Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jann Horn | 271 | 23.48% | 3 | 11.54% |
Andrew Lutomirski | 267 | 23.14% | 7 | 26.92% |
Tony Luck | 239 | 20.71% | 1 | 3.85% |
Kees Cook | 110 | 9.53% | 3 | 11.54% |
Harvey Harrison | 74 | 6.41% | 1 | 3.85% |
Eric Biggers | 65 | 5.63% | 1 | 3.85% |
H. Peter Anvin | 47 | 4.07% | 2 | 7.69% |
Borislav Petkov | 45 | 3.90% | 1 | 3.85% |
Andi Kleen | 13 | 1.13% | 2 | 7.69% |
Peter Zijlstra | 10 | 0.87% | 1 | 3.85% |
Juergen Gross | 8 | 0.69% | 1 | 3.85% |
Ingo Molnar | 3 | 0.26% | 1 | 3.85% |
Paul Gortmaker | 1 | 0.09% | 1 | 3.85% |
Linus Torvalds | 1 | 0.09% | 1 | 3.85% |
Total | 1154 | 26 |
#include <linux/extable.h> #include <linux/uaccess.h> #include <linux/sched/debug.h> #include <xen/xen.h> #include <asm/fpu/internal.h> #include <asm/traps.h> #include <asm/kdebug.h> typedef bool (*ex_handler_t)(const struct exception_table_entry *, struct pt_regs *, int, unsigned long, unsigned long); static inline unsigned long ex_fixup_addr(const struct exception_table_entry *x) { return (unsigned long)&x->fixup + x->fixup; } static inline ex_handler_t ex_fixup_handler(const struct exception_table_entry *x) { return (ex_handler_t)((unsigned long)&x->handler + x->handler); } __visible bool ex_handler_default(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { regs->ip = ex_fixup_addr(fixup); return true; } EXPORT_SYMBOL(ex_handler_default); __visible bool ex_handler_fault(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { regs->ip = ex_fixup_addr(fixup); regs->ax = trapnr; return true; } EXPORT_SYMBOL_GPL(ex_handler_fault); /* * Handler for UD0 exception following a failed test against the * result of a refcount inc/dec/add/sub. */ __visible bool ex_handler_refcount(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { /* First unconditionally saturate the refcount. */ *(int *)regs->cx = INT_MIN / 2; /* * Strictly speaking, this reports the fixup destination, not * the fault location, and not the actually overflowing * instruction, which is the instruction before the "js", but * since that instruction could be a variety of lengths, just * report the location after the overflow, which should be close * enough for finding the overflow, as it's at least back in * the function, having returned from .text.unlikely. */ regs->ip = ex_fixup_addr(fixup); /* * This function has been called because either a negative refcount * value was seen by any of the refcount functions, or a zero * refcount value was seen by refcount_dec(). * * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result * wrapped around) will be set. Additionally, seeing the refcount * reach 0 will set ZF (Zero Flag: result was zero). In each of * these cases we want a report, since it's a boundary condition. * The SF case is not reported since it indicates post-boundary * manipulations below zero or above INT_MAX. And if none of the * flags are set, something has gone very wrong, so report it. */ if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) { bool zero = regs->flags & X86_EFLAGS_ZF; refcount_error_report(regs, zero ? "hit zero" : "overflow"); } else if ((regs->flags & X86_EFLAGS_SF) == 0) { /* Report if none of OF, ZF, nor SF are set. */ refcount_error_report(regs, "unexpected saturation"); } return true; } EXPORT_SYMBOL(ex_handler_refcount); /* * Handler for when we fail to restore a task's FPU state. We should never get * here because the FPU state of a task using the FPU (task->thread.fpu.state) * should always be valid. However, past bugs have allowed userspace to set * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). * These caused XRSTOR to fail when switching to the task, leaking the FPU * registers of the task previously executing on the CPU. Mitigate this class * of vulnerability by restoring from the initial state (essentially, zeroing * out all the FPU registers) if we can't restore from the task's FPU state. */ __visible bool ex_handler_fprestore(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { regs->ip = ex_fixup_addr(fixup); WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", (void *)instruction_pointer(regs)); __copy_kernel_to_fpregs(&init_fpstate, -1); return true; } EXPORT_SYMBOL_GPL(ex_handler_fprestore); /* Helper to check whether a uaccess fault indicates a kernel bug. */ static bool bogus_uaccess(struct pt_regs *regs, int trapnr, unsigned long fault_addr) { /* This is the normal case: #PF with a fault address in userspace. */ if (trapnr == X86_TRAP_PF && fault_addr < TASK_SIZE_MAX) return false; /* * This code can be reached for machine checks, but only if the #MC * handler has already decided that it looks like a candidate for fixup. * This e.g. happens when attempting to access userspace memory which * the CPU can't access because of uncorrectable bad memory. */ if (trapnr == X86_TRAP_MC) return false; /* * There are two remaining exception types we might encounter here: * - #PF for faulting accesses to kernel addresses * - #GP for faulting accesses to noncanonical addresses * Complain about anything else. */ if (trapnr != X86_TRAP_PF && trapnr != X86_TRAP_GP) { WARN(1, "unexpected trap %d in uaccess\n", trapnr); return false; } /* * This is a faulting memory access in kernel space, on a kernel * address, in a usercopy function. This can e.g. be caused by improper * use of helpers like __put_user and by improper attempts to access * userspace addresses in KERNEL_DS regions. * The one (semi-)legitimate exception are probe_kernel_{read,write}(), * which can be invoked from places like kgdb, /dev/mem (for reading) * and privileged BPF code (for reading). * The probe_kernel_*() functions set the kernel_uaccess_faults_ok flag * to tell us that faulting on kernel addresses, and even noncanonical * addresses, in a userspace accessor does not necessarily imply a * kernel bug, root might just be doing weird stuff. */ if (current->kernel_uaccess_faults_ok) return false; /* This is bad. Refuse the fixup so that we go into die(). */ if (trapnr == X86_TRAP_PF) { pr_emerg("BUG: pagefault on kernel address 0x%lx in non-whitelisted uaccess\n", fault_addr); } else { pr_emerg("BUG: GPF in non-whitelisted uaccess (non-canonical address?)\n"); } return true; } __visible bool ex_handler_uaccess(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { if (bogus_uaccess(regs, trapnr, fault_addr)) return false; regs->ip = ex_fixup_addr(fixup); return true; } EXPORT_SYMBOL(ex_handler_uaccess); __visible bool ex_handler_ext(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { if (bogus_uaccess(regs, trapnr, fault_addr)) return false; /* Special hack for uaccess_err */ current->thread.uaccess_err = 1; regs->ip = ex_fixup_addr(fixup); return true; } EXPORT_SYMBOL(ex_handler_ext); __visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n", (unsigned int)regs->cx, regs->ip, (void *)regs->ip)) show_stack_regs(regs); /* Pretend that the read succeeded and returned 0. */ regs->ip = ex_fixup_addr(fixup); regs->ax = 0; regs->dx = 0; return true; } EXPORT_SYMBOL(ex_handler_rdmsr_unsafe); __visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n", (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, regs->ip, (void *)regs->ip)) show_stack_regs(regs); /* Pretend that the write succeeded. */ regs->ip = ex_fixup_addr(fixup); return true; } EXPORT_SYMBOL(ex_handler_wrmsr_unsafe); __visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { if (static_cpu_has(X86_BUG_NULL_SEG)) asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); asm volatile ("mov %0, %%fs" : : "rm" (0)); return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr); } EXPORT_SYMBOL(ex_handler_clear_fs); __visible bool ex_has_fault_handler(unsigned long ip) { const struct exception_table_entry *e; ex_handler_t handler; e = search_exception_tables(ip); if (!e) return false; handler = ex_fixup_handler(e); return handler == ex_handler_fault; } int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { const struct exception_table_entry *e; ex_handler_t handler; #ifdef CONFIG_PNPBIOS if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; extern u32 pnp_bios_is_utter_crap; pnp_bios_is_utter_crap = 1; printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); __asm__ volatile( "movl %0, %%esp\n\t" "jmp *%1\n\t" : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); panic("do_trap: can't hit this"); } #endif e = search_exception_tables(regs->ip); if (!e) return 0; handler = ex_fixup_handler(e); return handler(e, regs, trapnr, error_code, fault_addr); } extern unsigned int early_recursion_flag; /* Restricted version used during very early boot */ void __init early_fixup_exception(struct pt_regs *regs, int trapnr) { /* Ignore early NMIs. */ if (trapnr == X86_TRAP_NMI) return; if (early_recursion_flag > 2) goto halt_loop; /* * Old CPUs leave the high bits of CS on the stack * undefined. I'm not sure which CPUs do this, but at least * the 486 DX works this way. * Xen pv domains are not using the default __KERNEL_CS. */ if (!xen_pv_domain() && regs->cs != __KERNEL_CS) goto fail; /* * The full exception fixup machinery is available as soon as * the early IDT is loaded. This means that it is the * responsibility of extable users to either function correctly * when handlers are invoked early or to simply avoid causing * exceptions before they're ready to handle them. * * This is better than filtering which handlers can be used, * because refusing to call a handler here is guaranteed to * result in a hard-to-debug panic. * * Keep in mind that not all vectors actually get here. Early * page faults, for example, are special. */ if (fixup_exception(regs, trapnr, regs->orig_ax, 0)) return; if (fixup_bug(regs, trapnr)) return; fail: early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, regs->orig_ax, read_cr2()); show_regs(regs); halt_loop: while (true) halt(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1