Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nathan Fontenot | 2080 | 61.16% | 8 | 15.38% |
Michael Ellerman | 663 | 19.49% | 6 | 11.54% |
Gautham R. Shenoy | 414 | 12.17% | 2 | 3.85% |
Anton Blanchard | 57 | 1.68% | 4 | 7.69% |
Cédric Le Goater | 21 | 0.62% | 1 | 1.92% |
Li Zhong | 21 | 0.62% | 2 | 3.85% |
Thomas Falcon | 16 | 0.47% | 1 | 1.92% |
Michael Bringmann | 15 | 0.44% | 2 | 3.85% |
Michael Neuling | 12 | 0.35% | 2 | 3.85% |
Rob Herring | 12 | 0.35% | 3 | 5.77% |
Benjamin Herrenschmidt | 12 | 0.35% | 3 | 5.77% |
Brian King | 11 | 0.32% | 1 | 1.92% |
Tyrel Datwyler | 11 | 0.32% | 1 | 1.92% |
Vaidyanathan Srinivasan | 10 | 0.29% | 2 | 3.85% |
Kees Cook | 8 | 0.24% | 1 | 1.92% |
Tony Breeds | 6 | 0.18% | 1 | 1.92% |
Rusty Russell | 6 | 0.18% | 1 | 1.92% |
Bharata B Rao | 4 | 0.12% | 1 | 1.92% |
Paul Gortmaker | 4 | 0.12% | 1 | 1.92% |
Akinobu Mita | 4 | 0.12% | 1 | 1.92% |
Ingo Molnar | 3 | 0.09% | 1 | 1.92% |
Nicholas Piggin | 2 | 0.06% | 1 | 1.92% |
Emil Medve | 2 | 0.06% | 1 | 1.92% |
Sébastien Dugué | 2 | 0.06% | 1 | 1.92% |
Stephen Rothwell | 2 | 0.06% | 1 | 1.92% |
Motohiro Kosaki | 1 | 0.03% | 1 | 1.92% |
Lucas De Marchi | 1 | 0.03% | 1 | 1.92% |
Deepthi Dharwar | 1 | 0.03% | 1 | 1.92% |
Total | 3401 | 52 |
/* * pseries CPU Hotplug infrastructure. * * Split out from arch/powerpc/platforms/pseries/setup.c * arch/powerpc/kernel/rtas.c, and arch/powerpc/platforms/pseries/smp.c * * Peter Bergner, IBM March 2001. * Copyright (C) 2001 IBM. * Dave Engebretsen, Peter Bergner, and * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com * Plus various changes from other IBM teams... * * Copyright (C) 2006 Michael Ellerman, IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #define pr_fmt(fmt) "pseries-hotplug-cpu: " fmt #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/sched.h> /* for idle_task_exit */ #include <linux/sched/hotplug.h> #include <linux/cpu.h> #include <linux/of.h> #include <linux/slab.h> #include <asm/prom.h> #include <asm/rtas.h> #include <asm/firmware.h> #include <asm/machdep.h> #include <asm/vdso_datapage.h> #include <asm/xics.h> #include <asm/xive.h> #include <asm/plpar_wrappers.h> #include <asm/topology.h> #include "pseries.h" #include "offline_states.h" /* This version can't take the spinlock, because it never returns */ static int rtas_stop_self_token = RTAS_UNKNOWN_SERVICE; static DEFINE_PER_CPU(enum cpu_state_vals, preferred_offline_state) = CPU_STATE_OFFLINE; static DEFINE_PER_CPU(enum cpu_state_vals, current_state) = CPU_STATE_OFFLINE; static enum cpu_state_vals default_offline_state = CPU_STATE_OFFLINE; static bool cede_offline_enabled __read_mostly = true; /* * Enable/disable cede_offline when available. */ static int __init setup_cede_offline(char *str) { return (kstrtobool(str, &cede_offline_enabled) == 0); } __setup("cede_offline=", setup_cede_offline); enum cpu_state_vals get_cpu_current_state(int cpu) { return per_cpu(current_state, cpu); } void set_cpu_current_state(int cpu, enum cpu_state_vals state) { per_cpu(current_state, cpu) = state; } enum cpu_state_vals get_preferred_offline_state(int cpu) { return per_cpu(preferred_offline_state, cpu); } void set_preferred_offline_state(int cpu, enum cpu_state_vals state) { per_cpu(preferred_offline_state, cpu) = state; } void set_default_offline_state(int cpu) { per_cpu(preferred_offline_state, cpu) = default_offline_state; } static void rtas_stop_self(void) { static struct rtas_args args; local_irq_disable(); BUG_ON(rtas_stop_self_token == RTAS_UNKNOWN_SERVICE); printk("cpu %u (hwid %u) Ready to die...\n", smp_processor_id(), hard_smp_processor_id()); rtas_call_unlocked(&args, rtas_stop_self_token, 0, 1, NULL); panic("Alas, I survived.\n"); } static void pseries_mach_cpu_die(void) { unsigned int cpu = smp_processor_id(); unsigned int hwcpu = hard_smp_processor_id(); u8 cede_latency_hint = 0; local_irq_disable(); idle_task_exit(); if (xive_enabled()) xive_teardown_cpu(); else xics_teardown_cpu(); if (get_preferred_offline_state(cpu) == CPU_STATE_INACTIVE) { set_cpu_current_state(cpu, CPU_STATE_INACTIVE); if (ppc_md.suspend_disable_cpu) ppc_md.suspend_disable_cpu(); cede_latency_hint = 2; get_lppaca()->idle = 1; if (!lppaca_shared_proc(get_lppaca())) get_lppaca()->donate_dedicated_cpu = 1; while (get_preferred_offline_state(cpu) == CPU_STATE_INACTIVE) { while (!prep_irq_for_idle()) { local_irq_enable(); local_irq_disable(); } extended_cede_processor(cede_latency_hint); } local_irq_disable(); if (!lppaca_shared_proc(get_lppaca())) get_lppaca()->donate_dedicated_cpu = 0; get_lppaca()->idle = 0; if (get_preferred_offline_state(cpu) == CPU_STATE_ONLINE) { unregister_slb_shadow(hwcpu); hard_irq_disable(); /* * Call to start_secondary_resume() will not return. * Kernel stack will be reset and start_secondary() * will be called to continue the online operation. */ start_secondary_resume(); } } /* Requested state is CPU_STATE_OFFLINE at this point */ WARN_ON(get_preferred_offline_state(cpu) != CPU_STATE_OFFLINE); set_cpu_current_state(cpu, CPU_STATE_OFFLINE); unregister_slb_shadow(hwcpu); rtas_stop_self(); /* Should never get here... */ BUG(); for(;;); } static int pseries_cpu_disable(void) { int cpu = smp_processor_id(); set_cpu_online(cpu, false); vdso_data->processorCount--; /*fix boot_cpuid here*/ if (cpu == boot_cpuid) boot_cpuid = cpumask_any(cpu_online_mask); /* FIXME: abstract this to not be platform specific later on */ if (xive_enabled()) xive_smp_disable_cpu(); else xics_migrate_irqs_away(); return 0; } /* * pseries_cpu_die: Wait for the cpu to die. * @cpu: logical processor id of the CPU whose death we're awaiting. * * This function is called from the context of the thread which is performing * the cpu-offline. Here we wait for long enough to allow the cpu in question * to self-destroy so that the cpu-offline thread can send the CPU_DEAD * notifications. * * OTOH, pseries_mach_cpu_die() is called by the @cpu when it wants to * self-destruct. */ static void pseries_cpu_die(unsigned int cpu) { int tries; int cpu_status = 1; unsigned int pcpu = get_hard_smp_processor_id(cpu); if (get_preferred_offline_state(cpu) == CPU_STATE_INACTIVE) { cpu_status = 1; for (tries = 0; tries < 5000; tries++) { if (get_cpu_current_state(cpu) == CPU_STATE_INACTIVE) { cpu_status = 0; break; } msleep(1); } } else if (get_preferred_offline_state(cpu) == CPU_STATE_OFFLINE) { for (tries = 0; tries < 25; tries++) { cpu_status = smp_query_cpu_stopped(pcpu); if (cpu_status == QCSS_STOPPED || cpu_status == QCSS_HARDWARE_ERROR) break; cpu_relax(); } } if (cpu_status != 0) { printk("Querying DEAD? cpu %i (%i) shows %i\n", cpu, pcpu, cpu_status); } /* Isolation and deallocation are definitely done by * drslot_chrp_cpu. If they were not they would be * done here. Change isolate state to Isolate and * change allocation-state to Unusable. */ paca_ptrs[cpu]->cpu_start = 0; } /* * Update cpu_present_mask and paca(s) for a new cpu node. The wrinkle * here is that a cpu device node may represent up to two logical cpus * in the SMT case. We must honor the assumption in other code that * the logical ids for sibling SMT threads x and y are adjacent, such * that x^1 == y and y^1 == x. */ static int pseries_add_processor(struct device_node *np) { unsigned int cpu; cpumask_var_t candidate_mask, tmp; int err = -ENOSPC, len, nthreads, i; const __be32 *intserv; intserv = of_get_property(np, "ibm,ppc-interrupt-server#s", &len); if (!intserv) return 0; zalloc_cpumask_var(&candidate_mask, GFP_KERNEL); zalloc_cpumask_var(&tmp, GFP_KERNEL); nthreads = len / sizeof(u32); for (i = 0; i < nthreads; i++) cpumask_set_cpu(i, tmp); cpu_maps_update_begin(); BUG_ON(!cpumask_subset(cpu_present_mask, cpu_possible_mask)); /* Get a bitmap of unoccupied slots. */ cpumask_xor(candidate_mask, cpu_possible_mask, cpu_present_mask); if (cpumask_empty(candidate_mask)) { /* If we get here, it most likely means that NR_CPUS is * less than the partition's max processors setting. */ printk(KERN_ERR "Cannot add cpu %pOF; this system configuration" " supports %d logical cpus.\n", np, num_possible_cpus()); goto out_unlock; } while (!cpumask_empty(tmp)) if (cpumask_subset(tmp, candidate_mask)) /* Found a range where we can insert the new cpu(s) */ break; else cpumask_shift_left(tmp, tmp, nthreads); if (cpumask_empty(tmp)) { printk(KERN_ERR "Unable to find space in cpu_present_mask for" " processor %pOFn with %d thread(s)\n", np, nthreads); goto out_unlock; } for_each_cpu(cpu, tmp) { BUG_ON(cpu_present(cpu)); set_cpu_present(cpu, true); set_hard_smp_processor_id(cpu, be32_to_cpu(*intserv++)); } err = 0; out_unlock: cpu_maps_update_done(); free_cpumask_var(candidate_mask); free_cpumask_var(tmp); return err; } /* * Update the present map for a cpu node which is going away, and set * the hard id in the paca(s) to -1 to be consistent with boot time * convention for non-present cpus. */ static void pseries_remove_processor(struct device_node *np) { unsigned int cpu; int len, nthreads, i; const __be32 *intserv; u32 thread; intserv = of_get_property(np, "ibm,ppc-interrupt-server#s", &len); if (!intserv) return; nthreads = len / sizeof(u32); cpu_maps_update_begin(); for (i = 0; i < nthreads; i++) { thread = be32_to_cpu(intserv[i]); for_each_present_cpu(cpu) { if (get_hard_smp_processor_id(cpu) != thread) continue; BUG_ON(cpu_online(cpu)); set_cpu_present(cpu, false); set_hard_smp_processor_id(cpu, -1); update_numa_cpu_lookup_table(cpu, -1); break; } if (cpu >= nr_cpu_ids) printk(KERN_WARNING "Could not find cpu to remove " "with physical id 0x%x\n", thread); } cpu_maps_update_done(); } static int dlpar_online_cpu(struct device_node *dn) { int rc = 0; unsigned int cpu; int len, nthreads, i; const __be32 *intserv; u32 thread; intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s", &len); if (!intserv) return -EINVAL; nthreads = len / sizeof(u32); cpu_maps_update_begin(); for (i = 0; i < nthreads; i++) { thread = be32_to_cpu(intserv[i]); for_each_present_cpu(cpu) { if (get_hard_smp_processor_id(cpu) != thread) continue; BUG_ON(get_cpu_current_state(cpu) != CPU_STATE_OFFLINE); cpu_maps_update_done(); timed_topology_update(1); find_and_online_cpu_nid(cpu); rc = device_online(get_cpu_device(cpu)); if (rc) goto out; cpu_maps_update_begin(); break; } if (cpu == num_possible_cpus()) printk(KERN_WARNING "Could not find cpu to online " "with physical id 0x%x\n", thread); } cpu_maps_update_done(); out: return rc; } static bool dlpar_cpu_exists(struct device_node *parent, u32 drc_index) { struct device_node *child = NULL; u32 my_drc_index; bool found; int rc; /* Assume cpu doesn't exist */ found = false; for_each_child_of_node(parent, child) { rc = of_property_read_u32(child, "ibm,my-drc-index", &my_drc_index); if (rc) continue; if (my_drc_index == drc_index) { of_node_put(child); found = true; break; } } return found; } static bool valid_cpu_drc_index(struct device_node *parent, u32 drc_index) { bool found = false; int rc, index; index = 0; while (!found) { u32 drc; rc = of_property_read_u32_index(parent, "ibm,drc-indexes", index++, &drc); if (rc) break; if (drc == drc_index) found = true; } return found; } static ssize_t dlpar_cpu_add(u32 drc_index) { struct device_node *dn, *parent; int rc, saved_rc; pr_debug("Attempting to add CPU, drc index: %x\n", drc_index); parent = of_find_node_by_path("/cpus"); if (!parent) { pr_warn("Failed to find CPU root node \"/cpus\"\n"); return -ENODEV; } if (dlpar_cpu_exists(parent, drc_index)) { of_node_put(parent); pr_warn("CPU with drc index %x already exists\n", drc_index); return -EINVAL; } if (!valid_cpu_drc_index(parent, drc_index)) { of_node_put(parent); pr_warn("Cannot find CPU (drc index %x) to add.\n", drc_index); return -EINVAL; } rc = dlpar_acquire_drc(drc_index); if (rc) { pr_warn("Failed to acquire DRC, rc: %d, drc index: %x\n", rc, drc_index); of_node_put(parent); return -EINVAL; } dn = dlpar_configure_connector(cpu_to_be32(drc_index), parent); if (!dn) { pr_warn("Failed call to configure-connector, drc index: %x\n", drc_index); dlpar_release_drc(drc_index); of_node_put(parent); return -EINVAL; } rc = dlpar_attach_node(dn, parent); /* Regardless we are done with parent now */ of_node_put(parent); if (rc) { saved_rc = rc; pr_warn("Failed to attach node %pOFn, rc: %d, drc index: %x\n", dn, rc, drc_index); rc = dlpar_release_drc(drc_index); if (!rc) dlpar_free_cc_nodes(dn); return saved_rc; } rc = dlpar_online_cpu(dn); if (rc) { saved_rc = rc; pr_warn("Failed to online cpu %pOFn, rc: %d, drc index: %x\n", dn, rc, drc_index); rc = dlpar_detach_node(dn); if (!rc) dlpar_release_drc(drc_index); return saved_rc; } pr_debug("Successfully added CPU %pOFn, drc index: %x\n", dn, drc_index); return rc; } static int dlpar_offline_cpu(struct device_node *dn) { int rc = 0; unsigned int cpu; int len, nthreads, i; const __be32 *intserv; u32 thread; intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s", &len); if (!intserv) return -EINVAL; nthreads = len / sizeof(u32); cpu_maps_update_begin(); for (i = 0; i < nthreads; i++) { thread = be32_to_cpu(intserv[i]); for_each_present_cpu(cpu) { if (get_hard_smp_processor_id(cpu) != thread) continue; if (get_cpu_current_state(cpu) == CPU_STATE_OFFLINE) break; if (get_cpu_current_state(cpu) == CPU_STATE_ONLINE) { set_preferred_offline_state(cpu, CPU_STATE_OFFLINE); cpu_maps_update_done(); timed_topology_update(1); rc = device_offline(get_cpu_device(cpu)); if (rc) goto out; cpu_maps_update_begin(); break; } /* * The cpu is in CPU_STATE_INACTIVE. * Upgrade it's state to CPU_STATE_OFFLINE. */ set_preferred_offline_state(cpu, CPU_STATE_OFFLINE); BUG_ON(plpar_hcall_norets(H_PROD, thread) != H_SUCCESS); __cpu_die(cpu); break; } if (cpu == num_possible_cpus()) printk(KERN_WARNING "Could not find cpu to offline with physical id 0x%x\n", thread); } cpu_maps_update_done(); out: return rc; } static ssize_t dlpar_cpu_remove(struct device_node *dn, u32 drc_index) { int rc; pr_debug("Attempting to remove CPU %pOFn, drc index: %x\n", dn, drc_index); rc = dlpar_offline_cpu(dn); if (rc) { pr_warn("Failed to offline CPU %pOFn, rc: %d\n", dn, rc); return -EINVAL; } rc = dlpar_release_drc(drc_index); if (rc) { pr_warn("Failed to release drc (%x) for CPU %pOFn, rc: %d\n", drc_index, dn, rc); dlpar_online_cpu(dn); return rc; } rc = dlpar_detach_node(dn); if (rc) { int saved_rc = rc; pr_warn("Failed to detach CPU %pOFn, rc: %d", dn, rc); rc = dlpar_acquire_drc(drc_index); if (!rc) dlpar_online_cpu(dn); return saved_rc; } pr_debug("Successfully removed CPU, drc index: %x\n", drc_index); return 0; } static struct device_node *cpu_drc_index_to_dn(u32 drc_index) { struct device_node *dn; u32 my_index; int rc; for_each_node_by_type(dn, "cpu") { rc = of_property_read_u32(dn, "ibm,my-drc-index", &my_index); if (rc) continue; if (my_index == drc_index) break; } return dn; } static int dlpar_cpu_remove_by_index(u32 drc_index) { struct device_node *dn; int rc; dn = cpu_drc_index_to_dn(drc_index); if (!dn) { pr_warn("Cannot find CPU (drc index %x) to remove\n", drc_index); return -ENODEV; } rc = dlpar_cpu_remove(dn, drc_index); of_node_put(dn); return rc; } static int find_dlpar_cpus_to_remove(u32 *cpu_drcs, int cpus_to_remove) { struct device_node *dn; int cpus_found = 0; int rc; /* We want to find cpus_to_remove + 1 CPUs to ensure we do not * remove the last CPU. */ for_each_node_by_type(dn, "cpu") { cpus_found++; if (cpus_found > cpus_to_remove) { of_node_put(dn); break; } /* Note that cpus_found is always 1 ahead of the index * into the cpu_drcs array, so we use cpus_found - 1 */ rc = of_property_read_u32(dn, "ibm,my-drc-index", &cpu_drcs[cpus_found - 1]); if (rc) { pr_warn("Error occurred getting drc-index for %pOFn\n", dn); of_node_put(dn); return -1; } } if (cpus_found < cpus_to_remove) { pr_warn("Failed to find enough CPUs (%d of %d) to remove\n", cpus_found, cpus_to_remove); } else if (cpus_found == cpus_to_remove) { pr_warn("Cannot remove all CPUs\n"); } return cpus_found; } static int dlpar_cpu_remove_by_count(u32 cpus_to_remove) { u32 *cpu_drcs; int cpus_found; int cpus_removed = 0; int i, rc; pr_debug("Attempting to hot-remove %d CPUs\n", cpus_to_remove); cpu_drcs = kcalloc(cpus_to_remove, sizeof(*cpu_drcs), GFP_KERNEL); if (!cpu_drcs) return -EINVAL; cpus_found = find_dlpar_cpus_to_remove(cpu_drcs, cpus_to_remove); if (cpus_found <= cpus_to_remove) { kfree(cpu_drcs); return -EINVAL; } for (i = 0; i < cpus_to_remove; i++) { rc = dlpar_cpu_remove_by_index(cpu_drcs[i]); if (rc) break; cpus_removed++; } if (cpus_removed != cpus_to_remove) { pr_warn("CPU hot-remove failed, adding back removed CPUs\n"); for (i = 0; i < cpus_removed; i++) dlpar_cpu_add(cpu_drcs[i]); rc = -EINVAL; } else { rc = 0; } kfree(cpu_drcs); return rc; } static int find_dlpar_cpus_to_add(u32 *cpu_drcs, u32 cpus_to_add) { struct device_node *parent; int cpus_found = 0; int index, rc; parent = of_find_node_by_path("/cpus"); if (!parent) { pr_warn("Could not find CPU root node in device tree\n"); kfree(cpu_drcs); return -1; } /* Search the ibm,drc-indexes array for possible CPU drcs to * add. Note that the format of the ibm,drc-indexes array is * the number of entries in the array followed by the array * of drc values so we start looking at index = 1. */ index = 1; while (cpus_found < cpus_to_add) { u32 drc; rc = of_property_read_u32_index(parent, "ibm,drc-indexes", index++, &drc); if (rc) break; if (dlpar_cpu_exists(parent, drc)) continue; cpu_drcs[cpus_found++] = drc; } of_node_put(parent); return cpus_found; } static int dlpar_cpu_add_by_count(u32 cpus_to_add) { u32 *cpu_drcs; int cpus_added = 0; int cpus_found; int i, rc; pr_debug("Attempting to hot-add %d CPUs\n", cpus_to_add); cpu_drcs = kcalloc(cpus_to_add, sizeof(*cpu_drcs), GFP_KERNEL); if (!cpu_drcs) return -EINVAL; cpus_found = find_dlpar_cpus_to_add(cpu_drcs, cpus_to_add); if (cpus_found < cpus_to_add) { pr_warn("Failed to find enough CPUs (%d of %d) to add\n", cpus_found, cpus_to_add); kfree(cpu_drcs); return -EINVAL; } for (i = 0; i < cpus_to_add; i++) { rc = dlpar_cpu_add(cpu_drcs[i]); if (rc) break; cpus_added++; } if (cpus_added < cpus_to_add) { pr_warn("CPU hot-add failed, removing any added CPUs\n"); for (i = 0; i < cpus_added; i++) dlpar_cpu_remove_by_index(cpu_drcs[i]); rc = -EINVAL; } else { rc = 0; } kfree(cpu_drcs); return rc; } int dlpar_cpu(struct pseries_hp_errorlog *hp_elog) { u32 count, drc_index; int rc; count = hp_elog->_drc_u.drc_count; drc_index = hp_elog->_drc_u.drc_index; lock_device_hotplug(); switch (hp_elog->action) { case PSERIES_HP_ELOG_ACTION_REMOVE: if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_COUNT) rc = dlpar_cpu_remove_by_count(count); else if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_INDEX) rc = dlpar_cpu_remove_by_index(drc_index); else rc = -EINVAL; break; case PSERIES_HP_ELOG_ACTION_ADD: if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_COUNT) rc = dlpar_cpu_add_by_count(count); else if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_INDEX) rc = dlpar_cpu_add(drc_index); else rc = -EINVAL; break; default: pr_err("Invalid action (%d) specified\n", hp_elog->action); rc = -EINVAL; break; } unlock_device_hotplug(); return rc; } #ifdef CONFIG_ARCH_CPU_PROBE_RELEASE static ssize_t dlpar_cpu_probe(const char *buf, size_t count) { u32 drc_index; int rc; rc = kstrtou32(buf, 0, &drc_index); if (rc) return -EINVAL; rc = dlpar_cpu_add(drc_index); return rc ? rc : count; } static ssize_t dlpar_cpu_release(const char *buf, size_t count) { struct device_node *dn; u32 drc_index; int rc; dn = of_find_node_by_path(buf); if (!dn) return -EINVAL; rc = of_property_read_u32(dn, "ibm,my-drc-index", &drc_index); if (rc) { of_node_put(dn); return -EINVAL; } rc = dlpar_cpu_remove(dn, drc_index); of_node_put(dn); return rc ? rc : count; } #endif /* CONFIG_ARCH_CPU_PROBE_RELEASE */ static int pseries_smp_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct of_reconfig_data *rd = data; int err = 0; switch (action) { case OF_RECONFIG_ATTACH_NODE: err = pseries_add_processor(rd->dn); break; case OF_RECONFIG_DETACH_NODE: pseries_remove_processor(rd->dn); break; } return notifier_from_errno(err); } static struct notifier_block pseries_smp_nb = { .notifier_call = pseries_smp_notifier, }; #define MAX_CEDE_LATENCY_LEVELS 4 #define CEDE_LATENCY_PARAM_LENGTH 10 #define CEDE_LATENCY_PARAM_MAX_LENGTH \ (MAX_CEDE_LATENCY_LEVELS * CEDE_LATENCY_PARAM_LENGTH * sizeof(char)) #define CEDE_LATENCY_TOKEN 45 static char cede_parameters[CEDE_LATENCY_PARAM_MAX_LENGTH]; static int parse_cede_parameters(void) { memset(cede_parameters, 0, CEDE_LATENCY_PARAM_MAX_LENGTH); return rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, NULL, CEDE_LATENCY_TOKEN, __pa(cede_parameters), CEDE_LATENCY_PARAM_MAX_LENGTH); } static int __init pseries_cpu_hotplug_init(void) { int cpu; int qcss_tok; #ifdef CONFIG_ARCH_CPU_PROBE_RELEASE ppc_md.cpu_probe = dlpar_cpu_probe; ppc_md.cpu_release = dlpar_cpu_release; #endif /* CONFIG_ARCH_CPU_PROBE_RELEASE */ rtas_stop_self_token = rtas_token("stop-self"); qcss_tok = rtas_token("query-cpu-stopped-state"); if (rtas_stop_self_token == RTAS_UNKNOWN_SERVICE || qcss_tok == RTAS_UNKNOWN_SERVICE) { printk(KERN_INFO "CPU Hotplug not supported by firmware " "- disabling.\n"); return 0; } ppc_md.cpu_die = pseries_mach_cpu_die; smp_ops->cpu_disable = pseries_cpu_disable; smp_ops->cpu_die = pseries_cpu_die; /* Processors can be added/removed only on LPAR */ if (firmware_has_feature(FW_FEATURE_LPAR)) { of_reconfig_notifier_register(&pseries_smp_nb); cpu_maps_update_begin(); if (cede_offline_enabled && parse_cede_parameters() == 0) { default_offline_state = CPU_STATE_INACTIVE; for_each_online_cpu(cpu) set_default_offline_state(cpu); } cpu_maps_update_done(); } return 0; } machine_arch_initcall(pseries, pseries_cpu_hotplug_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1