address_markers[i++].start_address = VMALLOC_END; #ifdef CONFIG_PPC64 address_markers[i++].start_address = ISA_IO_BASE; address_markers[i++].start_address = ISA_IO_END; address_markers[i++].start_address = PHB_IO_BASE; address_markers[i++].start_address = PHB_IO_END; address_markers[i++].start_address = IOREMAP_BASE; address_markers[i++].start_address = IOREMAP_END; #ifdef CONFIG_PPC_BOOK3S_64 address_markers[i++].start_address = H_VMEMMAP_BASE; #else address_markers[i++].start_address = VMEMMAP_BASE; #endif #else /* !CONFIG_PPC64 */ address_markers[i++].start_address = ioremap_bot; address_markers[i++].start_address = IOREMAP_TOP; #ifdef CONFIG_NOT_COHERENT_CACHE address_markers[i++].start_address = IOREMAP_TOP; address_markers[i++].start_address = IOREMAP_TOP + CONFIG_CONSISTENT_SIZE; #endif #ifdef CONFIG_HIGHMEM address_markers[i++].start_address = PKMAP_BASE; address_markers[i++].start_address = PKMAP_ADDR(LAST_PKMAP); #endif address_markers[i++].start_address = FIXADDR_START; address_markers[i++].start_address = FIXADDR_TOP; #endif /* CONFIG_PPC64 */ } static int ptdump_show(struct seq_file *m, void *v) { struct pg_state st = { .seq = m, .marker = address_markers, }; if (radix_enabled()) st.start_address = PAGE_OFFSET; else st.start_address = KERN_VIRT_START; /* Traverse kernel page tables */ walk_pagetables(&st); note_page(&st, 0, 0, 0); return 0; } static int ptdump_open(struct inode *inode, struct file *file) { return single_open(file, ptdump_show, NULL); } static const struct file_operations ptdump_fops = { .open = ptdump_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void build_pgtable_complete_mask(void) { unsigned int i, j; for (i = 0; i < ARRAY_SIZE(pg_level); i++) if (pg_level[i].flag) for (j = 0; j < pg_level[i].num; j++) pg_level[i].mask |= pg_level[i].flag[j].mask; } static int ptdump_init(void) { struct dentry *debugfs_file; populate_markers(); build_pgtable_complete_mask(); debugfs_file = debugfs_create_file("kernel_page_tables", 0400, NULL, NULL, &ptdump_fops); return debugfs_file ? 0 : -ENOMEM; } device_initcall(ptdump_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1