Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Venkatesh Pallipadi | 958 | 80.30% | 3 | 21.43% |
Toshi Kani | 139 | 11.65% | 1 | 7.14% |
Michel Lespinasse | 65 | 5.45% | 3 | 21.43% |
Peter Zijlstra | 9 | 0.75% | 1 | 7.14% |
Juergen Gross | 8 | 0.67% | 1 | 7.14% |
Geliang Tang | 6 | 0.50% | 1 | 7.14% |
Xiaotian Feng | 4 | 0.34% | 1 | 7.14% |
Luis R. Rodriguez | 2 | 0.17% | 1 | 7.14% |
Greg Kroah-Hartman | 1 | 0.08% | 1 | 7.14% |
Masahiro Yamada | 1 | 0.08% | 1 | 7.14% |
Total | 1193 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* * Handle caching attributes in page tables (PAT) * * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> * Suresh B Siddha <suresh.b.siddha@intel.com> * * Interval tree (augmented rbtree) used to store the PAT memory type * reservations. */ #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/kernel.h> #include <linux/rbtree_augmented.h> #include <linux/sched.h> #include <linux/gfp.h> #include <asm/pgtable.h> #include <asm/pat.h> #include "pat_internal.h" /* * The memtype tree keeps track of memory type for specific * physical memory areas. Without proper tracking, conflicting memory * types in different mappings can cause CPU cache corruption. * * The tree is an interval tree (augmented rbtree) with tree ordered * on starting address. Tree can contain multiple entries for * different regions which overlap. All the aliases have the same * cache attributes of course. * * memtype_lock protects the rbtree. */ static struct rb_root memtype_rbroot = RB_ROOT; static int is_node_overlap(struct memtype *node, u64 start, u64 end) { if (node->start >= end || node->end <= start) return 0; return 1; } static u64 get_subtree_max_end(struct rb_node *node) { u64 ret = 0; if (node) { struct memtype *data = rb_entry(node, struct memtype, rb); ret = data->subtree_max_end; } return ret; } static u64 compute_subtree_max_end(struct memtype *data) { u64 max_end = data->end, child_max_end; child_max_end = get_subtree_max_end(data->rb.rb_right); if (child_max_end > max_end) max_end = child_max_end; child_max_end = get_subtree_max_end(data->rb.rb_left); if (child_max_end > max_end) max_end = child_max_end; return max_end; } RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb, u64, subtree_max_end, compute_subtree_max_end) /* Find the first (lowest start addr) overlapping range from rb tree */ static struct memtype *memtype_rb_lowest_match(struct rb_root *root, u64 start, u64 end) { struct rb_node *node = root->rb_node; struct memtype *last_lower = NULL; while (node) { struct memtype *data = rb_entry(node, struct memtype, rb); if (get_subtree_max_end(node->rb_left) > start) { /* Lowest overlap if any must be on left side */ node = node->rb_left; } else if (is_node_overlap(data, start, end)) { last_lower = data; break; } else if (start >= data->start) { /* Lowest overlap if any must be on right side */ node = node->rb_right; } else { break; } } return last_lower; /* Returns NULL if there is no overlap */ } enum { MEMTYPE_EXACT_MATCH = 0, MEMTYPE_END_MATCH = 1 }; static struct memtype *memtype_rb_match(struct rb_root *root, u64 start, u64 end, int match_type) { struct memtype *match; match = memtype_rb_lowest_match(root, start, end); while (match != NULL && match->start < end) { struct rb_node *node; if ((match_type == MEMTYPE_EXACT_MATCH) && (match->start == start) && (match->end == end)) return match; if ((match_type == MEMTYPE_END_MATCH) && (match->start < start) && (match->end == end)) return match; node = rb_next(&match->rb); if (node) match = rb_entry(node, struct memtype, rb); else match = NULL; } return NULL; /* Returns NULL if there is no match */ } static int memtype_rb_check_conflict(struct rb_root *root, u64 start, u64 end, enum page_cache_mode reqtype, enum page_cache_mode *newtype) { struct rb_node *node; struct memtype *match; enum page_cache_mode found_type = reqtype; match = memtype_rb_lowest_match(&memtype_rbroot, start, end); if (match == NULL) goto success; if (match->type != found_type && newtype == NULL) goto failure; dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); found_type = match->type; node = rb_next(&match->rb); while (node) { match = rb_entry(node, struct memtype, rb); if (match->start >= end) /* Checked all possible matches */ goto success; if (is_node_overlap(match, start, end) && match->type != found_type) { goto failure; } node = rb_next(&match->rb); } success: if (newtype) *newtype = found_type; return 0; failure: pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n", current->comm, current->pid, start, end, cattr_name(found_type), cattr_name(match->type)); return -EBUSY; } static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata) { struct rb_node **node = &(root->rb_node); struct rb_node *parent = NULL; while (*node) { struct memtype *data = rb_entry(*node, struct memtype, rb); parent = *node; if (data->subtree_max_end < newdata->end) data->subtree_max_end = newdata->end; if (newdata->start <= data->start) node = &((*node)->rb_left); else if (newdata->start > data->start) node = &((*node)->rb_right); } newdata->subtree_max_end = newdata->end; rb_link_node(&newdata->rb, parent, node); rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb); } int rbt_memtype_check_insert(struct memtype *new, enum page_cache_mode *ret_type) { int err = 0; err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end, new->type, ret_type); if (!err) { if (ret_type) new->type = *ret_type; new->subtree_max_end = new->end; memtype_rb_insert(&memtype_rbroot, new); } return err; } struct memtype *rbt_memtype_erase(u64 start, u64 end) { struct memtype *data; /* * Since the memtype_rbroot tree allows overlapping ranges, * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free * a whole node for the munmap case. If no such entry is found, * it then checks with END_MATCH, i.e. shrink the size of a node * from the end for the mremap case. */ data = memtype_rb_match(&memtype_rbroot, start, end, MEMTYPE_EXACT_MATCH); if (!data) { data = memtype_rb_match(&memtype_rbroot, start, end, MEMTYPE_END_MATCH); if (!data) return ERR_PTR(-EINVAL); } if (data->start == start) { /* munmap: erase this node */ rb_erase_augmented(&data->rb, &memtype_rbroot, &memtype_rb_augment_cb); } else { /* mremap: update the end value of this node */ rb_erase_augmented(&data->rb, &memtype_rbroot, &memtype_rb_augment_cb); data->end = start; data->subtree_max_end = data->end; memtype_rb_insert(&memtype_rbroot, data); return NULL; } return data; } struct memtype *rbt_memtype_lookup(u64 addr) { return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE); } #if defined(CONFIG_DEBUG_FS) int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) { struct rb_node *node; int i = 1; node = rb_first(&memtype_rbroot); while (node && pos != i) { node = rb_next(node); i++; } if (node) { /* pos == i */ struct memtype *this = rb_entry(node, struct memtype, rb); *out = *this; return 0; } else { return 1; } } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1