Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Robert Jennings | 3777 | 55.77% | 2 | 2.35% |
Stephen Rothwell | 723 | 10.68% | 13 | 15.29% |
Kent Yoder | 712 | 10.51% | 1 | 1.18% |
Andrew Morton | 377 | 5.57% | 4 | 4.71% |
Greg Kroah-Hartman | 260 | 3.84% | 3 | 3.53% |
Benjamin Herrenschmidt | 188 | 2.78% | 4 | 4.71% |
Anton Blanchard | 126 | 1.86% | 6 | 7.06% |
Alistair Popple | 99 | 1.46% | 2 | 2.35% |
Olaf Hering | 74 | 1.09% | 1 | 1.18% |
Nishanth Aravamudan | 64 | 0.95% | 4 | 4.71% |
Jeremy Kerr | 36 | 0.53% | 2 | 2.35% |
Akinobu Mita | 30 | 0.44% | 1 | 1.18% |
Prarit Bhargava | 26 | 0.38% | 2 | 2.35% |
Milton D. Miller II | 25 | 0.37% | 1 | 1.18% |
Alexey Kardashevskiy | 23 | 0.34% | 2 | 2.35% |
Mark Nelson | 22 | 0.32% | 1 | 1.18% |
Rob Herring | 21 | 0.31% | 2 | 2.35% |
Kay Sievers | 20 | 0.30% | 3 | 3.53% |
Hollis Blanchard | 18 | 0.27% | 2 | 2.35% |
Li Zhong | 16 | 0.24% | 1 | 1.18% |
Tyrel Datwyler | 15 | 0.22% | 1 | 1.18% |
Andrzej Pietrasiewicz | 12 | 0.18% | 1 | 1.18% |
Julia Lawall | 12 | 0.18% | 1 | 1.18% |
Krzysztof Kozlowski | 12 | 0.18% | 1 | 1.18% |
Russell King | 10 | 0.15% | 1 | 1.18% |
Roel Kluin | 9 | 0.13% | 1 | 1.18% |
Paul Mackerras | 8 | 0.12% | 1 | 1.18% |
Christoph Hellwig | 7 | 0.10% | 2 | 2.35% |
Nathan T. Lynch | 6 | 0.09% | 1 | 1.18% |
Brian King | 5 | 0.07% | 1 | 1.18% |
Becky Bruce | 5 | 0.07% | 1 | 1.18% |
Marek Szyprowski | 4 | 0.06% | 1 | 1.18% |
Paul Gortmaker | 4 | 0.06% | 2 | 2.35% |
Harvey Harrison | 4 | 0.06% | 1 | 1.18% |
Michael Ellerman | 4 | 0.06% | 1 | 1.18% |
Tejun Heo | 3 | 0.04% | 1 | 1.18% |
Yani Ioannou | 3 | 0.04% | 1 | 1.18% |
Wanpeng Li | 3 | 0.04% | 1 | 1.18% |
Daniel Axtens | 2 | 0.03% | 1 | 1.18% |
Hagen Paul Pfeifer | 1 | 0.01% | 1 | 1.18% |
Bart Van Assche | 1 | 0.01% | 1 | 1.18% |
Johan Hovold | 1 | 0.01% | 1 | 1.18% |
FUJITA Tomonori | 1 | 0.01% | 1 | 1.18% |
Jean Delvare | 1 | 0.01% | 1 | 1.18% |
Daniel Walter | 1 | 0.01% | 1 | 1.18% |
Grant C. Likely | 1 | 0.01% | 1 | 1.18% |
Total | 6772 | 85 |
/* * IBM PowerPC Virtual I/O Infrastructure Support. * * Copyright (c) 2003,2008 IBM Corp. * Dave Engebretsen engebret@us.ibm.com * Santiago Leon santil@us.ibm.com * Hollis Blanchard <hollisb@us.ibm.com> * Stephen Rothwell * Robert Jennings <rcjenn@us.ibm.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/cpu.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/stat.h> #include <linux/device.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/console.h> #include <linux/export.h> #include <linux/mm.h> #include <linux/dma-mapping.h> #include <linux/kobject.h> #include <asm/iommu.h> #include <asm/dma.h> #include <asm/vio.h> #include <asm/prom.h> #include <asm/firmware.h> #include <asm/tce.h> #include <asm/page.h> #include <asm/hvcall.h> static struct vio_dev vio_bus_device = { /* fake "parent" device */ .name = "vio", .type = "", .dev.init_name = "vio", .dev.bus = &vio_bus_type, }; #ifdef CONFIG_PPC_SMLPAR /** * vio_cmo_pool - A pool of IO memory for CMO use * * @size: The size of the pool in bytes * @free: The amount of free memory in the pool */ struct vio_cmo_pool { size_t size; size_t free; }; /* How many ms to delay queued balance work */ #define VIO_CMO_BALANCE_DELAY 100 /* Portion out IO memory to CMO devices by this chunk size */ #define VIO_CMO_BALANCE_CHUNK 131072 /** * vio_cmo_dev_entry - A device that is CMO-enabled and requires entitlement * * @vio_dev: struct vio_dev pointer * @list: pointer to other devices on bus that are being tracked */ struct vio_cmo_dev_entry { struct vio_dev *viodev; struct list_head list; }; /** * vio_cmo - VIO bus accounting structure for CMO entitlement * * @lock: spinlock for entire structure * @balance_q: work queue for balancing system entitlement * @device_list: list of CMO-enabled devices requiring entitlement * @entitled: total system entitlement in bytes * @reserve: pool of memory from which devices reserve entitlement, incl. spare * @excess: pool of excess entitlement not needed for device reserves or spare * @spare: IO memory for device hotplug functionality * @min: minimum necessary for system operation * @desired: desired memory for system operation * @curr: bytes currently allocated * @high: high water mark for IO data usage */ static struct vio_cmo { spinlock_t lock; struct delayed_work balance_q; struct list_head device_list; size_t entitled; struct vio_cmo_pool reserve; struct vio_cmo_pool excess; size_t spare; size_t min; size_t desired; size_t curr; size_t high; } vio_cmo; /** * vio_cmo_OF_devices - Count the number of OF devices that have DMA windows */ static int vio_cmo_num_OF_devs(void) { struct device_node *node_vroot; int count = 0; /* * Count the number of vdevice entries with an * ibm,my-dma-window OF property */ node_vroot = of_find_node_by_name(NULL, "vdevice"); if (node_vroot) { struct device_node *of_node; struct property *prop; for_each_child_of_node(node_vroot, of_node) { prop = of_find_property(of_node, "ibm,my-dma-window", NULL); if (prop) count++; } } of_node_put(node_vroot); return count; } /** * vio_cmo_alloc - allocate IO memory for CMO-enable devices * * @viodev: VIO device requesting IO memory * @size: size of allocation requested * * Allocations come from memory reserved for the devices and any excess * IO memory available to all devices. The spare pool used to service * hotplug must be equal to %VIO_CMO_MIN_ENT for the excess pool to be * made available. * * Return codes: * 0 for successful allocation and -ENOMEM for a failure */ static inline int vio_cmo_alloc(struct vio_dev *viodev, size_t size) { unsigned long flags; size_t reserve_free = 0; size_t excess_free = 0; int ret = -ENOMEM; spin_lock_irqsave(&vio_cmo.lock, flags); /* Determine the amount of free entitlement available in reserve */ if (viodev->cmo.entitled > viodev->cmo.allocated) reserve_free = viodev->cmo.entitled - viodev->cmo.allocated; /* If spare is not fulfilled, the excess pool can not be used. */ if (vio_cmo.spare >= VIO_CMO_MIN_ENT) excess_free = vio_cmo.excess.free; /* The request can be satisfied */ if ((reserve_free + excess_free) >= size) { vio_cmo.curr += size; if (vio_cmo.curr > vio_cmo.high) vio_cmo.high = vio_cmo.curr; viodev->cmo.allocated += size; size -= min(reserve_free, size); vio_cmo.excess.free -= size; ret = 0; } spin_unlock_irqrestore(&vio_cmo.lock, flags); return ret; } /** * vio_cmo_dealloc - deallocate IO memory from CMO-enable devices * @viodev: VIO device freeing IO memory * @size: size of deallocation * * IO memory is freed by the device back to the correct memory pools. * The spare pool is replenished first from either memory pool, then * the reserve pool is used to reduce device entitlement, the excess * pool is used to increase the reserve pool toward the desired entitlement * target, and then the remaining memory is returned to the pools. * */ static inline void vio_cmo_dealloc(struct vio_dev *viodev, size_t size) { unsigned long flags; size_t spare_needed = 0; size_t excess_freed = 0; size_t reserve_freed = size; size_t tmp; int balance = 0; spin_lock_irqsave(&vio_cmo.lock, flags); vio_cmo.curr -= size; /* Amount of memory freed from the excess pool */ if (viodev->cmo.allocated > viodev->cmo.entitled) { excess_freed = min(reserve_freed, (viodev->cmo.allocated - viodev->cmo.entitled)); reserve_freed -= excess_freed; } /* Remove allocation from device */ viodev->cmo.allocated -= (reserve_freed + excess_freed); /* Spare is a subset of the reserve pool, replenish it first. */ spare_needed = VIO_CMO_MIN_ENT - vio_cmo.spare; /* * Replenish the spare in the reserve pool from the excess pool. * This moves entitlement into the reserve pool. */ if (spare_needed && excess_freed) { tmp = min(excess_freed, spare_needed); vio_cmo.excess.size -= tmp; vio_cmo.reserve.size += tmp; vio_cmo.spare += tmp; excess_freed -= tmp; spare_needed -= tmp; balance = 1; } /* * Replenish the spare in the reserve pool from the reserve pool. * This removes entitlement from the device down to VIO_CMO_MIN_ENT, * if needed, and gives it to the spare pool. The amount of used * memory in this pool does not change. */ if (spare_needed && reserve_freed) { tmp = min3(spare_needed, reserve_freed, (viodev->cmo.entitled - VIO_CMO_MIN_ENT)); vio_cmo.spare += tmp; viodev->cmo.entitled -= tmp; reserve_freed -= tmp; spare_needed -= tmp; balance = 1; } /* * Increase the reserve pool until the desired allocation is met. * Move an allocation freed from the excess pool into the reserve * pool and schedule a balance operation. */ if (excess_freed && (vio_cmo.desired > vio_cmo.reserve.size)) { tmp = min(excess_freed, (vio_cmo.desired - vio_cmo.reserve.size)); vio_cmo.excess.size -= tmp; vio_cmo.reserve.size += tmp; excess_freed -= tmp; balance = 1; } /* Return memory from the excess pool to that pool */ if (excess_freed) vio_cmo.excess.free += excess_freed; if (balance) schedule_delayed_work(&vio_cmo.balance_q, VIO_CMO_BALANCE_DELAY); spin_unlock_irqrestore(&vio_cmo.lock, flags); } /** * vio_cmo_entitlement_update - Manage system entitlement changes * * @new_entitlement: new system entitlement to attempt to accommodate * * Increases in entitlement will be used to fulfill the spare entitlement * and the rest is given to the excess pool. Decreases, if they are * possible, come from the excess pool and from unused device entitlement * * Returns: 0 on success, -ENOMEM when change can not be made */ int vio_cmo_entitlement_update(size_t new_entitlement) { struct vio_dev *viodev; struct vio_cmo_dev_entry *dev_ent; unsigned long flags; size_t avail, delta, tmp; spin_lock_irqsave(&vio_cmo.lock, flags); /* Entitlement increases */ if (new_entitlement > vio_cmo.entitled) { delta = new_entitlement - vio_cmo.entitled; /* Fulfill spare allocation */ if (vio_cmo.spare < VIO_CMO_MIN_ENT) { tmp = min(delta, (VIO_CMO_MIN_ENT - vio_cmo.spare)); vio_cmo.spare += tmp; vio_cmo.reserve.size += tmp; delta -= tmp; } /* Remaining new allocation goes to the excess pool */ vio_cmo.entitled += delta; vio_cmo.excess.size += delta; vio_cmo.excess.free += delta; goto out; } /* Entitlement decreases */ delta = vio_cmo.entitled - new_entitlement; avail = vio_cmo.excess.free; /* * Need to check how much unused entitlement each device can * sacrifice to fulfill entitlement change. */ list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { if (avail >= delta) break; viodev = dev_ent->viodev; if ((viodev->cmo.entitled > viodev->cmo.allocated) && (viodev->cmo.entitled > VIO_CMO_MIN_ENT)) avail += viodev->cmo.entitled - max_t(size_t, viodev->cmo.allocated, VIO_CMO_MIN_ENT); } if (delta <= avail) { vio_cmo.entitled -= delta; /* Take entitlement from the excess pool first */ tmp = min(vio_cmo.excess.free, delta); vio_cmo.excess.size -= tmp; vio_cmo.excess.free -= tmp; delta -= tmp; /* * Remove all but VIO_CMO_MIN_ENT bytes from devices * until entitlement change is served */ list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { if (!delta) break; viodev = dev_ent->viodev; tmp = 0; if ((viodev->cmo.entitled > viodev->cmo.allocated) && (viodev->cmo.entitled > VIO_CMO_MIN_ENT)) tmp = viodev->cmo.entitled - max_t(size_t, viodev->cmo.allocated, VIO_CMO_MIN_ENT); viodev->cmo.entitled -= min(tmp, delta); delta -= min(tmp, delta); } } else { spin_unlock_irqrestore(&vio_cmo.lock, flags); return -ENOMEM; } out: schedule_delayed_work(&vio_cmo.balance_q, 0); spin_unlock_irqrestore(&vio_cmo.lock, flags); return 0; } /** * vio_cmo_balance - Balance entitlement among devices * * @work: work queue structure for this operation * * Any system entitlement above the minimum needed for devices, or * already allocated to devices, can be distributed to the devices. * The list of devices is iterated through to recalculate the desired * entitlement level and to determine how much entitlement above the * minimum entitlement is allocated to devices. * * Small chunks of the available entitlement are given to devices until * their requirements are fulfilled or there is no entitlement left to give. * Upon completion sizes of the reserve and excess pools are calculated. * * The system minimum entitlement level is also recalculated here. * Entitlement will be reserved for devices even after vio_bus_remove to * accommodate reloading the driver. The OF tree is walked to count the * number of devices present and this will remove entitlement for devices * that have actually left the system after having vio_bus_remove called. */ static void vio_cmo_balance(struct work_struct *work) { struct vio_cmo *cmo; struct vio_dev *viodev; struct vio_cmo_dev_entry *dev_ent; unsigned long flags; size_t avail = 0, level, chunk, need; int devcount = 0, fulfilled; cmo = container_of(work, struct vio_cmo, balance_q.work); spin_lock_irqsave(&vio_cmo.lock, flags); /* Calculate minimum entitlement and fulfill spare */ cmo->min = vio_cmo_num_OF_devs() * VIO_CMO_MIN_ENT; BUG_ON(cmo->min > cmo->entitled); cmo->spare = min_t(size_t, VIO_CMO_MIN_ENT, (cmo->entitled - cmo->min)); cmo->min += cmo->spare; cmo->desired = cmo->min; /* * Determine how much entitlement is available and reset device * entitlements */ avail = cmo->entitled - cmo->spare; list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { viodev = dev_ent->viodev; devcount++; viodev->cmo.entitled = VIO_CMO_MIN_ENT; cmo->desired += (viodev->cmo.desired - VIO_CMO_MIN_ENT); avail -= max_t(size_t, viodev->cmo.allocated, VIO_CMO_MIN_ENT); } /* * Having provided each device with the minimum entitlement, loop * over the devices portioning out the remaining entitlement * until there is nothing left. */ level = VIO_CMO_MIN_ENT; while (avail) { fulfilled = 0; list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { viodev = dev_ent->viodev; if (viodev->cmo.desired <= level) { fulfilled++; continue; } /* * Give the device up to VIO_CMO_BALANCE_CHUNK * bytes of entitlement, but do not exceed the * desired level of entitlement for the device. */ chunk = min_t(size_t, avail, VIO_CMO_BALANCE_CHUNK); chunk = min(chunk, (viodev->cmo.desired - viodev->cmo.entitled)); viodev->cmo.entitled += chunk; /* * If the memory for this entitlement increase was * already allocated to the device it does not come * from the available pool being portioned out. */ need = max(viodev->cmo.allocated, viodev->cmo.entitled)- max(viodev->cmo.allocated, level); avail -= need; } if (fulfilled == devcount) break; level += VIO_CMO_BALANCE_CHUNK; } /* Calculate new reserve and excess pool sizes */ cmo->reserve.size = cmo->min; cmo->excess.free = 0; cmo->excess.size = 0; need = 0; list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { viodev = dev_ent->viodev; /* Calculated reserve size above the minimum entitlement */ if (viodev->cmo.entitled) cmo->reserve.size += (viodev->cmo.entitled - VIO_CMO_MIN_ENT); /* Calculated used excess entitlement */ if (viodev->cmo.allocated > viodev->cmo.entitled) need += viodev->cmo.allocated - viodev->cmo.entitled; } cmo->excess.size = cmo->entitled - cmo->reserve.size; cmo->excess.free = cmo->excess.size - need; cancel_delayed_work(to_delayed_work(work)); spin_unlock_irqrestore(&vio_cmo.lock, flags); } static void *vio_dma_iommu_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) { struct vio_dev *viodev = to_vio_dev(dev); void *ret; if (vio_cmo_alloc(viodev, roundup(size, PAGE_SIZE))) { atomic_inc(&viodev->cmo.allocs_failed); return NULL; } ret = dma_iommu_ops.alloc(dev, size, dma_handle, flag, attrs); if (unlikely(ret == NULL)) { vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE)); atomic_inc(&viodev->cmo.allocs_failed); } return ret; } static void vio_dma_iommu_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { struct vio_dev *viodev = to_vio_dev(dev); dma_iommu_ops.free(dev, size, vaddr, dma_handle, attrs); vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE)); } static dma_addr_t vio_dma_iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, unsigned long attrs) { struct vio_dev *viodev = to_vio_dev(dev); struct iommu_table *tbl; dma_addr_t ret = IOMMU_MAPPING_ERROR; tbl = get_iommu_table_base(dev); if (vio_cmo_alloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl)))) { atomic_inc(&viodev->cmo.allocs_failed); return ret; } ret = dma_iommu_ops.map_page(dev, page, offset, size, direction, attrs); if (unlikely(dma_mapping_error(dev, ret))) { vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))); atomic_inc(&viodev->cmo.allocs_failed); } return ret; } static void vio_dma_iommu_unmap_page(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction, unsigned long attrs) { struct vio_dev *viodev = to_vio_dev(dev); struct iommu_table *tbl; tbl = get_iommu_table_base(dev); dma_iommu_ops.unmap_page(dev, dma_handle, size, direction, attrs); vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))); } static int vio_dma_iommu_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction, unsigned long attrs) { struct vio_dev *viodev = to_vio_dev(dev); struct iommu_table *tbl; struct scatterlist *sgl; int ret, count; size_t alloc_size = 0; tbl = get_iommu_table_base(dev); for_each_sg(sglist, sgl, nelems, count) alloc_size += roundup(sgl->length, IOMMU_PAGE_SIZE(tbl)); if (vio_cmo_alloc(viodev, alloc_size)) { atomic_inc(&viodev->cmo.allocs_failed); return 0; } ret = dma_iommu_ops.map_sg(dev, sglist, nelems, direction, attrs); if (unlikely(!ret)) { vio_cmo_dealloc(viodev, alloc_size); atomic_inc(&viodev->cmo.allocs_failed); return ret; } for_each_sg(sglist, sgl, ret, count) alloc_size -= roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl)); if (alloc_size) vio_cmo_dealloc(viodev, alloc_size); return ret; } static void vio_dma_iommu_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction, unsigned long attrs) { struct vio_dev *viodev = to_vio_dev(dev); struct iommu_table *tbl; struct scatterlist *sgl; size_t alloc_size = 0; int count; tbl = get_iommu_table_base(dev); for_each_sg(sglist, sgl, nelems, count) alloc_size += roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl)); dma_iommu_ops.unmap_sg(dev, sglist, nelems, direction, attrs); vio_cmo_dealloc(viodev, alloc_size); } static int vio_dma_iommu_dma_supported(struct device *dev, u64 mask) { return dma_iommu_ops.dma_supported(dev, mask); } static u64 vio_dma_get_required_mask(struct device *dev) { return dma_iommu_ops.get_required_mask(dev); } static const struct dma_map_ops vio_dma_mapping_ops = { .alloc = vio_dma_iommu_alloc_coherent, .free = vio_dma_iommu_free_coherent, .mmap = dma_nommu_mmap_coherent, .map_sg = vio_dma_iommu_map_sg, .unmap_sg = vio_dma_iommu_unmap_sg, .map_page = vio_dma_iommu_map_page, .unmap_page = vio_dma_iommu_unmap_page, .dma_supported = vio_dma_iommu_dma_supported, .get_required_mask = vio_dma_get_required_mask, .mapping_error = dma_iommu_mapping_error, }; /** * vio_cmo_set_dev_desired - Set desired entitlement for a device * * @viodev: struct vio_dev for device to alter * @desired: new desired entitlement level in bytes * * For use by devices to request a change to their entitlement at runtime or * through sysfs. The desired entitlement level is changed and a balancing * of system resources is scheduled to run in the future. */ void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) { unsigned long flags; struct vio_cmo_dev_entry *dev_ent; int found = 0; if (!firmware_has_feature(FW_FEATURE_CMO)) return; spin_lock_irqsave(&vio_cmo.lock, flags); if (desired < VIO_CMO_MIN_ENT) desired = VIO_CMO_MIN_ENT; /* * Changes will not be made for devices not in the device list. * If it is not in the device list, then no driver is loaded * for the device and it can not receive entitlement. */ list_for_each_entry(dev_ent, &vio_cmo.device_list, list) if (viodev == dev_ent->viodev) { found = 1; break; } if (!found) { spin_unlock_irqrestore(&vio_cmo.lock, flags); return; } /* Increase/decrease in desired device entitlement */ if (desired >= viodev->cmo.desired) { /* Just bump the bus and device values prior to a balance*/ vio_cmo.desired += desired - viodev->cmo.desired; viodev->cmo.desired = desired; } else { /* Decrease bus and device values for desired entitlement */ vio_cmo.desired -= viodev->cmo.desired - desired; viodev->cmo.desired = desired; /* * If less entitlement is desired than current entitlement, move * any reserve memory in the change region to the excess pool. */ if (viodev->cmo.entitled > desired) { vio_cmo.reserve.size -= viodev->cmo.entitled - desired; vio_cmo.excess.size += viodev->cmo.entitled - desired; /* * If entitlement moving from the reserve pool to the * excess pool is currently unused, add to the excess * free counter. */ if (viodev->cmo.allocated < viodev->cmo.entitled) vio_cmo.excess.free += viodev->cmo.entitled - max(viodev->cmo.allocated, desired); viodev->cmo.entitled = desired; } } schedule_delayed_work(&vio_cmo.balance_q, 0); spin_unlock_irqrestore(&vio_cmo.lock, flags); } /** * vio_cmo_bus_probe - Handle CMO specific bus probe activities * * @viodev - Pointer to struct vio_dev for device * * Determine the devices IO memory entitlement needs, attempting * to satisfy the system minimum entitlement at first and scheduling * a balance operation to take care of the rest at a later time. * * Returns: 0 on success, -EINVAL when device doesn't support CMO, and * -ENOMEM when entitlement is not available for device or * device entry. * */ static int vio_cmo_bus_probe(struct vio_dev *viodev) { struct vio_cmo_dev_entry *dev_ent; struct device *dev = &viodev->dev; struct iommu_table *tbl; struct vio_driver *viodrv = to_vio_driver(dev->driver); unsigned long flags; size_t size; bool dma_capable = false; tbl = get_iommu_table_base(dev); /* A device requires entitlement if it has a DMA window property */ switch (viodev->family) { case VDEVICE: if (of_get_property(viodev->dev.of_node, "ibm,my-dma-window", NULL)) dma_capable = true; break; case PFO: dma_capable = false; break; default: dev_warn(dev, "unknown device family: %d\n", viodev->family); BUG(); break; } /* Configure entitlement for the device. */ if (dma_capable) { /* Check that the driver is CMO enabled and get desired DMA */ if (!viodrv->get_desired_dma) { dev_err(dev, "%s: device driver does not support CMO\n", __func__); return -EINVAL; } viodev->cmo.desired = IOMMU_PAGE_ALIGN(viodrv->get_desired_dma(viodev), tbl); if (viodev->cmo.desired < VIO_CMO_MIN_ENT) viodev->cmo.desired = VIO_CMO_MIN_ENT; size = VIO_CMO_MIN_ENT; dev_ent = kmalloc(sizeof(struct vio_cmo_dev_entry), GFP_KERNEL); if (!dev_ent) return -ENOMEM; dev_ent->viodev = viodev; spin_lock_irqsave(&vio_cmo.lock, flags); list_add(&dev_ent->list, &vio_cmo.device_list); } else { viodev->cmo.desired = 0; size = 0; spin_lock_irqsave(&vio_cmo.lock, flags); } /* * If the needs for vio_cmo.min have not changed since they * were last set, the number of devices in the OF tree has * been constant and the IO memory for this is already in * the reserve pool. */ if (vio_cmo.min == ((vio_cmo_num_OF_devs() + 1) * VIO_CMO_MIN_ENT)) { /* Updated desired entitlement if device requires it */ if (size) vio_cmo.desired += (viodev->cmo.desired - VIO_CMO_MIN_ENT); } else { size_t tmp; tmp = vio_cmo.spare + vio_cmo.excess.free; if (tmp < size) { dev_err(dev, "%s: insufficient free " "entitlement to add device. " "Need %lu, have %lu\n", __func__, size, (vio_cmo.spare + tmp)); spin_unlock_irqrestore(&vio_cmo.lock, flags); return -ENOMEM; } /* Use excess pool first to fulfill request */ tmp = min(size, vio_cmo.excess.free); vio_cmo.excess.free -= tmp; vio_cmo.excess.size -= tmp; vio_cmo.reserve.size += tmp; /* Use spare if excess pool was insufficient */ vio_cmo.spare -= size - tmp; /* Update bus accounting */ vio_cmo.min += size; vio_cmo.desired += viodev->cmo.desired; } spin_unlock_irqrestore(&vio_cmo.lock, flags); return 0; } /** * vio_cmo_bus_remove - Handle CMO specific bus removal activities * * @viodev - Pointer to struct vio_dev for device * * Remove the device from the cmo device list. The minimum entitlement * will be reserved for the device as long as it is in the system. The * rest of the entitlement the device had been allocated will be returned * to the system. */ static void vio_cmo_bus_remove(struct vio_dev *viodev) { struct vio_cmo_dev_entry *dev_ent; unsigned long flags; size_t tmp; spin_lock_irqsave(&vio_cmo.lock, flags); if (viodev->cmo.allocated) { dev_err(&viodev->dev, "%s: device had %lu bytes of IO " "allocated after remove operation.\n", __func__, viodev->cmo.allocated); BUG(); } /* * Remove the device from the device list being maintained for * CMO enabled devices. */ list_for_each_entry(dev_ent, &vio_cmo.device_list, list) if (viodev == dev_ent->viodev) { list_del(&dev_ent->list); kfree(dev_ent); break; } /* * Devices may not require any entitlement and they do not need * to be processed. Otherwise, return the device's entitlement * back to the pools. */ if (viodev->cmo.entitled) { /* * This device has not yet left the OF tree, it's * minimum entitlement remains in vio_cmo.min and * vio_cmo.desired */ vio_cmo.desired -= (viodev->cmo.desired - VIO_CMO_MIN_ENT); /* * Save min allocation for device in reserve as long * as it exists in OF tree as determined by later * balance operation */ viodev->cmo.entitled -= VIO_CMO_MIN_ENT; /* Replenish spare from freed reserve pool */ if (viodev->cmo.entitled && (vio_cmo.spare < VIO_CMO_MIN_ENT)) { tmp = min(viodev->cmo.entitled, (VIO_CMO_MIN_ENT - vio_cmo.spare)); vio_cmo.spare += tmp; viodev->cmo.entitled -= tmp; } /* Remaining reserve goes to excess pool */ vio_cmo.excess.size += viodev->cmo.entitled; vio_cmo.excess.free += viodev->cmo.entitled; vio_cmo.reserve.size -= viodev->cmo.entitled; /* * Until the device is removed it will keep a * minimum entitlement; this will guarantee that * a module unload/load will result in a success. */ viodev->cmo.entitled = VIO_CMO_MIN_ENT; viodev->cmo.desired = VIO_CMO_MIN_ENT; atomic_set(&viodev->cmo.allocs_failed, 0); } spin_unlock_irqrestore(&vio_cmo.lock, flags); } static void vio_cmo_set_dma_ops(struct vio_dev *viodev) { set_dma_ops(&viodev->dev, &vio_dma_mapping_ops); } /** * vio_cmo_bus_init - CMO entitlement initialization at bus init time * * Set up the reserve and excess entitlement pools based on available * system entitlement and the number of devices in the OF tree that * require entitlement in the reserve pool. */ static void vio_cmo_bus_init(void) { struct hvcall_mpp_data mpp_data; int err; memset(&vio_cmo, 0, sizeof(struct vio_cmo)); spin_lock_init(&vio_cmo.lock); INIT_LIST_HEAD(&vio_cmo.device_list); INIT_DELAYED_WORK(&vio_cmo.balance_q, vio_cmo_balance); /* Get current system entitlement */ err = h_get_mpp(&mpp_data); /* * On failure, continue with entitlement set to 0, will panic() * later when spare is reserved. */ if (err != H_SUCCESS) { printk(KERN_ERR "%s: unable to determine system IO "\ "entitlement. (%d)\n", __func__, err); vio_cmo.entitled = 0; } else { vio_cmo.entitled = mpp_data.entitled_mem; } /* Set reservation and check against entitlement */ vio_cmo.spare = VIO_CMO_MIN_ENT; vio_cmo.reserve.size = vio_cmo.spare; vio_cmo.reserve.size += (vio_cmo_num_OF_devs() * VIO_CMO_MIN_ENT); if (vio_cmo.reserve.size > vio_cmo.entitled) { printk(KERN_ERR "%s: insufficient system entitlement\n", __func__); panic("%s: Insufficient system entitlement", __func__); } /* Set the remaining accounting variables */ vio_cmo.excess.size = vio_cmo.entitled - vio_cmo.reserve.size; vio_cmo.excess.free = vio_cmo.excess.size; vio_cmo.min = vio_cmo.reserve.size; vio_cmo.desired = vio_cmo.reserve.size; } /* sysfs device functions and data structures for CMO */ #define viodev_cmo_rd_attr(name) \ static ssize_t cmo_##name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return sprintf(buf, "%lu\n", to_vio_dev(dev)->cmo.name); \ } static ssize_t cmo_allocs_failed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct vio_dev *viodev = to_vio_dev(dev); return sprintf(buf, "%d\n", atomic_read(&viodev->cmo.allocs_failed)); } static ssize_t cmo_allocs_failed_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vio_dev *viodev = to_vio_dev(dev); atomic_set(&viodev->cmo.allocs_failed, 0); return count; } static ssize_t cmo_desired_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vio_dev *viodev = to_vio_dev(dev); size_t new_desired; int ret; ret = kstrtoul(buf, 10, &new_desired); if (ret) return ret; vio_cmo_set_dev_desired(viodev, new_desired); return count; } viodev_cmo_rd_attr(desired); viodev_cmo_rd_attr(entitled); viodev_cmo_rd_attr(allocated); static ssize_t name_show(struct device *, struct device_attribute *, char *); static ssize_t devspec_show(struct device *, struct device_attribute *, char *); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf); static struct device_attribute dev_attr_name; static struct device_attribute dev_attr_devspec; static struct device_attribute dev_attr_modalias; static DEVICE_ATTR_RO(cmo_entitled); static DEVICE_ATTR_RO(cmo_allocated); static DEVICE_ATTR_RW(cmo_desired); static DEVICE_ATTR_RW(cmo_allocs_failed); static struct attribute *vio_cmo_dev_attrs[] = { &dev_attr_name.attr, &dev_attr_devspec.attr, &dev_attr_modalias.attr, &dev_attr_cmo_entitled.attr, &dev_attr_cmo_allocated.attr, &dev_attr_cmo_desired.attr, &dev_attr_cmo_allocs_failed.attr, NULL, }; ATTRIBUTE_GROUPS(vio_cmo_dev); /* sysfs bus functions and data structures for CMO */ #define viobus_cmo_rd_attr(name) \ static ssize_t cmo_bus_##name##_show(struct bus_type *bt, char *buf) \ { \ return sprintf(buf, "%lu\n", vio_cmo.name); \ } \ static struct bus_attribute bus_attr_cmo_bus_##name = \ __ATTR(cmo_##name, S_IRUGO, cmo_bus_##name##_show, NULL) #define viobus_cmo_pool_rd_attr(name, var) \ static ssize_t \ cmo_##name##_##var##_show(struct bus_type *bt, char *buf) \ { \ return sprintf(buf, "%lu\n", vio_cmo.name.var); \ } \ static BUS_ATTR_RO(cmo_##name##_##var) viobus_cmo_rd_attr(entitled); viobus_cmo_rd_attr(spare); viobus_cmo_rd_attr(min); viobus_cmo_rd_attr(desired); viobus_cmo_rd_attr(curr); viobus_cmo_pool_rd_attr(reserve, size); viobus_cmo_pool_rd_attr(excess, size); viobus_cmo_pool_rd_attr(excess, free); static ssize_t cmo_high_show(struct bus_type *bt, char *buf) { return sprintf(buf, "%lu\n", vio_cmo.high); } static ssize_t cmo_high_store(struct bus_type *bt, const char *buf, size_t count) { unsigned long flags; spin_lock_irqsave(&vio_cmo.lock, flags); vio_cmo.high = vio_cmo.curr; spin_unlock_irqrestore(&vio_cmo.lock, flags); return count; } static BUS_ATTR_RW(cmo_high); static struct attribute *vio_bus_attrs[] = { &bus_attr_cmo_bus_entitled.attr, &bus_attr_cmo_bus_spare.attr, &bus_attr_cmo_bus_min.attr, &bus_attr_cmo_bus_desired.attr, &bus_attr_cmo_bus_curr.attr, &bus_attr_cmo_high.attr, &bus_attr_cmo_reserve_size.attr, &bus_attr_cmo_excess_size.attr, &bus_attr_cmo_excess_free.attr, NULL, }; ATTRIBUTE_GROUPS(vio_bus); static void vio_cmo_sysfs_init(void) { vio_bus_type.dev_groups = vio_cmo_dev_groups; vio_bus_type.bus_groups = vio_bus_groups; } #else /* CONFIG_PPC_SMLPAR */ int vio_cmo_entitlement_update(size_t new_entitlement) { return 0; } void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) {} static int vio_cmo_bus_probe(struct vio_dev *viodev) { return 0; } static void vio_cmo_bus_remove(struct vio_dev *viodev) {} static void vio_cmo_set_dma_ops(struct vio_dev *viodev) {} static void vio_cmo_bus_init(void) {} static void vio_cmo_sysfs_init(void) { } #endif /* CONFIG_PPC_SMLPAR */ EXPORT_SYMBOL(vio_cmo_entitlement_update); EXPORT_SYMBOL(vio_cmo_set_dev_desired); /* * Platform Facilities Option (PFO) support */ /** * vio_h_cop_sync - Perform a synchronous PFO co-processor operation * * @vdev - Pointer to a struct vio_dev for device * @op - Pointer to a struct vio_pfo_op for the operation parameters * * Calls the hypervisor to synchronously perform the PFO operation * described in @op. In the case of a busy response from the hypervisor, * the operation will be re-submitted indefinitely unless a non-zero timeout * is specified or an error occurs. The timeout places a limit on when to * stop re-submitting a operation, the total time can be exceeded if an * operation is in progress. * * If op->hcall_ret is not NULL, this will be set to the return from the * last h_cop_op call or it will be 0 if an error not involving the h_call * was encountered. * * Returns: * 0 on success, * -EINVAL if the h_call fails due to an invalid parameter, * -E2BIG if the h_call can not be performed synchronously, * -EBUSY if a timeout is specified and has elapsed, * -EACCES if the memory area for data/status has been rescinded, or * -EPERM if a hardware fault has been indicated */ int vio_h_cop_sync(struct vio_dev *vdev, struct vio_pfo_op *op) { struct device *dev = &vdev->dev; unsigned long deadline = 0; long hret = 0; int ret = 0; if (op->timeout) deadline = jiffies + msecs_to_jiffies(op->timeout); while (true) { hret = plpar_hcall_norets(H_COP, op->flags, vdev->resource_id, op->in, op->inlen, op->out, op->outlen, op->csbcpb); if (hret == H_SUCCESS || (hret != H_NOT_ENOUGH_RESOURCES && hret != H_BUSY && hret != H_RESOURCE) || (op->timeout && time_after(deadline, jiffies))) break; dev_dbg(dev, "%s: hcall ret(%ld), retrying.\n", __func__, hret); } switch (hret) { case H_SUCCESS: ret = 0; break; case H_OP_MODE: case H_TOO_BIG: ret = -E2BIG; break; case H_RESCINDED: ret = -EACCES; break; case H_HARDWARE: ret = -EPERM; break; case H_NOT_ENOUGH_RESOURCES: case H_RESOURCE: case H_BUSY: ret = -EBUSY; break; default: ret = -EINVAL; break; } if (ret) dev_dbg(dev, "%s: Sync h_cop_op failure (ret:%d) (hret:%ld)\n", __func__, ret, hret); op->hcall_err = hret; return ret; } EXPORT_SYMBOL(vio_h_cop_sync); static struct iommu_table *vio_build_iommu_table(struct vio_dev *dev) { const __be32 *dma_window; struct iommu_table *tbl; unsigned long offset, size; dma_window = of_get_property(dev->dev.of_node, "ibm,my-dma-window", NULL); if (!dma_window) return NULL; tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); if (tbl == NULL) return NULL; of_parse_dma_window(dev->dev.of_node, dma_window, &tbl->it_index, &offset, &size); /* TCE table size - measured in tce entries */ tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; tbl->it_size = size >> tbl->it_page_shift; /* offset for VIO should always be 0 */ tbl->it_offset = offset >> tbl->it_page_shift; tbl->it_busno = 0; tbl->it_type = TCE_VB; tbl->it_blocksize = 16; if (firmware_has_feature(FW_FEATURE_LPAR)) tbl->it_ops = &iommu_table_lpar_multi_ops; else tbl->it_ops = &iommu_table_pseries_ops; return iommu_init_table(tbl, -1); } /** * vio_match_device: - Tell if a VIO device has a matching * VIO device id structure. * @ids: array of VIO device id structures to search in * @dev: the VIO device structure to match against * * Used by a driver to check whether a VIO device present in the * system is in its list of supported devices. Returns the matching * vio_device_id structure or NULL if there is no match. */ static const struct vio_device_id *vio_match_device( const struct vio_device_id *ids, const struct vio_dev *dev) { while (ids->type[0] != '\0') { if ((strncmp(dev->type, ids->type, strlen(ids->type)) == 0) && of_device_is_compatible(dev->dev.of_node, ids->compat)) return ids; ids++; } return NULL; } /* * Convert from struct device to struct vio_dev and pass to driver. * dev->driver has already been set by generic code because vio_bus_match * succeeded. */ static int vio_bus_probe(struct device *dev) { struct vio_dev *viodev = to_vio_dev(dev); struct vio_driver *viodrv = to_vio_driver(dev->driver); const struct vio_device_id *id; int error = -ENODEV; if (!viodrv->probe) return error; id = vio_match_device(viodrv->id_table, viodev); if (id) { memset(&viodev->cmo, 0, sizeof(viodev->cmo)); if (firmware_has_feature(FW_FEATURE_CMO)) { error = vio_cmo_bus_probe(viodev); if (error) return error; } error = viodrv->probe(viodev, id); if (error && firmware_has_feature(FW_FEATURE_CMO)) vio_cmo_bus_remove(viodev); } return error; } /* convert from struct device to struct vio_dev and pass to driver. */ static int vio_bus_remove(struct device *dev) { struct vio_dev *viodev = to_vio_dev(dev); struct vio_driver *viodrv = to_vio_driver(dev->driver); struct device *devptr; int ret = 1; /* * Hold a reference to the device after the remove function is called * to allow for CMO accounting cleanup for the device. */ devptr = get_device(dev); if (viodrv->remove) ret = viodrv->remove(viodev); if (!ret && firmware_has_feature(FW_FEATURE_CMO)) vio_cmo_bus_remove(viodev); put_device(devptr); return ret; } /** * vio_register_driver: - Register a new vio driver * @viodrv: The vio_driver structure to be registered. */ int __vio_register_driver(struct vio_driver *viodrv, struct module *owner, const char *mod_name) { pr_debug("%s: driver %s registering\n", __func__, viodrv->name); /* fill in 'struct driver' fields */ viodrv->driver.name = viodrv->name; viodrv->driver.pm = viodrv->pm; viodrv->driver.bus = &vio_bus_type; viodrv->driver.owner = owner; viodrv->driver.mod_name = mod_name; return driver_register(&viodrv->driver); } EXPORT_SYMBOL(__vio_register_driver); /** * vio_unregister_driver - Remove registration of vio driver. * @viodrv: The vio_driver struct to be removed form registration */ void vio_unregister_driver(struct vio_driver *viodrv) { driver_unregister(&viodrv->driver); } EXPORT_SYMBOL(vio_unregister_driver); /* vio_dev refcount hit 0 */ static void vio_dev_release(struct device *dev) { struct iommu_table *tbl = get_iommu_table_base(dev); if (tbl) iommu_tce_table_put(tbl); of_node_put(dev->of_node); kfree(to_vio_dev(dev)); } /** * vio_register_device_node: - Register a new vio device. * @of_node: The OF node for this device. * * Creates and initializes a vio_dev structure from the data in * of_node and adds it to the list of virtual devices. * Returns a pointer to the created vio_dev or NULL if node has * NULL device_type or compatible fields. */ struct vio_dev *vio_register_device_node(struct device_node *of_node) { struct vio_dev *viodev; struct device_node *parent_node; const __be32 *prop; enum vio_dev_family family; /* * Determine if this node is a under the /vdevice node or under the * /ibm,platform-facilities node. This decides the device's family. */ parent_node = of_get_parent(of_node); if (parent_node) { if (!strcmp(parent_node->type, "ibm,platform-facilities")) family = PFO; else if (!strcmp(parent_node->type, "vdevice")) family = VDEVICE; else { pr_warn("%s: parent(%pOF) of %pOFn not recognized.\n", __func__, parent_node, of_node); of_node_put(parent_node); return NULL; } of_node_put(parent_node); } else { pr_warn("%s: could not determine the parent of node %pOFn.\n", __func__, of_node); return NULL; } if (family == PFO) { if (of_get_property(of_node, "interrupt-controller", NULL)) { pr_debug("%s: Skipping the interrupt controller %pOFn.\n", __func__, of_node); return NULL; } } /* allocate a vio_dev for this node */ viodev = kzalloc(sizeof(struct vio_dev), GFP_KERNEL); if (viodev == NULL) { pr_warn("%s: allocation failure for VIO device.\n", __func__); return NULL; } /* we need the 'device_type' property, in order to match with drivers */ viodev->family = family; if (viodev->family == VDEVICE) { unsigned int unit_address; if (of_node->type != NULL) viodev->type = of_node->type; else { pr_warn("%s: node %pOFn is missing the 'device_type' " "property.\n", __func__, of_node); goto out; } prop = of_get_property(of_node, "reg", NULL); if (prop == NULL) { pr_warn("%s: node %pOFn missing 'reg'\n", __func__, of_node); goto out; } unit_address = of_read_number(prop, 1); dev_set_name(&viodev->dev, "%x", unit_address); viodev->irq = irq_of_parse_and_map(of_node, 0); viodev->unit_address = unit_address; } else { /* PFO devices need their resource_id for submitting COP_OPs * This is an optional field for devices, but is required when * performing synchronous ops */ prop = of_get_property(of_node, "ibm,resource-id", NULL); if (prop != NULL) viodev->resource_id = of_read_number(prop, 1); dev_set_name(&viodev->dev, "%pOFn", of_node); viodev->type = dev_name(&viodev->dev); viodev->irq = 0; } viodev->name = of_node->name; viodev->dev.of_node = of_node_get(of_node); set_dev_node(&viodev->dev, of_node_to_nid(of_node)); /* init generic 'struct device' fields: */ viodev->dev.parent = &vio_bus_device.dev; viodev->dev.bus = &vio_bus_type; viodev->dev.release = vio_dev_release; if (of_get_property(viodev->dev.of_node, "ibm,my-dma-window", NULL)) { if (firmware_has_feature(FW_FEATURE_CMO)) vio_cmo_set_dma_ops(viodev); else set_dma_ops(&viodev->dev, &dma_iommu_ops); set_iommu_table_base(&viodev->dev, vio_build_iommu_table(viodev)); /* needed to ensure proper operation of coherent allocations * later, in case driver doesn't set it explicitly */ viodev->dev.coherent_dma_mask = DMA_BIT_MASK(64); viodev->dev.dma_mask = &viodev->dev.coherent_dma_mask; } /* register with generic device framework */ if (device_register(&viodev->dev)) { printk(KERN_ERR "%s: failed to register device %s\n", __func__, dev_name(&viodev->dev)); put_device(&viodev->dev); return NULL; } return viodev; out: /* Use this exit point for any return prior to device_register */ kfree(viodev); return NULL; } EXPORT_SYMBOL(vio_register_device_node); /* * vio_bus_scan_for_devices - Scan OF and register each child device * @root_name - OF node name for the root of the subtree to search. * This must be non-NULL * * Starting from the root node provide, register the device node for * each child beneath the root. */ static void vio_bus_scan_register_devices(char *root_name) { struct device_node *node_root, *node_child; if (!root_name) return; node_root = of_find_node_by_name(NULL, root_name); if (node_root) { /* * Create struct vio_devices for each virtual device in * the device tree. Drivers will associate with them later. */ node_child = of_get_next_child(node_root, NULL); while (node_child) { vio_register_device_node(node_child); node_child = of_get_next_child(node_root, node_child); } of_node_put(node_root); } } /** * vio_bus_init: - Initialize the virtual IO bus */ static int __init vio_bus_init(void) { int err; if (firmware_has_feature(FW_FEATURE_CMO)) vio_cmo_sysfs_init(); err = bus_register(&vio_bus_type); if (err) { printk(KERN_ERR "failed to register VIO bus\n"); return err; } /* * The fake parent of all vio devices, just to give us * a nice directory */ err = device_register(&vio_bus_device.dev); if (err) { printk(KERN_WARNING "%s: device_register returned %i\n", __func__, err); return err; } if (firmware_has_feature(FW_FEATURE_CMO)) vio_cmo_bus_init(); return 0; } postcore_initcall(vio_bus_init); static int __init vio_device_init(void) { vio_bus_scan_register_devices("vdevice"); vio_bus_scan_register_devices("ibm,platform-facilities"); return 0; } device_initcall(vio_device_init); static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", to_vio_dev(dev)->name); } static DEVICE_ATTR_RO(name); static ssize_t devspec_show(struct device *dev, struct device_attribute *attr, char *buf) { struct device_node *of_node = dev->of_node; return sprintf(buf, "%pOF\n", of_node); } static DEVICE_ATTR_RO(devspec); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct vio_dev *vio_dev = to_vio_dev(dev); struct device_node *dn; const char *cp; dn = dev->of_node; if (!dn) { strcpy(buf, "\n"); return strlen(buf); } cp = of_get_property(dn, "compatible", NULL); if (!cp) { strcpy(buf, "\n"); return strlen(buf); } return sprintf(buf, "vio:T%sS%s\n", vio_dev->type, cp); } static DEVICE_ATTR_RO(modalias); static struct attribute *vio_dev_attrs[] = { &dev_attr_name.attr, &dev_attr_devspec.attr, &dev_attr_modalias.attr, NULL, }; ATTRIBUTE_GROUPS(vio_dev); void vio_unregister_device(struct vio_dev *viodev) { device_unregister(&viodev->dev); if (viodev->family == VDEVICE) irq_dispose_mapping(viodev->irq); } EXPORT_SYMBOL(vio_unregister_device); static int vio_bus_match(struct device *dev, struct device_driver *drv) { const struct vio_dev *vio_dev = to_vio_dev(dev); struct vio_driver *vio_drv = to_vio_driver(drv); const struct vio_device_id *ids = vio_drv->id_table; return (ids != NULL) && (vio_match_device(ids, vio_dev) != NULL); } static int vio_hotplug(struct device *dev, struct kobj_uevent_env *env) { const struct vio_dev *vio_dev = to_vio_dev(dev); struct device_node *dn; const char *cp; dn = dev->of_node; if (!dn) return -ENODEV; cp = of_get_property(dn, "compatible", NULL); if (!cp) return -ENODEV; add_uevent_var(env, "MODALIAS=vio:T%sS%s", vio_dev->type, cp); return 0; } struct bus_type vio_bus_type = { .name = "vio", .dev_groups = vio_dev_groups, .uevent = vio_hotplug, .match = vio_bus_match, .probe = vio_bus_probe, .remove = vio_bus_remove, }; /** * vio_get_attribute: - get attribute for virtual device * @vdev: The vio device to get property. * @which: The property/attribute to be extracted. * @length: Pointer to length of returned data size (unused if NULL). * * Calls prom.c's of_get_property() to return the value of the * attribute specified by @which */ const void *vio_get_attribute(struct vio_dev *vdev, char *which, int *length) { return of_get_property(vdev->dev.of_node, which, length); } EXPORT_SYMBOL(vio_get_attribute); #ifdef CONFIG_PPC_PSERIES /* vio_find_name() - internal because only vio.c knows how we formatted the * kobject name */ static struct vio_dev *vio_find_name(const char *name) { struct device *found; found = bus_find_device_by_name(&vio_bus_type, NULL, name); if (!found) return NULL; return to_vio_dev(found); } /** * vio_find_node - find an already-registered vio_dev * @vnode: device_node of the virtual device we're looking for * * Takes a reference to the embedded struct device which needs to be dropped * after use. */ struct vio_dev *vio_find_node(struct device_node *vnode) { char kobj_name[20]; struct device_node *vnode_parent; const char *dev_type; vnode_parent = of_get_parent(vnode); if (!vnode_parent) return NULL; dev_type = of_get_property(vnode_parent, "device_type", NULL); of_node_put(vnode_parent); if (!dev_type) return NULL; /* construct the kobject name from the device node */ if (!strcmp(dev_type, "vdevice")) { const __be32 *prop; prop = of_get_property(vnode, "reg", NULL); if (!prop) return NULL; snprintf(kobj_name, sizeof(kobj_name), "%x", (uint32_t)of_read_number(prop, 1)); } else if (!strcmp(dev_type, "ibm,platform-facilities")) snprintf(kobj_name, sizeof(kobj_name), "%pOFn", vnode); else return NULL; return vio_find_name(kobj_name); } EXPORT_SYMBOL(vio_find_node); int vio_enable_interrupts(struct vio_dev *dev) { int rc = h_vio_signal(dev->unit_address, VIO_IRQ_ENABLE); if (rc != H_SUCCESS) printk(KERN_ERR "vio: Error 0x%x enabling interrupts\n", rc); return rc; } EXPORT_SYMBOL(vio_enable_interrupts); int vio_disable_interrupts(struct vio_dev *dev) { int rc = h_vio_signal(dev->unit_address, VIO_IRQ_DISABLE); if (rc != H_SUCCESS) printk(KERN_ERR "vio: Error 0x%x disabling interrupts\n", rc); return rc; } EXPORT_SYMBOL(vio_disable_interrupts); #endif /* CONFIG_PPC_PSERIES */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1