Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andi Kleen | 437 | 28.01% | 3 | 11.54% |
Huang Ying | 353 | 22.63% | 2 | 7.69% |
Aravind Gopalakrishnan | 249 | 15.96% | 3 | 11.54% |
Tony Luck | 209 | 13.40% | 7 | 26.92% |
Hidetoshi Seto | 148 | 9.49% | 2 | 7.69% |
Chen Yucong | 81 | 5.19% | 1 | 3.85% |
Xie XiuQi | 49 | 3.14% | 1 | 3.85% |
Yazen Ghannam | 11 | 0.71% | 2 | 7.69% |
Pu Wen | 6 | 0.38% | 1 | 3.85% |
Borislav Petkov | 6 | 0.38% | 1 | 3.85% |
Arnd Bergmann | 5 | 0.32% | 1 | 3.85% |
Chen Gong | 5 | 0.32% | 1 | 3.85% |
Linus Torvalds | 1 | 0.06% | 1 | 3.85% |
Total | 1560 | 26 |
/* * MCE grading rules. * Copyright 2008, 2009 Intel Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. * * Author: Andi Kleen */ #include <linux/kernel.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/debugfs.h> #include <asm/mce.h> #include <linux/uaccess.h> #include "mce-internal.h" /* * Grade an mce by severity. In general the most severe ones are processed * first. Since there are quite a lot of combinations test the bits in a * table-driven way. The rules are simply processed in order, first * match wins. * * Note this is only used for machine check exceptions, the corrected * errors use much simpler rules. The exceptions still check for the corrected * errors, but only to leave them alone for the CMCI handler (except for * panic situations) */ enum context { IN_KERNEL = 1, IN_USER = 2, IN_KERNEL_RECOV = 3 }; enum ser { SER_REQUIRED = 1, NO_SER = 2 }; enum exception { EXCP_CONTEXT = 1, NO_EXCP = 2 }; static struct severity { u64 mask; u64 result; unsigned char sev; unsigned char mcgmask; unsigned char mcgres; unsigned char ser; unsigned char context; unsigned char excp; unsigned char covered; char *msg; } severities[] = { #define MCESEV(s, m, c...) { .sev = MCE_ ## s ## _SEVERITY, .msg = m, ## c } #define KERNEL .context = IN_KERNEL #define USER .context = IN_USER #define KERNEL_RECOV .context = IN_KERNEL_RECOV #define SER .ser = SER_REQUIRED #define NOSER .ser = NO_SER #define EXCP .excp = EXCP_CONTEXT #define NOEXCP .excp = NO_EXCP #define BITCLR(x) .mask = x, .result = 0 #define BITSET(x) .mask = x, .result = x #define MCGMASK(x, y) .mcgmask = x, .mcgres = y #define MASK(x, y) .mask = x, .result = y #define MCI_UC_S (MCI_STATUS_UC|MCI_STATUS_S) #define MCI_UC_AR (MCI_STATUS_UC|MCI_STATUS_AR) #define MCI_UC_SAR (MCI_STATUS_UC|MCI_STATUS_S|MCI_STATUS_AR) #define MCI_ADDR (MCI_STATUS_ADDRV|MCI_STATUS_MISCV) MCESEV( NO, "Invalid", BITCLR(MCI_STATUS_VAL) ), MCESEV( NO, "Not enabled", EXCP, BITCLR(MCI_STATUS_EN) ), MCESEV( PANIC, "Processor context corrupt", BITSET(MCI_STATUS_PCC) ), /* When MCIP is not set something is very confused */ MCESEV( PANIC, "MCIP not set in MCA handler", EXCP, MCGMASK(MCG_STATUS_MCIP, 0) ), /* Neither return not error IP -- no chance to recover -> PANIC */ MCESEV( PANIC, "Neither restart nor error IP", EXCP, MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, 0) ), MCESEV( PANIC, "In kernel and no restart IP", EXCP, KERNEL, MCGMASK(MCG_STATUS_RIPV, 0) ), MCESEV( PANIC, "In kernel and no restart IP", EXCP, KERNEL_RECOV, MCGMASK(MCG_STATUS_RIPV, 0) ), MCESEV( DEFERRED, "Deferred error", NOSER, MASK(MCI_STATUS_UC|MCI_STATUS_DEFERRED|MCI_STATUS_POISON, MCI_STATUS_DEFERRED) ), MCESEV( KEEP, "Corrected error", NOSER, BITCLR(MCI_STATUS_UC) ), /* * known AO MCACODs reported via MCE or CMC: * * SRAO could be signaled either via a machine check exception or * CMCI with the corresponding bit S 1 or 0. So we don't need to * check bit S for SRAO. */ MCESEV( AO, "Action optional: memory scrubbing error", SER, MASK(MCI_STATUS_OVER|MCI_UC_AR|MCACOD_SCRUBMSK, MCI_STATUS_UC|MCACOD_SCRUB) ), MCESEV( AO, "Action optional: last level cache writeback error", SER, MASK(MCI_STATUS_OVER|MCI_UC_AR|MCACOD, MCI_STATUS_UC|MCACOD_L3WB) ), /* ignore OVER for UCNA */ MCESEV( UCNA, "Uncorrected no action required", SER, MASK(MCI_UC_SAR, MCI_STATUS_UC) ), MCESEV( PANIC, "Illegal combination (UCNA with AR=1)", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_UC|MCI_STATUS_AR) ), MCESEV( KEEP, "Non signalled machine check", SER, BITCLR(MCI_STATUS_S) ), MCESEV( PANIC, "Action required with lost events", SER, BITSET(MCI_STATUS_OVER|MCI_UC_SAR) ), /* known AR MCACODs: */ #ifdef CONFIG_MEMORY_FAILURE MCESEV( KEEP, "Action required but unaffected thread is continuable", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR, MCI_UC_SAR|MCI_ADDR), MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, MCG_STATUS_RIPV) ), MCESEV( AR, "Action required: data load in error recoverable area of kernel", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA), KERNEL_RECOV ), MCESEV( AR, "Action required: data load error in a user process", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA), USER ), MCESEV( AR, "Action required: instruction fetch error in a user process", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR), USER ), MCESEV( PANIC, "Data load in unrecoverable area of kernel", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA), KERNEL ), #endif MCESEV( PANIC, "Action required: unknown MCACOD", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_SAR) ), MCESEV( SOME, "Action optional: unknown MCACOD", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_S) ), MCESEV( SOME, "Action optional with lost events", SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_OVER|MCI_UC_S) ), MCESEV( PANIC, "Overflowed uncorrected", BITSET(MCI_STATUS_OVER|MCI_STATUS_UC) ), MCESEV( UC, "Uncorrected", BITSET(MCI_STATUS_UC) ), MCESEV( SOME, "No match", BITSET(0) ) /* always matches. keep at end */ }; #define mc_recoverable(mcg) (((mcg) & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) == \ (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) /* * If mcgstatus indicated that ip/cs on the stack were * no good, then "m->cs" will be zero and we will have * to assume the worst case (IN_KERNEL) as we actually * have no idea what we were executing when the machine * check hit. * If we do have a good "m->cs" (or a faked one in the * case we were executing in VM86 mode) we can use it to * distinguish an exception taken in user from from one * taken in the kernel. */ static int error_context(struct mce *m) { if ((m->cs & 3) == 3) return IN_USER; if (mc_recoverable(m->mcgstatus) && ex_has_fault_handler(m->ip)) return IN_KERNEL_RECOV; return IN_KERNEL; } static int mce_severity_amd_smca(struct mce *m, enum context err_ctx) { u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank); u32 low, high; /* * We need to look at the following bits: * - "succor" bit (data poisoning support), and * - TCC bit (Task Context Corrupt) * in MCi_STATUS to determine error severity. */ if (!mce_flags.succor) return MCE_PANIC_SEVERITY; if (rdmsr_safe(addr, &low, &high)) return MCE_PANIC_SEVERITY; /* TCC (Task context corrupt). If set and if IN_KERNEL, panic. */ if ((low & MCI_CONFIG_MCAX) && (m->status & MCI_STATUS_TCC) && (err_ctx == IN_KERNEL)) return MCE_PANIC_SEVERITY; /* ...otherwise invoke hwpoison handler. */ return MCE_AR_SEVERITY; } /* * See AMD Error Scope Hierarchy table in a newer BKDG. For example * 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features" */ static int mce_severity_amd(struct mce *m, int tolerant, char **msg, bool is_excp) { enum context ctx = error_context(m); /* Processor Context Corrupt, no need to fumble too much, die! */ if (m->status & MCI_STATUS_PCC) return MCE_PANIC_SEVERITY; if (m->status & MCI_STATUS_UC) { if (ctx == IN_KERNEL) return MCE_PANIC_SEVERITY; /* * On older systems where overflow_recov flag is not present, we * should simply panic if an error overflow occurs. If * overflow_recov flag is present and set, then software can try * to at least kill process to prolong system operation. */ if (mce_flags.overflow_recov) { if (mce_flags.smca) return mce_severity_amd_smca(m, ctx); /* kill current process */ return MCE_AR_SEVERITY; } else { /* at least one error was not logged */ if (m->status & MCI_STATUS_OVER) return MCE_PANIC_SEVERITY; } /* * For any other case, return MCE_UC_SEVERITY so that we log the * error and exit #MC handler. */ return MCE_UC_SEVERITY; } /* * deferred error: poll handler catches these and adds to mce_ring so * memory-failure can take recovery actions. */ if (m->status & MCI_STATUS_DEFERRED) return MCE_DEFERRED_SEVERITY; /* * corrected error: poll handler catches these and passes responsibility * of decoding the error to EDAC */ return MCE_KEEP_SEVERITY; } static int mce_severity_intel(struct mce *m, int tolerant, char **msg, bool is_excp) { enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP); enum context ctx = error_context(m); struct severity *s; for (s = severities;; s++) { if ((m->status & s->mask) != s->result) continue; if ((m->mcgstatus & s->mcgmask) != s->mcgres) continue; if (s->ser == SER_REQUIRED && !mca_cfg.ser) continue; if (s->ser == NO_SER && mca_cfg.ser) continue; if (s->context && ctx != s->context) continue; if (s->excp && excp != s->excp) continue; if (msg) *msg = s->msg; s->covered = 1; if (s->sev >= MCE_UC_SEVERITY && ctx == IN_KERNEL) { if (tolerant < 1) return MCE_PANIC_SEVERITY; } return s->sev; } } /* Default to mce_severity_intel */ int (*mce_severity)(struct mce *m, int tolerant, char **msg, bool is_excp) = mce_severity_intel; void __init mcheck_vendor_init_severity(void) { if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) mce_severity = mce_severity_amd; } #ifdef CONFIG_DEBUG_FS static void *s_start(struct seq_file *f, loff_t *pos) { if (*pos >= ARRAY_SIZE(severities)) return NULL; return &severities[*pos]; } static void *s_next(struct seq_file *f, void *data, loff_t *pos) { if (++(*pos) >= ARRAY_SIZE(severities)) return NULL; return &severities[*pos]; } static void s_stop(struct seq_file *f, void *data) { } static int s_show(struct seq_file *f, void *data) { struct severity *ser = data; seq_printf(f, "%d\t%s\n", ser->covered, ser->msg); return 0; } static const struct seq_operations severities_seq_ops = { .start = s_start, .next = s_next, .stop = s_stop, .show = s_show, }; static int severities_coverage_open(struct inode *inode, struct file *file) { return seq_open(file, &severities_seq_ops); } static ssize_t severities_coverage_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { int i; for (i = 0; i < ARRAY_SIZE(severities); i++) severities[i].covered = 0; return count; } static const struct file_operations severities_coverage_fops = { .open = severities_coverage_open, .release = seq_release, .read = seq_read, .write = severities_coverage_write, .llseek = seq_lseek, }; static int __init severities_debugfs_init(void) { struct dentry *dmce, *fsev; dmce = mce_get_debugfs_dir(); if (!dmce) goto err_out; fsev = debugfs_create_file("severities-coverage", 0444, dmce, NULL, &severities_coverage_fops); if (!fsev) goto err_out; return 0; err_out: return -ENOMEM; } late_initcall(severities_debugfs_init); #endif /* CONFIG_DEBUG_FS */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1