Contributors: 87
Author Tokens Token Proportion Commits Commit Proportion
Jens Axboe 4362 32.70% 110 21.36%
Tejun Heo 2013 15.09% 75 14.56%
Christoph Hellwig 1880 14.09% 46 8.93%
Bart Van Assche 1352 10.13% 37 7.18%
Neil Brown 424 3.18% 12 2.33%
Kiyoshi Ueda 338 2.53% 10 1.94%
Mike Snitzer 291 2.18% 9 1.75%
Dan J Williams 186 1.39% 2 0.39%
FUJITA Tomonori 178 1.33% 3 0.58%
Shaohua Li 157 1.18% 13 2.52%
Ming Lei 152 1.14% 14 2.72%
Andrew Morton 146 1.09% 16 3.11%
Jeff Moyer 140 1.05% 4 0.78%
Ilya Dryomov 108 0.81% 2 0.39%
Michael Christie 101 0.76% 10 1.94%
Kent Overstreet 97 0.73% 7 1.36%
James Bottomley 92 0.69% 4 0.78%
Akinobu Mita 85 0.64% 4 0.78%
Linus Torvalds (pre-git) 84 0.63% 19 3.69%
Goldwyn Rodrigues 76 0.57% 1 0.19%
Linus Torvalds 74 0.55% 13 2.52%
Asias He 69 0.52% 2 0.39%
Omar Sandoval 68 0.51% 5 0.97%
Jerome Marchand 56 0.42% 4 0.78%
Ilya Loginov 53 0.40% 1 0.19%
Martin K. Petersen 50 0.37% 6 1.17%
David Rientjes 48 0.36% 1 0.19%
Howard McLauchlan 48 0.36% 1 0.19%
Lei Ming 42 0.31% 5 0.97%
Joe Lawrence 33 0.25% 1 0.19%
Jan Kara 30 0.22% 2 0.39%
Keith Busch 29 0.22% 2 0.39%
Mikulas Patocka 27 0.20% 2 0.39%
Arnaldo Carvalho de Melo 24 0.18% 2 0.39%
Jianpeng Ma 23 0.17% 2 0.39%
Divyesh Shah 23 0.17% 2 0.39%
Martin Dalecki 21 0.16% 2 0.39%
Hannes Reinecke 20 0.15% 3 0.58%
Al Viro 19 0.14% 2 0.39%
Matthew Garrett 18 0.13% 1 0.19%
Boaz Harrosh 18 0.13% 2 0.39%
Michael Callahan 17 0.13% 1 0.19%
Nicholas Piggin 17 0.13% 3 0.58%
Kees Cook 16 0.12% 1 0.19%
Tahsin Erdogan 14 0.10% 1 0.19%
Nikanth Karthikesan 13 0.10% 2 0.39%
Waiman Long 13 0.10% 1 0.19%
Dave Jones 12 0.09% 1 0.19%
Josef Bacik 12 0.09% 2 0.39%
Shaun Tancheff 12 0.09% 1 0.19%
Chaitanya Kulkarni 12 0.09% 1 0.19%
Vivek Goyal 12 0.09% 2 0.39%
Adam Manzanares 10 0.07% 1 0.19%
Jun'ichi Nomura 9 0.07% 2 0.39%
David Woodhouse 9 0.07% 1 0.19%
Keith Mannthey 9 0.07% 1 0.19%
Robert Elliott 8 0.06% 2 0.39%
Lin Ming 8 0.06% 2 0.39%
MinChan Kim 7 0.05% 1 0.19%
Peter Zijlstra 7 0.05% 1 0.19%
Darrick J. Wong 7 0.05% 1 0.19%
xiao jin 6 0.04% 1 0.19%
Christoph Lameter 6 0.04% 2 0.39%
Li Zefan 5 0.04% 1 0.19%
Mike Anderson 5 0.04% 1 0.19%
Ingo Molnar 5 0.04% 1 0.19%
Adrian Hunter 4 0.03% 1 0.19%
San Mehat 3 0.02% 1 0.19%
Jianchao Wang 2 0.01% 1 0.19%
Jiufei (Joyce) Xue 2 0.01% 1 0.19%
Maninder Singh 2 0.01% 1 0.19%
Damien Le Moal 2 0.01% 1 0.19%
Ezequiel García 2 0.01% 1 0.19%
Thomas Gleixner 2 0.01% 1 0.19%
Roman Peniaev 2 0.01% 1 0.19%
Randy Dunlap 2 0.01% 2 0.39%
Greg Kroah-Hartman 1 0.01% 1 0.19%
Masanari Iida 1 0.01% 1 0.19%
Suresh Jayaraman 1 0.01% 1 0.19%
Nicolai Stange 1 0.01% 1 0.19%
Adrian Bunk 1 0.01% 1 0.19%
Alan Jenkins 1 0.01% 1 0.19%
Duan Jiong 1 0.01% 1 0.19%
Brian King 1 0.01% 1 0.19%
Dan Carpenter 1 0.01% 1 0.19%
Dmitriy Monakhov 1 0.01% 1 0.19%
Kirill A. Shutemov 1 0.01% 1 0.19%
Total 13340 515


/*
 * Copyright (C) 1991, 1992 Linus Torvalds
 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
 *	-  July2000
 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
 */

/*
 * This handles all read/write requests to block devices
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/fault-inject.h>
#include <linux/list_sort.h>
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/pm_runtime.h>
#include <linux/blk-cgroup.h>
#include <linux/debugfs.h>
#include <linux/bpf.h>

#define CREATE_TRACE_POINTS
#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
#include "blk-pm.h"
#include "blk-rq-qos.h"

#ifdef CONFIG_DEBUG_FS
struct dentry *blk_debugfs_root;
#endif

EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);

DEFINE_IDA(blk_queue_ida);

/*
 * For the allocated request tables
 */
struct kmem_cache *request_cachep;

/*
 * For queue allocation
 */
struct kmem_cache *blk_requestq_cachep;

/*
 * Controlling structure to kblockd
 */
static struct workqueue_struct *kblockd_workqueue;

/**
 * blk_queue_flag_set - atomically set a queue flag
 * @flag: flag to be set
 * @q: request queue
 */
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(flag, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_queue_flag_set);

/**
 * blk_queue_flag_clear - atomically clear a queue flag
 * @flag: flag to be cleared
 * @q: request queue
 */
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_clear(flag, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_queue_flag_clear);

/**
 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 * @flag: flag to be set
 * @q: request queue
 *
 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 * the flag was already set.
 */
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
{
	unsigned long flags;
	bool res;

	spin_lock_irqsave(q->queue_lock, flags);
	res = queue_flag_test_and_set(flag, q);
	spin_unlock_irqrestore(q->queue_lock, flags);

	return res;
}
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);

/**
 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
 * @flag: flag to be cleared
 * @q: request queue
 *
 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 * the flag was set.
 */
bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
{
	unsigned long flags;
	bool res;

	spin_lock_irqsave(q->queue_lock, flags);
	res = queue_flag_test_and_clear(flag, q);
	spin_unlock_irqrestore(q->queue_lock, flags);

	return res;
}
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);

static void blk_clear_congested(struct request_list *rl, int sync)
{
#ifdef CONFIG_CGROUP_WRITEBACK
	clear_wb_congested(rl->blkg->wb_congested, sync);
#else
	/*
	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
	 * flip its congestion state for events on other blkcgs.
	 */
	if (rl == &rl->q->root_rl)
		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
#endif
}

static void blk_set_congested(struct request_list *rl, int sync)
{
#ifdef CONFIG_CGROUP_WRITEBACK
	set_wb_congested(rl->blkg->wb_congested, sync);
#else
	/* see blk_clear_congested() */
	if (rl == &rl->q->root_rl)
		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
#endif
}

void blk_queue_congestion_threshold(struct request_queue *q)
{
	int nr;

	nr = q->nr_requests - (q->nr_requests / 8) + 1;
	if (nr > q->nr_requests)
		nr = q->nr_requests;
	q->nr_congestion_on = nr;

	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
	if (nr < 1)
		nr = 1;
	q->nr_congestion_off = nr;
}

void blk_rq_init(struct request_queue *q, struct request *rq)
{
	memset(rq, 0, sizeof(*rq));

	INIT_LIST_HEAD(&rq->queuelist);
	INIT_LIST_HEAD(&rq->timeout_list);
	rq->cpu = -1;
	rq->q = q;
	rq->__sector = (sector_t) -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->tag = -1;
	rq->internal_tag = -1;
	rq->start_time_ns = ktime_get_ns();
	rq->part = NULL;
}
EXPORT_SYMBOL(blk_rq_init);

static const struct {
	int		errno;
	const char	*name;
} blk_errors[] = {
	[BLK_STS_OK]		= { 0,		"" },
	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },

	/* device mapper special case, should not leak out: */
	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },

	/* everything else not covered above: */
	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
};

blk_status_t errno_to_blk_status(int errno)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
		if (blk_errors[i].errno == errno)
			return (__force blk_status_t)i;
	}

	return BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(errno_to_blk_status);

int blk_status_to_errno(blk_status_t status)
{
	int idx = (__force int)status;

	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
		return -EIO;
	return blk_errors[idx].errno;
}
EXPORT_SYMBOL_GPL(blk_status_to_errno);

static void print_req_error(struct request *req, blk_status_t status)
{
	int idx = (__force int)status;

	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
		return;

	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
			   __func__, blk_errors[idx].name, req->rq_disk ?
			   req->rq_disk->disk_name : "?",
			   (unsigned long long)blk_rq_pos(req));
}

static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
	if (error)
		bio->bi_status = error;

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);

	bio_advance(bio, nbytes);

	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

void blk_dump_rq_flags(struct request *rq, char *msg)
{
	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
		rq->rq_disk ? rq->rq_disk->disk_name : "?",
		(unsigned long long) rq->cmd_flags);

	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
	       (unsigned long long)blk_rq_pos(rq),
	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
	       rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);

static void blk_delay_work(struct work_struct *work)
{
	struct request_queue *q;

	q = container_of(work, struct request_queue, delay_work.work);
	spin_lock_irq(q->queue_lock);
	__blk_run_queue(q);
	spin_unlock_irq(q->queue_lock);
}

/**
 * blk_delay_queue - restart queueing after defined interval
 * @q:		The &struct request_queue in question
 * @msecs:	Delay in msecs
 *
 * Description:
 *   Sometimes queueing needs to be postponed for a little while, to allow
 *   resources to come back. This function will make sure that queueing is
 *   restarted around the specified time.
 */
void blk_delay_queue(struct request_queue *q, unsigned long msecs)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	if (likely(!blk_queue_dead(q)))
		queue_delayed_work(kblockd_workqueue, &q->delay_work,
				   msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_delay_queue);

/**
 * blk_start_queue_async - asynchronously restart a previously stopped queue
 * @q:    The &struct request_queue in question
 *
 * Description:
 *   blk_start_queue_async() will clear the stop flag on the queue, and
 *   ensure that the request_fn for the queue is run from an async
 *   context.
 **/
void blk_start_queue_async(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
	blk_run_queue_async(q);
}
EXPORT_SYMBOL(blk_start_queue_async);

/**
 * blk_start_queue - restart a previously stopped queue
 * @q:    The &struct request_queue in question
 *
 * Description:
 *   blk_start_queue() will clear the stop flag on the queue, and call
 *   the request_fn for the queue if it was in a stopped state when
 *   entered. Also see blk_stop_queue().
 **/
void blk_start_queue(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
	__blk_run_queue(q);
}
EXPORT_SYMBOL(blk_start_queue);

/**
 * blk_stop_queue - stop a queue
 * @q:    The &struct request_queue in question
 *
 * Description:
 *   The Linux block layer assumes that a block driver will consume all
 *   entries on the request queue when the request_fn strategy is called.
 *   Often this will not happen, because of hardware limitations (queue
 *   depth settings). If a device driver gets a 'queue full' response,
 *   or if it simply chooses not to queue more I/O at one point, it can
 *   call this function to prevent the request_fn from being called until
 *   the driver has signalled it's ready to go again. This happens by calling
 *   blk_start_queue() to restart queue operations.
 **/
void blk_stop_queue(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	cancel_delayed_work(&q->delay_work);
	queue_flag_set(QUEUE_FLAG_STOPPED, q);
}
EXPORT_SYMBOL(blk_stop_queue);

/**
 * blk_sync_queue - cancel any pending callbacks on a queue
 * @q: the queue
 *
 * Description:
 *     The block layer may perform asynchronous callback activity
 *     on a queue, such as calling the unplug function after a timeout.
 *     A block device may call blk_sync_queue to ensure that any
 *     such activity is cancelled, thus allowing it to release resources
 *     that the callbacks might use. The caller must already have made sure
 *     that its ->make_request_fn will not re-add plugging prior to calling
 *     this function.
 *
 *     This function does not cancel any asynchronous activity arising
 *     out of elevator or throttling code. That would require elevator_exit()
 *     and blkcg_exit_queue() to be called with queue lock initialized.
 *
 */
void blk_sync_queue(struct request_queue *q)
{
	del_timer_sync(&q->timeout);
	cancel_work_sync(&q->timeout_work);

	if (q->mq_ops) {
		struct blk_mq_hw_ctx *hctx;
		int i;

		cancel_delayed_work_sync(&q->requeue_work);
		queue_for_each_hw_ctx(q, hctx, i)
			cancel_delayed_work_sync(&hctx->run_work);
	} else {
		cancel_delayed_work_sync(&q->delay_work);
	}
}
EXPORT_SYMBOL(blk_sync_queue);

/**
 * blk_set_pm_only - increment pm_only counter
 * @q: request queue pointer
 */
void blk_set_pm_only(struct request_queue *q)
{
	atomic_inc(&q->pm_only);
}
EXPORT_SYMBOL_GPL(blk_set_pm_only);

void blk_clear_pm_only(struct request_queue *q)
{
	int pm_only;

	pm_only = atomic_dec_return(&q->pm_only);
	WARN_ON_ONCE(pm_only < 0);
	if (pm_only == 0)
		wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_clear_pm_only);

/**
 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 * @q:	The queue to run
 *
 * Description:
 *    Invoke request handling on a queue if there are any pending requests.
 *    May be used to restart request handling after a request has completed.
 *    This variant runs the queue whether or not the queue has been
 *    stopped. Must be called with the queue lock held and interrupts
 *    disabled. See also @blk_run_queue.
 */
inline void __blk_run_queue_uncond(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	if (unlikely(blk_queue_dead(q)))
		return;

	/*
	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
	 * the queue lock internally. As a result multiple threads may be
	 * running such a request function concurrently. Keep track of the
	 * number of active request_fn invocations such that blk_drain_queue()
	 * can wait until all these request_fn calls have finished.
	 */
	q->request_fn_active++;
	q->request_fn(q);
	q->request_fn_active--;
}
EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);

/**
 * __blk_run_queue - run a single device queue
 * @q:	The queue to run
 *
 * Description:
 *    See @blk_run_queue.
 */
void __blk_run_queue(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	if (unlikely(blk_queue_stopped(q)))
		return;

	__blk_run_queue_uncond(q);
}
EXPORT_SYMBOL(__blk_run_queue);

/**
 * blk_run_queue_async - run a single device queue in workqueue context
 * @q:	The queue to run
 *
 * Description:
 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 *    of us.
 *
 * Note:
 *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
 *    has canceled q->delay_work, callers must hold the queue lock to avoid
 *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
 */
void blk_run_queue_async(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
}
EXPORT_SYMBOL(blk_run_queue_async);

/**
 * blk_run_queue - run a single device queue
 * @q: The queue to run
 *
 * Description:
 *    Invoke request handling on this queue, if it has pending work to do.
 *    May be used to restart queueing when a request has completed.
 */
void blk_run_queue(struct request_queue *q)
{
	unsigned long flags;

	WARN_ON_ONCE(q->mq_ops);

	spin_lock_irqsave(q->queue_lock, flags);
	__blk_run_queue(q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_run_queue);

void blk_put_queue(struct request_queue *q)
{
	kobject_put(&q->kobj);
}
EXPORT_SYMBOL(blk_put_queue);

/**
 * __blk_drain_queue - drain requests from request_queue
 * @q: queue to drain
 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 *
 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 * If not, only ELVPRIV requests are drained.  The caller is responsible
 * for ensuring that no new requests which need to be drained are queued.
 */
static void __blk_drain_queue(struct request_queue *q, bool drain_all)
	__releases(q->queue_lock)
	__acquires(q->queue_lock)
{
	int i;

	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	while (true) {
		bool drain = false;

		/*
		 * The caller might be trying to drain @q before its
		 * elevator is initialized.
		 */
		if (q->elevator)
			elv_drain_elevator(q);

		blkcg_drain_queue(q);

		/*
		 * This function might be called on a queue which failed
		 * driver init after queue creation or is not yet fully
		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
		 * in such cases.  Kick queue iff dispatch queue has
		 * something on it and @q has request_fn set.
		 */
		if (!list_empty(&q->queue_head) && q->request_fn)
			__blk_run_queue(q);

		drain |= q->nr_rqs_elvpriv;
		drain |= q->request_fn_active;

		/*
		 * Unfortunately, requests are queued at and tracked from
		 * multiple places and there's no single counter which can
		 * be drained.  Check all the queues and counters.
		 */
		if (drain_all) {
			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
			drain |= !list_empty(&q->queue_head);
			for (i = 0; i < 2; i++) {
				drain |= q->nr_rqs[i];
				drain |= q->in_flight[i];
				if (fq)
				    drain |= !list_empty(&fq->flush_queue[i]);
			}
		}

		if (!drain)
			break;

		spin_unlock_irq(q->queue_lock);

		msleep(10);

		spin_lock_irq(q->queue_lock);
	}

	/*
	 * With queue marked dead, any woken up waiter will fail the
	 * allocation path, so the wakeup chaining is lost and we're
	 * left with hung waiters. We need to wake up those waiters.
	 */
	if (q->request_fn) {
		struct request_list *rl;

		blk_queue_for_each_rl(rl, q)
			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
				wake_up_all(&rl->wait[i]);
	}
}

void blk_drain_queue(struct request_queue *q)
{
	spin_lock_irq(q->queue_lock);
	__blk_drain_queue(q, true);
	spin_unlock_irq(q->queue_lock);
}

/**
 * blk_queue_bypass_start - enter queue bypass mode
 * @q: queue of interest
 *
 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 * function makes @q enter bypass mode and drains all requests which were
 * throttled or issued before.  On return, it's guaranteed that no request
 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 * inside queue or RCU read lock.
 */
void blk_queue_bypass_start(struct request_queue *q)
{
	WARN_ON_ONCE(q->mq_ops);

	spin_lock_irq(q->queue_lock);
	q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

	/*
	 * Queues start drained.  Skip actual draining till init is
	 * complete.  This avoids lenghty delays during queue init which
	 * can happen many times during boot.
	 */
	if (blk_queue_init_done(q)) {
		spin_lock_irq(q->queue_lock);
		__blk_drain_queue(q, false);
		spin_unlock_irq(q->queue_lock);

		/* ensure blk_queue_bypass() is %true inside RCU read lock */
		synchronize_rcu();
	}
}
EXPORT_SYMBOL_GPL(blk_queue_bypass_start);

/**
 * blk_queue_bypass_end - leave queue bypass mode
 * @q: queue of interest
 *
 * Leave bypass mode and restore the normal queueing behavior.
 *
 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
 * this function is called for both blk-sq and blk-mq queues.
 */
void blk_queue_bypass_end(struct request_queue *q)
{
	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth)
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
}
EXPORT_SYMBOL_GPL(blk_queue_bypass_end);

void blk_set_queue_dying(struct request_queue *q)
{
	blk_queue_flag_set(QUEUE_FLAG_DYING, q);

	/*
	 * When queue DYING flag is set, we need to block new req
	 * entering queue, so we call blk_freeze_queue_start() to
	 * prevent I/O from crossing blk_queue_enter().
	 */
	blk_freeze_queue_start(q);

	if (q->mq_ops)
		blk_mq_wake_waiters(q);
	else {
		struct request_list *rl;

		spin_lock_irq(q->queue_lock);
		blk_queue_for_each_rl(rl, q) {
			if (rl->rq_pool) {
				wake_up_all(&rl->wait[BLK_RW_SYNC]);
				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
			}
		}
		spin_unlock_irq(q->queue_lock);
	}

	/* Make blk_queue_enter() reexamine the DYING flag. */
	wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_set_queue_dying);

/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
void blk_exit_queue(struct request_queue *q)
{
	/*
	 * Since the I/O scheduler exit code may access cgroup information,
	 * perform I/O scheduler exit before disassociating from the block
	 * cgroup controller.
	 */
	if (q->elevator) {
		ioc_clear_queue(q);
		elevator_exit(q, q->elevator);
		q->elevator = NULL;
	}

	/*
	 * Remove all references to @q from the block cgroup controller before
	 * restoring @q->queue_lock to avoid that restoring this pointer causes
	 * e.g. blkcg_print_blkgs() to crash.
	 */
	blkcg_exit_queue(q);

	/*
	 * Since the cgroup code may dereference the @q->backing_dev_info
	 * pointer, only decrease its reference count after having removed the
	 * association with the block cgroup controller.
	 */
	bdi_put(q->backing_dev_info);
}

/**
 * blk_cleanup_queue - shutdown a request queue
 * @q: request queue to shutdown
 *
 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 * put it.  All future requests will be failed immediately with -ENODEV.
 */
void blk_cleanup_queue(struct request_queue *q)
{
	spinlock_t *lock = q->queue_lock;

	/* mark @q DYING, no new request or merges will be allowed afterwards */
	mutex_lock(&q->sysfs_lock);
	blk_set_queue_dying(q);
	spin_lock_irq(lock);

	/*
	 * A dying queue is permanently in bypass mode till released.  Note
	 * that, unlike blk_queue_bypass_start(), we aren't performing
	 * synchronize_rcu() after entering bypass mode to avoid the delay
	 * as some drivers create and destroy a lot of queues while
	 * probing.  This is still safe because blk_release_queue() will be
	 * called only after the queue refcnt drops to zero and nothing,
	 * RCU or not, would be traversing the queue by then.
	 */
	q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);

	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
	queue_flag_set(QUEUE_FLAG_DYING, q);
	spin_unlock_irq(lock);
	mutex_unlock(&q->sysfs_lock);

	/*
	 * Drain all requests queued before DYING marking. Set DEAD flag to
	 * prevent that q->request_fn() gets invoked after draining finished.
	 */
	blk_freeze_queue(q);

	rq_qos_exit(q);

	spin_lock_irq(lock);
	queue_flag_set(QUEUE_FLAG_DEAD, q);
	spin_unlock_irq(lock);

	/*
	 * make sure all in-progress dispatch are completed because
	 * blk_freeze_queue() can only complete all requests, and
	 * dispatch may still be in-progress since we dispatch requests
	 * from more than one contexts.
	 *
	 * We rely on driver to deal with the race in case that queue
	 * initialization isn't done.
	 */
	if (q->mq_ops && blk_queue_init_done(q))
		blk_mq_quiesce_queue(q);

	/* for synchronous bio-based driver finish in-flight integrity i/o */
	blk_flush_integrity();

	/* @q won't process any more request, flush async actions */
	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
	blk_sync_queue(q);

	/*
	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
	 * has been removed.
	 */
	WARN_ON_ONCE(q->kobj.state_in_sysfs);

	blk_exit_queue(q);

	if (q->mq_ops)
		blk_mq_free_queue(q);
	percpu_ref_exit(&q->q_usage_counter);

	spin_lock_irq(lock);
	if (q->queue_lock != &q->__queue_lock)
		q->queue_lock = &q->__queue_lock;
	spin_unlock_irq(lock);

	/* @q is and will stay empty, shutdown and put */
	blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);

/* Allocate memory local to the request queue */
static void *alloc_request_simple(gfp_t gfp_mask, void *data)
{
	struct request_queue *q = data;

	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
}

static void free_request_simple(void *element, void *data)
{
	kmem_cache_free(request_cachep, element);
}

static void *alloc_request_size(gfp_t gfp_mask, void *data)
{
	struct request_queue *q = data;
	struct request *rq;

	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
			q->node);
	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
		kfree(rq);
		rq = NULL;
	}
	return rq;
}

static void free_request_size(void *element, void *data)
{
	struct request_queue *q = data;

	if (q->exit_rq_fn)
		q->exit_rq_fn(q, element);
	kfree(element);
}

int blk_init_rl(struct request_list *rl, struct request_queue *q,
		gfp_t gfp_mask)
{
	if (unlikely(rl->rq_pool) || q->mq_ops)
		return 0;

	rl->q = q;
	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);

	if (q->cmd_size) {
		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
				alloc_request_size, free_request_size,
				q, gfp_mask, q->node);
	} else {
		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
				alloc_request_simple, free_request_simple,
				q, gfp_mask, q->node);
	}
	if (!rl->rq_pool)
		return -ENOMEM;

	if (rl != &q->root_rl)
		WARN_ON_ONCE(!blk_get_queue(q));

	return 0;
}

void blk_exit_rl(struct request_queue *q, struct request_list *rl)
{
	if (rl->rq_pool) {
		mempool_destroy(rl->rq_pool);
		if (rl != &q->root_rl)
			blk_put_queue(q);
	}
}

struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
{
	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
}
EXPORT_SYMBOL(blk_alloc_queue);

/**
 * blk_queue_enter() - try to increase q->q_usage_counter
 * @q: request queue pointer
 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 */
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
{
	const bool pm = flags & BLK_MQ_REQ_PREEMPT;

	while (true) {
		bool success = false;

		rcu_read_lock();
		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
			/*
			 * The code that increments the pm_only counter is
			 * responsible for ensuring that that counter is
			 * globally visible before the queue is unfrozen.
			 */
			if (pm || !blk_queue_pm_only(q)) {
				success = true;
			} else {
				percpu_ref_put(&q->q_usage_counter);
			}
		}
		rcu_read_unlock();

		if (success)
			return 0;

		if (flags & BLK_MQ_REQ_NOWAIT)
			return -EBUSY;

		/*
		 * read pair of barrier in blk_freeze_queue_start(),
		 * we need to order reading __PERCPU_REF_DEAD flag of
		 * .q_usage_counter and reading .mq_freeze_depth or
		 * queue dying flag, otherwise the following wait may
		 * never return if the two reads are reordered.
		 */
		smp_rmb();

		wait_event(q->mq_freeze_wq,
			   (atomic_read(&q->mq_freeze_depth) == 0 &&
			    (pm || (blk_pm_request_resume(q),
				    !blk_queue_pm_only(q)))) ||
			   blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
	}
}

void blk_queue_exit(struct request_queue *q)
{
	percpu_ref_put(&q->q_usage_counter);
}

static void blk_queue_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, q_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
}

static void blk_rq_timed_out_timer(struct timer_list *t)
{
	struct request_queue *q = from_timer(q, t, timeout);

	kblockd_schedule_work(&q->timeout_work);
}

/**
 * blk_alloc_queue_node - allocate a request queue
 * @gfp_mask: memory allocation flags
 * @node_id: NUMA node to allocate memory from
 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
 *        serialize calls to the legacy .request_fn() callback. Ignored for
 *	  blk-mq request queues.
 *
 * Note: pass the queue lock as the third argument to this function instead of
 * setting the queue lock pointer explicitly to avoid triggering a sporadic
 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
 * the queue lock pointer must be set before blkcg_init_queue() is called.
 */
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
					   spinlock_t *lock)
{
	struct request_queue *q;
	int ret;

	q = kmem_cache_alloc_node(blk_requestq_cachep,
				gfp_mask | __GFP_ZERO, node_id);
	if (!q)
		return NULL;

	INIT_LIST_HEAD(&q->queue_head);
	q->last_merge = NULL;
	q->end_sector = 0;
	q->boundary_rq = NULL;

	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
	if (q->id < 0)
		goto fail_q;

	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
	if (ret)
		goto fail_id;

	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
	if (!q->backing_dev_info)
		goto fail_split;

	q->stats = blk_alloc_queue_stats();
	if (!q->stats)
		goto fail_stats;

	q->backing_dev_info->ra_pages =
			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
	q->backing_dev_info->name = "block";
	q->node = node_id;

	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
		    laptop_mode_timer_fn, 0);
	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
	INIT_WORK(&q->timeout_work, NULL);
	INIT_LIST_HEAD(&q->timeout_list);
	INIT_LIST_HEAD(&q->icq_list);
#ifdef CONFIG_BLK_CGROUP
	INIT_LIST_HEAD(&q->blkg_list);
#endif
	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);

	kobject_init(&q->kobj, &blk_queue_ktype);

#ifdef CONFIG_BLK_DEV_IO_TRACE
	mutex_init(&q->blk_trace_mutex);
#endif
	mutex_init(&q->sysfs_lock);
	spin_lock_init(&q->__queue_lock);

	q->queue_lock = lock ? : &q->__queue_lock;

	/*
	 * A queue starts its life with bypass turned on to avoid
	 * unnecessary bypass on/off overhead and nasty surprises during
	 * init.  The initial bypass will be finished when the queue is
	 * registered by blk_register_queue().
	 */
	q->bypass_depth = 1;
	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);

	init_waitqueue_head(&q->mq_freeze_wq);

	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
	if (percpu_ref_init(&q->q_usage_counter,
				blk_queue_usage_counter_release,
				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
		goto fail_bdi;

	if (blkcg_init_queue(q))
		goto fail_ref;

	return q;

fail_ref:
	percpu_ref_exit(&q->q_usage_counter);
fail_bdi:
	blk_free_queue_stats(q->stats);
fail_stats:
	bdi_put(q->backing_dev_info);
fail_split:
	bioset_exit(&q->bio_split);
fail_id:
	ida_simple_remove(&blk_queue_ida, q->id);
fail_q:
	kmem_cache_free(blk_requestq_cachep, q);
	return NULL;
}
EXPORT_SYMBOL(blk_alloc_queue_node);

/**
 * blk_init_queue  - prepare a request queue for use with a block device
 * @rfn:  The function to be called to process requests that have been
 *        placed on the queue.
 * @lock: Request queue spin lock
 *
 * Description:
 *    If a block device wishes to use the standard request handling procedures,
 *    which sorts requests and coalesces adjacent requests, then it must
 *    call blk_init_queue().  The function @rfn will be called when there
 *    are requests on the queue that need to be processed.  If the device
 *    supports plugging, then @rfn may not be called immediately when requests
 *    are available on the queue, but may be called at some time later instead.
 *    Plugged queues are generally unplugged when a buffer belonging to one
 *    of the requests on the queue is needed, or due to memory pressure.
 *
 *    @rfn is not required, or even expected, to remove all requests off the
 *    queue, but only as many as it can handle at a time.  If it does leave
 *    requests on the queue, it is responsible for arranging that the requests
 *    get dealt with eventually.
 *
 *    The queue spin lock must be held while manipulating the requests on the
 *    request queue; this lock will be taken also from interrupt context, so irq
 *    disabling is needed for it.
 *
 *    Function returns a pointer to the initialized request queue, or %NULL if
 *    it didn't succeed.
 *
 * Note:
 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 *    when the block device is deactivated (such as at module unload).
 **/

struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
{
	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
}
EXPORT_SYMBOL(blk_init_queue);

struct request_queue *
blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
{
	struct request_queue *q;

	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
	if (!q)
		return NULL;

	q->request_fn = rfn;
	if (blk_init_allocated_queue(q) < 0) {
		blk_cleanup_queue(q);
		return NULL;
	}

	return q;
}
EXPORT_SYMBOL(blk_init_queue_node);

static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);


int blk_init_allocated_queue(struct request_queue *q)
{
	WARN_ON_ONCE(q->mq_ops);

	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
	if (!q->fq)
		return -ENOMEM;

	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
		goto out_free_flush_queue;

	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
		goto out_exit_flush_rq;

	INIT_WORK(&q->timeout_work, blk_timeout_work);
	q->queue_flags		|= QUEUE_FLAG_DEFAULT;

	/*
	 * This also sets hw/phys segments, boundary and size
	 */
	blk_queue_make_request(q, blk_queue_bio);

	q->sg_reserved_size = INT_MAX;

	if (elevator_init(q))
		goto out_exit_flush_rq;
	return 0;

out_exit_flush_rq:
	if (q->exit_rq_fn)
		q->exit_rq_fn(q, q->fq->flush_rq);
out_free_flush_queue:
	blk_free_flush_queue(q->fq);
	q->fq = NULL;
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_init_allocated_queue);

bool blk_get_queue(struct request_queue *q)
{
	if (likely(!blk_queue_dying(q))) {
		__blk_get_queue(q);
		return true;
	}

	return false;
}
EXPORT_SYMBOL(blk_get_queue);

static inline void blk_free_request(struct request_list *rl, struct request *rq)
{
	if (rq->rq_flags & RQF_ELVPRIV) {
		elv_put_request(rl->q, rq);
		if (rq->elv.icq)
			put_io_context(rq->elv.icq->ioc);
	}

	mempool_free(rq, rl->rq_pool);
}

/*
 * ioc_batching returns true if the ioc is a valid batching request and
 * should be given priority access to a request.
 */
static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
{
	if (!ioc)
		return 0;

	/*
	 * Make sure the process is able to allocate at least 1 request
	 * even if the batch times out, otherwise we could theoretically
	 * lose wakeups.
	 */
	return ioc->nr_batch_requests == q->nr_batching ||
		(ioc->nr_batch_requests > 0
		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
}

/*
 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 * will cause the process to be a "batcher" on all queues in the system. This
 * is the behaviour we want though - once it gets a wakeup it should be given
 * a nice run.
 */
static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
{
	if (!ioc || ioc_batching(q, ioc))
		return;

	ioc->nr_batch_requests = q->nr_batching;
	ioc->last_waited = jiffies;
}

static void __freed_request(struct request_list *rl, int sync)
{
	struct request_queue *q = rl->q;

	if (rl->count[sync] < queue_congestion_off_threshold(q))
		blk_clear_congested(rl, sync);

	if (rl->count[sync] + 1 <= q->nr_requests) {
		if (waitqueue_active(&rl->wait[sync]))
			wake_up(&rl->wait[sync]);

		blk_clear_rl_full(rl, sync);
	}
}

/*
 * A request has just been released.  Account for it, update the full and
 * congestion status, wake up any waiters.   Called under q->queue_lock.
 */
static void freed_request(struct request_list *rl, bool sync,
		req_flags_t rq_flags)
{
	struct request_queue *q = rl->q;

	q->nr_rqs[sync]--;
	rl->count[sync]--;
	if (rq_flags & RQF_ELVPRIV)
		q->nr_rqs_elvpriv--;

	__freed_request(rl, sync);

	if (unlikely(rl->starved[sync ^ 1]))
		__freed_request(rl, sync ^ 1);
}

int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct request_list *rl;
	int on_thresh, off_thresh;

	WARN_ON_ONCE(q->mq_ops);

	spin_lock_irq(q->queue_lock);
	q->nr_requests = nr;
	blk_queue_congestion_threshold(q);
	on_thresh = queue_congestion_on_threshold(q);
	off_thresh = queue_congestion_off_threshold(q);

	blk_queue_for_each_rl(rl, q) {
		if (rl->count[BLK_RW_SYNC] >= on_thresh)
			blk_set_congested(rl, BLK_RW_SYNC);
		else if (rl->count[BLK_RW_SYNC] < off_thresh)
			blk_clear_congested(rl, BLK_RW_SYNC);

		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
			blk_set_congested(rl, BLK_RW_ASYNC);
		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
			blk_clear_congested(rl, BLK_RW_ASYNC);

		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
			blk_set_rl_full(rl, BLK_RW_SYNC);
		} else {
			blk_clear_rl_full(rl, BLK_RW_SYNC);
			wake_up(&rl->wait[BLK_RW_SYNC]);
		}

		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
			blk_set_rl_full(rl, BLK_RW_ASYNC);
		} else {
			blk_clear_rl_full(rl, BLK_RW_ASYNC);
			wake_up(&rl->wait[BLK_RW_ASYNC]);
		}
	}

	spin_unlock_irq(q->queue_lock);
	return 0;
}

/**
 * __get_request - get a free request
 * @rl: request list to allocate from
 * @op: operation and flags
 * @bio: bio to allocate request for (can be %NULL)
 * @flags: BLQ_MQ_REQ_* flags
 * @gfp_mask: allocator flags
 *
 * Get a free request from @q.  This function may fail under memory
 * pressure or if @q is dead.
 *
 * Must be called with @q->queue_lock held and,
 * Returns ERR_PTR on failure, with @q->queue_lock held.
 * Returns request pointer on success, with @q->queue_lock *not held*.
 */
static struct request *__get_request(struct request_list *rl, unsigned int op,
		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
{
	struct request_queue *q = rl->q;
	struct request *rq;
	struct elevator_type *et = q->elevator->type;
	struct io_context *ioc = rq_ioc(bio);
	struct io_cq *icq = NULL;
	const bool is_sync = op_is_sync(op);
	int may_queue;
	req_flags_t rq_flags = RQF_ALLOCED;

	lockdep_assert_held(q->queue_lock);

	if (unlikely(blk_queue_dying(q)))
		return ERR_PTR(-ENODEV);

	may_queue = elv_may_queue(q, op);
	if (may_queue == ELV_MQUEUE_NO)
		goto rq_starved;

	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
		if (rl->count[is_sync]+1 >= q->nr_requests) {
			/*
			 * The queue will fill after this allocation, so set
			 * it as full, and mark this process as "batching".
			 * This process will be allowed to complete a batch of
			 * requests, others will be blocked.
			 */
			if (!blk_rl_full(rl, is_sync)) {
				ioc_set_batching(q, ioc);
				blk_set_rl_full(rl, is_sync);
			} else {
				if (may_queue != ELV_MQUEUE_MUST
						&& !ioc_batching(q, ioc)) {
					/*
					 * The queue is full and the allocating
					 * process is not a "batcher", and not
					 * exempted by the IO scheduler
					 */
					return ERR_PTR(-ENOMEM);
				}
			}
		}
		blk_set_congested(rl, is_sync);
	}

	/*
	 * Only allow batching queuers to allocate up to 50% over the defined
	 * limit of requests, otherwise we could have thousands of requests
	 * allocated with any setting of ->nr_requests
	 */
	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
		return ERR_PTR(-ENOMEM);

	q->nr_rqs[is_sync]++;
	rl->count[is_sync]++;
	rl->starved[is_sync] = 0;

	/*
	 * Decide whether the new request will be managed by elevator.  If
	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
	 * prevent the current elevator from being destroyed until the new
	 * request is freed.  This guarantees icq's won't be destroyed and
	 * makes creating new ones safe.
	 *
	 * Flush requests do not use the elevator so skip initialization.
	 * This allows a request to share the flush and elevator data.
	 *
	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
	 * it will be created after releasing queue_lock.
	 */
	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
		rq_flags |= RQF_ELVPRIV;
		q->nr_rqs_elvpriv++;
		if (et->icq_cache && ioc)
			icq = ioc_lookup_icq(ioc, q);
	}

	if (blk_queue_io_stat(q))
		rq_flags |= RQF_IO_STAT;
	spin_unlock_irq(q->queue_lock);

	/* allocate and init request */
	rq = mempool_alloc(rl->rq_pool, gfp_mask);
	if (!rq)
		goto fail_alloc;

	blk_rq_init(q, rq);
	blk_rq_set_rl(rq, rl);
	rq->cmd_flags = op;
	rq->rq_flags = rq_flags;
	if (flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;

	/* init elvpriv */
	if (rq_flags & RQF_ELVPRIV) {
		if (unlikely(et->icq_cache && !icq)) {
			if (ioc)
				icq = ioc_create_icq(ioc, q, gfp_mask);
			if (!icq)
				goto fail_elvpriv;
		}

		rq->elv.icq = icq;
		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
			goto fail_elvpriv;

		/* @rq->elv.icq holds io_context until @rq is freed */
		if (icq)
			get_io_context(icq->ioc);
	}
out:
	/*
	 * ioc may be NULL here, and ioc_batching will be false. That's
	 * OK, if the queue is under the request limit then requests need
	 * not count toward the nr_batch_requests limit. There will always
	 * be some limit enforced by BLK_BATCH_TIME.
	 */
	if (ioc_batching(q, ioc))
		ioc->nr_batch_requests--;

	trace_block_getrq(q, bio, op);
	return rq;

fail_elvpriv:
	/*
	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
	 * and may fail indefinitely under memory pressure and thus
	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
	 * disturb iosched and blkcg but weird is bettern than dead.
	 */
	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
			   __func__, dev_name(q->backing_dev_info->dev));

	rq->rq_flags &= ~RQF_ELVPRIV;
	rq->elv.icq = NULL;

	spin_lock_irq(q->queue_lock);
	q->nr_rqs_elvpriv--;
	spin_unlock_irq(q->queue_lock);
	goto out;

fail_alloc:
	/*
	 * Allocation failed presumably due to memory. Undo anything we
	 * might have messed up.
	 *
	 * Allocating task should really be put onto the front of the wait
	 * queue, but this is pretty rare.
	 */
	spin_lock_irq(q->queue_lock);
	freed_request(rl, is_sync, rq_flags);

	/*
	 * in the very unlikely event that allocation failed and no
	 * requests for this direction was pending, mark us starved so that
	 * freeing of a request in the other direction will notice
	 * us. another possible fix would be to split the rq mempool into
	 * READ and WRITE
	 */
rq_starved:
	if (unlikely(rl->count[is_sync] == 0))
		rl->starved[is_sync] = 1;
	return ERR_PTR(-ENOMEM);
}

/**
 * get_request - get a free request
 * @q: request_queue to allocate request from
 * @op: operation and flags
 * @bio: bio to allocate request for (can be %NULL)
 * @flags: BLK_MQ_REQ_* flags.
 * @gfp: allocator flags
 *
 * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
 * this function keeps retrying under memory pressure and fails iff @q is dead.
 *
 * Must be called with @q->queue_lock held and,
 * Returns ERR_PTR on failure, with @q->queue_lock held.
 * Returns request pointer on success, with @q->queue_lock *not held*.
 */
static struct request *get_request(struct request_queue *q, unsigned int op,
		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
{
	const bool is_sync = op_is_sync(op);
	DEFINE_WAIT(wait);
	struct request_list *rl;
	struct request *rq;

	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
retry:
	rq = __get_request(rl, op, bio, flags, gfp);
	if (!IS_ERR(rq))
		return rq;

	if (op & REQ_NOWAIT) {
		blk_put_rl(rl);
		return ERR_PTR(-EAGAIN);
	}

	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
		blk_put_rl(rl);
		return rq;
	}

	/* wait on @rl and retry */
	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
				  TASK_UNINTERRUPTIBLE);

	trace_block_sleeprq(q, bio, op);

	spin_unlock_irq(q->queue_lock);
	io_schedule();

	/*
	 * After sleeping, we become a "batching" process and will be able
	 * to allocate at least one request, and up to a big batch of them
	 * for a small period time.  See ioc_batching, ioc_set_batching
	 */
	ioc_set_batching(q, current->io_context);

	spin_lock_irq(q->queue_lock);
	finish_wait(&rl->wait[is_sync], &wait);

	goto retry;
}

/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
static struct request *blk_old_get_request(struct request_queue *q,
				unsigned int op, blk_mq_req_flags_t flags)
{
	struct request *rq;
	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
	int ret = 0;

	WARN_ON_ONCE(q->mq_ops);

	/* create ioc upfront */
	create_io_context(gfp_mask, q->node);

	ret = blk_queue_enter(q, flags);
	if (ret)
		return ERR_PTR(ret);
	spin_lock_irq(q->queue_lock);
	rq = get_request(q, op, NULL, flags, gfp_mask);
	if (IS_ERR(rq)) {
		spin_unlock_irq(q->queue_lock);
		blk_queue_exit(q);
		return rq;
	}

	/* q->queue_lock is unlocked at this point */
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
	return rq;
}

/**
 * blk_get_request - allocate a request
 * @q: request queue to allocate a request for
 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 */
struct request *blk_get_request(struct request_queue *q, unsigned int op,
				blk_mq_req_flags_t flags)
{
	struct request *req;

	WARN_ON_ONCE(op & REQ_NOWAIT);
	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));

	if (q->mq_ops) {
		req = blk_mq_alloc_request(q, op, flags);
		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
			q->mq_ops->initialize_rq_fn(req);
	} else {
		req = blk_old_get_request(q, op, flags);
		if (!IS_ERR(req) && q->initialize_rq_fn)
			q->initialize_rq_fn(req);
	}

	return req;
}
EXPORT_SYMBOL(blk_get_request);

/**
 * blk_requeue_request - put a request back on queue
 * @q:		request queue where request should be inserted
 * @rq:		request to be inserted
 *
 * Description:
 *    Drivers often keep queueing requests until the hardware cannot accept
 *    more, when that condition happens we need to put the request back
 *    on the queue. Must be called with queue lock held.
 */
void blk_requeue_request(struct request_queue *q, struct request *rq)
{
	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	blk_delete_timer(rq);
	blk_clear_rq_complete(rq);
	trace_block_rq_requeue(q, rq);
	rq_qos_requeue(q, rq);

	if (rq->rq_flags & RQF_QUEUED)
		blk_queue_end_tag(q, rq);

	BUG_ON(blk_queued_rq(rq));

	elv_requeue_request(q, rq);
}
EXPORT_SYMBOL(blk_requeue_request);

static void add_acct_request(struct request_queue *q, struct request *rq,
			     int where)
{
	blk_account_io_start(rq, true);
	__elv_add_request(q, rq, where);
}

static void part_round_stats_single(struct request_queue *q, int cpu,
				    struct hd_struct *part, unsigned long now,
				    unsigned int inflight)
{
	if (inflight) {
		__part_stat_add(cpu, part, time_in_queue,
				inflight * (now - part->stamp));
		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
	}
	part->stamp = now;
}

/**
 * part_round_stats() - Round off the performance stats on a struct disk_stats.
 * @q: target block queue
 * @cpu: cpu number for stats access
 * @part: target partition
 *
 * The average IO queue length and utilisation statistics are maintained
 * by observing the current state of the queue length and the amount of
 * time it has been in this state for.
 *
 * Normally, that accounting is done on IO completion, but that can result
 * in more than a second's worth of IO being accounted for within any one
 * second, leading to >100% utilisation.  To deal with that, we call this
 * function to do a round-off before returning the results when reading
 * /proc/diskstats.  This accounts immediately for all queue usage up to
 * the current jiffies and restarts the counters again.
 */
void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
{
	struct hd_struct *part2 = NULL;
	unsigned long now = jiffies;
	unsigned int inflight[2];
	int stats = 0;

	if (part->stamp != now)
		stats |= 1;

	if (part->partno) {
		part2 = &part_to_disk(part)->part0;
		if (part2->stamp != now)
			stats |= 2;
	}

	if (!stats)
		return;

	part_in_flight(q, part, inflight);

	if (stats & 2)
		part_round_stats_single(q, cpu, part2, now, inflight[1]);
	if (stats & 1)
		part_round_stats_single(q, cpu, part, now, inflight[0]);
}
EXPORT_SYMBOL_GPL(part_round_stats);

void __blk_put_request(struct request_queue *q, struct request *req)
{
	req_flags_t rq_flags = req->rq_flags;

	if (unlikely(!q))
		return;

	if (q->mq_ops) {
		blk_mq_free_request(req);
		return;
	}

	lockdep_assert_held(q->queue_lock);

	blk_req_zone_write_unlock(req);
	blk_pm_put_request(req);
	blk_pm_mark_last_busy(req);

	elv_completed_request(q, req);

	/* this is a bio leak */
	WARN_ON(req->bio != NULL);

	rq_qos_done(q, req);

	/*
	 * Request may not have originated from ll_rw_blk. if not,
	 * it didn't come out of our reserved rq pools
	 */
	if (rq_flags & RQF_ALLOCED) {
		struct request_list *rl = blk_rq_rl(req);
		bool sync = op_is_sync(req->cmd_flags);

		BUG_ON(!list_empty(&req->queuelist));
		BUG_ON(ELV_ON_HASH(req));

		blk_free_request(rl, req);
		freed_request(rl, sync, rq_flags);
		blk_put_rl(rl);
		blk_queue_exit(q);
	}
}
EXPORT_SYMBOL_GPL(__blk_put_request);

void blk_put_request(struct request *req)
{
	struct request_queue *q = req->q;

	if (q->mq_ops)
		blk_mq_free_request(req);
	else {
		unsigned long flags;

		spin_lock_irqsave(q->queue_lock, flags);
		__blk_put_request(q, req);
		spin_unlock_irqrestore(q->queue_lock, flags);
	}
}
EXPORT_SYMBOL(blk_put_request);

bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
			    struct bio *bio)
{
	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;

	if (!ll_back_merge_fn(q, req, bio))
		return false;

	trace_block_bio_backmerge(q, req, bio);

	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
		blk_rq_set_mixed_merge(req);

	req->biotail->bi_next = bio;
	req->biotail = bio;
	req->__data_len += bio->bi_iter.bi_size;
	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));

	blk_account_io_start(req, false);
	return true;
}

bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
			     struct bio *bio)
{
	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;

	if (!ll_front_merge_fn(q, req, bio))
		return false;

	trace_block_bio_frontmerge(q, req, bio);

	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
		blk_rq_set_mixed_merge(req);

	bio->bi_next = req->bio;
	req->bio = bio;

	req->__sector = bio->bi_iter.bi_sector;
	req->__data_len += bio->bi_iter.bi_size;
	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));

	blk_account_io_start(req, false);
	return true;
}

bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
		struct bio *bio)
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	req->biotail->bi_next = bio;
	req->biotail = bio;
	req->__data_len += bio->bi_iter.bi_size;
	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
	req->nr_phys_segments = segments + 1;

	blk_account_io_start(req, false);
	return true;
no_merge:
	req_set_nomerge(q, req);
	return false;
}

/**
 * blk_attempt_plug_merge - try to merge with %current's plugged list
 * @q: request_queue new bio is being queued at
 * @bio: new bio being queued
 * @request_count: out parameter for number of traversed plugged requests
 * @same_queue_rq: pointer to &struct request that gets filled in when
 * another request associated with @q is found on the plug list
 * (optional, may be %NULL)
 *
 * Determine whether @bio being queued on @q can be merged with a request
 * on %current's plugged list.  Returns %true if merge was successful,
 * otherwise %false.
 *
 * Plugging coalesces IOs from the same issuer for the same purpose without
 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 * than scheduling, and the request, while may have elvpriv data, is not
 * added on the elevator at this point.  In addition, we don't have
 * reliable access to the elevator outside queue lock.  Only check basic
 * merging parameters without querying the elevator.
 *
 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 */
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
			    unsigned int *request_count,
			    struct request **same_queue_rq)
{
	struct blk_plug *plug;
	struct request *rq;
	struct list_head *plug_list;

	plug = current->plug;
	if (!plug)
		return false;
	*request_count = 0;

	if (q->mq_ops)
		plug_list = &plug->mq_list;
	else
		plug_list = &plug->list;

	list_for_each_entry_reverse(rq, plug_list, queuelist) {
		bool merged = false;

		if (rq->q == q) {
			(*request_count)++;
			/*
			 * Only blk-mq multiple hardware queues case checks the
			 * rq in the same queue, there should be only one such
			 * rq in a queue
			 **/
			if (same_queue_rq)
				*same_queue_rq = rq;
		}

		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			break;
		}

		if (merged)
			return true;
	}

	return false;
}

unsigned int blk_plug_queued_count(struct request_queue *q)
{
	struct blk_plug *plug;
	struct request *rq;
	struct list_head *plug_list;
	unsigned int ret = 0;

	plug = current->plug;
	if (!plug)
		goto out;

	if (q->mq_ops)
		plug_list = &plug->mq_list;
	else
		plug_list = &plug->list;

	list_for_each_entry(rq, plug_list, queuelist) {
		if (rq->q == q)
			ret++;
	}
out:
	return ret;
}

void blk_init_request_from_bio(struct request *req, struct bio *bio)
{
	struct io_context *ioc = rq_ioc(bio);

	if (bio->bi_opf & REQ_RAHEAD)
		req->cmd_flags |= REQ_FAILFAST_MASK;

	req->__sector = bio->bi_iter.bi_sector;
	if (ioprio_valid(bio_prio(bio)))
		req->ioprio = bio_prio(bio);
	else if (ioc)
		req->ioprio = ioc->ioprio;
	else
		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
	req->write_hint = bio->bi_write_hint;
	blk_rq_bio_prep(req->q, req, bio);
}
EXPORT_SYMBOL_GPL(blk_init_request_from_bio);

static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
{
	struct blk_plug *plug;
	int where = ELEVATOR_INSERT_SORT;
	struct request *req, *free;
	unsigned int request_count = 0;

	/*
	 * low level driver can indicate that it wants pages above a
	 * certain limit bounced to low memory (ie for highmem, or even
	 * ISA dma in theory)
	 */
	blk_queue_bounce(q, &bio);

	blk_queue_split(q, &bio);

	if (!bio_integrity_prep(bio))
		return BLK_QC_T_NONE;

	if (op_is_flush(bio->bi_opf)) {
		spin_lock_irq(q->queue_lock);
		where = ELEVATOR_INSERT_FLUSH;
		goto get_rq;
	}

	/*
	 * Check if we can merge with the plugged list before grabbing
	 * any locks.
	 */
	if (!blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);

	spin_lock_irq(q->queue_lock);

	switch (elv_merge(q, &req, bio)) {
	case ELEVATOR_BACK_MERGE:
		if (!bio_attempt_back_merge(q, req, bio))
			break;
		elv_bio_merged(q, req, bio);
		free = attempt_back_merge(q, req);
		if (free)
			__blk_put_request(q, free);
		else
			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
		goto out_unlock;
	case ELEVATOR_FRONT_MERGE:
		if (!bio_attempt_front_merge(q, req, bio))
			break;
		elv_bio_merged(q, req, bio);
		free = attempt_front_merge(q, req);
		if (free)
			__blk_put_request(q, free);
		else
			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
		goto out_unlock;
	default:
		break;
	}

get_rq:
	rq_qos_throttle(q, bio, q->queue_lock);

	/*
	 * Grab a free request. This is might sleep but can not fail.
	 * Returns with the queue unlocked.
	 */
	blk_queue_enter_live(q);
	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
	if (IS_ERR(req)) {
		blk_queue_exit(q);
		rq_qos_cleanup(q, bio);
		if (PTR_ERR(req) == -ENOMEM)
			bio->bi_status = BLK_STS_RESOURCE;
		else
			bio->bi_status = BLK_STS_IOERR;
		bio_endio(bio);
		goto out_unlock;
	}

	rq_qos_track(q, req, bio);

	/*
	 * After dropping the lock and possibly sleeping here, our request
	 * may now be mergeable after it had proven unmergeable (above).
	 * We don't worry about that case for efficiency. It won't happen
	 * often, and the elevators are able to handle it.
	 */
	blk_init_request_from_bio(req, bio);

	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
		req->cpu = raw_smp_processor_id();

	plug = current->plug;
	if (plug) {
		/*
		 * If this is the first request added after a plug, fire
		 * of a plug trace.
		 *
		 * @request_count may become stale because of schedule
		 * out, so check plug list again.
		 */
		if (!request_count || list_empty(&plug->list))
			trace_block_plug(q);
		else {
			struct request *last = list_entry_rq(plug->list.prev);
			if (request_count >= BLK_MAX_REQUEST_COUNT ||
			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
		}
		list_add_tail(&req->queuelist, &plug->list);
		blk_account_io_start(req, true);
	} else {
		spin_lock_irq(q->queue_lock);
		add_acct_request(q, req, where);
		__blk_run_queue(q);
out_unlock:
		spin_unlock_irq(q->queue_lock);
	}

	return BLK_QC_T_NONE;
}

static void handle_bad_sector(struct bio *bio, sector_t maxsector)
{
	char b[BDEVNAME_SIZE];

	printk(KERN_INFO "attempt to access beyond end of device\n");
	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
			bio_devname(bio, b), bio->bi_opf,
			(unsigned long long)bio_end_sector(bio),
			(long long)maxsector);
}

#ifdef CONFIG_FAIL_MAKE_REQUEST

static DECLARE_FAULT_ATTR(fail_make_request);

static int __init setup_fail_make_request(char *str)
{
	return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);

static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
{
	return part->make_it_fail && should_fail(&fail_make_request, bytes);
}

static int __init fail_make_request_debugfs(void)
{
	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
						NULL, &fail_make_request);

	return PTR_ERR_OR_ZERO(dir);
}

late_initcall(fail_make_request_debugfs);

#else /* CONFIG_FAIL_MAKE_REQUEST */

static inline bool should_fail_request(struct hd_struct *part,
					unsigned int bytes)
{
	return false;
}

#endif /* CONFIG_FAIL_MAKE_REQUEST */

static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
{
	const int op = bio_op(bio);

	if (part->policy && op_is_write(op)) {
		char b[BDEVNAME_SIZE];

		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
			return false;

		WARN_ONCE(1,
		       "generic_make_request: Trying to write "
			"to read-only block-device %s (partno %d)\n",
			bio_devname(bio, b), part->partno);
		/* Older lvm-tools actually trigger this */
		return false;
	}

	return false;
}

static noinline int should_fail_bio(struct bio *bio)
{
	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
		return -EIO;
	return 0;
}
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);

/*
 * Check whether this bio extends beyond the end of the device or partition.
 * This may well happen - the kernel calls bread() without checking the size of
 * the device, e.g., when mounting a file system.
 */
static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
{
	unsigned int nr_sectors = bio_sectors(bio);

	if (nr_sectors && maxsector &&
	    (nr_sectors > maxsector ||
	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
		handle_bad_sector(bio, maxsector);
		return -EIO;
	}
	return 0;
}

/*
 * Remap block n of partition p to block n+start(p) of the disk.
 */
static inline int blk_partition_remap(struct bio *bio)
{
	struct hd_struct *p;
	int ret = -EIO;

	rcu_read_lock();
	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
	if (unlikely(!p))
		goto out;
	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
		goto out;
	if (unlikely(bio_check_ro(bio, p)))
		goto out;

	/*
	 * Zone reset does not include bi_size so bio_sectors() is always 0.
	 * Include a test for the reset op code and perform the remap if needed.
	 */
	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
		if (bio_check_eod(bio, part_nr_sects_read(p)))
			goto out;
		bio->bi_iter.bi_sector += p->start_sect;
		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
				      bio->bi_iter.bi_sector - p->start_sect);
	}
	bio->bi_partno = 0;
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
}

static noinline_for_stack bool
generic_make_request_checks(struct bio *bio)
{
	struct request_queue *q;
	int nr_sectors = bio_sectors(bio);
	blk_status_t status = BLK_STS_IOERR;
	char b[BDEVNAME_SIZE];

	might_sleep();

	q = bio->bi_disk->queue;
	if (unlikely(!q)) {
		printk(KERN_ERR
		       "generic_make_request: Trying to access "
			"nonexistent block-device %s (%Lu)\n",
			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
		goto end_io;
	}

	/*
	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
	 * if queue is not a request based queue.
	 */
	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
		goto not_supported;

	if (should_fail_bio(bio))
		goto end_io;

	if (bio->bi_partno) {
		if (unlikely(blk_partition_remap(bio)))
			goto end_io;
	} else {
		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
			goto end_io;
		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
			goto end_io;
	}

	/*
	 * Filter flush bio's early so that make_request based
	 * drivers without flush support don't have to worry
	 * about them.
	 */
	if (op_is_flush(bio->bi_opf) &&
	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
		if (!nr_sectors) {
			status = BLK_STS_OK;
			goto end_io;
		}
	}

	switch (bio_op(bio)) {
	case REQ_OP_DISCARD:
		if (!blk_queue_discard(q))
			goto not_supported;
		break;
	case REQ_OP_SECURE_ERASE:
		if (!blk_queue_secure_erase(q))
			goto not_supported;
		break;
	case REQ_OP_WRITE_SAME:
		if (!q->limits.max_write_same_sectors)
			goto not_supported;
		break;
	case REQ_OP_ZONE_RESET:
		if (!blk_queue_is_zoned(q))
			goto not_supported;
		break;
	case REQ_OP_WRITE_ZEROES:
		if (!q->limits.max_write_zeroes_sectors)
			goto not_supported;
		break;
	default:
		break;
	}

	/*
	 * Various block parts want %current->io_context and lazy ioc
	 * allocation ends up trading a lot of pain for a small amount of
	 * memory.  Just allocate it upfront.  This may fail and block
	 * layer knows how to live with it.
	 */
	create_io_context(GFP_ATOMIC, q->node);

	if (!blkcg_bio_issue_check(q, bio))
		return false;

	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_queue(q, bio);
		/* Now that enqueuing has been traced, we need to trace
		 * completion as well.
		 */
		bio_set_flag(bio, BIO_TRACE_COMPLETION);
	}
	return true;

not_supported:
	status = BLK_STS_NOTSUPP;
end_io:
	bio->bi_status = status;
	bio_endio(bio);
	return false;
}

/**
 * generic_make_request - hand a buffer to its device driver for I/O
 * @bio:  The bio describing the location in memory and on the device.
 *
 * generic_make_request() is used to make I/O requests of block
 * devices. It is passed a &struct bio, which describes the I/O that needs
 * to be done.
 *
 * generic_make_request() does not return any status.  The
 * success/failure status of the request, along with notification of
 * completion, is delivered asynchronously through the bio->bi_end_io
 * function described (one day) else where.
 *
 * The caller of generic_make_request must make sure that bi_io_vec
 * are set to describe the memory buffer, and that bi_dev and bi_sector are
 * set to describe the device address, and the
 * bi_end_io and optionally bi_private are set to describe how
 * completion notification should be signaled.
 *
 * generic_make_request and the drivers it calls may use bi_next if this
 * bio happens to be merged with someone else, and may resubmit the bio to
 * a lower device by calling into generic_make_request recursively, which
 * means the bio should NOT be touched after the call to ->make_request_fn.
 */
blk_qc_t generic_make_request(struct bio *bio)
{
	/*
	 * bio_list_on_stack[0] contains bios submitted by the current
	 * make_request_fn.
	 * bio_list_on_stack[1] contains bios that were submitted before
	 * the current make_request_fn, but that haven't been processed
	 * yet.
	 */
	struct bio_list bio_list_on_stack[2];
	blk_mq_req_flags_t flags = 0;
	struct request_queue *q = bio->bi_disk->queue;
	blk_qc_t ret = BLK_QC_T_NONE;

	if (bio->bi_opf & REQ_NOWAIT)
		flags = BLK_MQ_REQ_NOWAIT;
	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
		blk_queue_enter_live(q);
	else if (blk_queue_enter(q, flags) < 0) {
		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
			bio_wouldblock_error(bio);
		else
			bio_io_error(bio);
		return ret;
	}

	if (!generic_make_request_checks(bio))
		goto out;

	/*
	 * We only want one ->make_request_fn to be active at a time, else
	 * stack usage with stacked devices could be a problem.  So use
	 * current->bio_list to keep a list of requests submited by a
	 * make_request_fn function.  current->bio_list is also used as a
	 * flag to say if generic_make_request is currently active in this
	 * task or not.  If it is NULL, then no make_request is active.  If
	 * it is non-NULL, then a make_request is active, and new requests
	 * should be added at the tail
	 */
	if (current->bio_list) {
		bio_list_add(&current->bio_list[0], bio);
		goto out;
	}

	/* following loop may be a bit non-obvious, and so deserves some
	 * explanation.
	 * Before entering the loop, bio->bi_next is NULL (as all callers
	 * ensure that) so we have a list with a single bio.
	 * We pretend that we have just taken it off a longer list, so
	 * we assign bio_list to a pointer to the bio_list_on_stack,
	 * thus initialising the bio_list of new bios to be
	 * added.  ->make_request() may indeed add some more bios
	 * through a recursive call to generic_make_request.  If it
	 * did, we find a non-NULL value in bio_list and re-enter the loop
	 * from the top.  In this case we really did just take the bio
	 * of the top of the list (no pretending) and so remove it from
	 * bio_list, and call into ->make_request() again.
	 */
	BUG_ON(bio->bi_next);
	bio_list_init(&bio_list_on_stack[0]);
	current->bio_list = bio_list_on_stack;
	do {
		bool enter_succeeded = true;

		if (unlikely(q != bio->bi_disk->queue)) {
			if (q)
				blk_queue_exit(q);
			q = bio->bi_disk->queue;
			flags = 0;
			if (bio->bi_opf & REQ_NOWAIT)
				flags = BLK_MQ_REQ_NOWAIT;
			if (blk_queue_enter(q, flags) < 0) {
				enter_succeeded = false;
				q = NULL;
			}
		}

		if (enter_succeeded) {
			struct bio_list lower, same;

			/* Create a fresh bio_list for all subordinate requests */
			bio_list_on_stack[1] = bio_list_on_stack[0];
			bio_list_init(&bio_list_on_stack[0]);
			ret = q->make_request_fn(q, bio);

			/* sort new bios into those for a lower level
			 * and those for the same level
			 */
			bio_list_init(&lower);
			bio_list_init(&same);
			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
				if (q == bio->bi_disk->queue)
					bio_list_add(&same, bio);
				else
					bio_list_add(&lower, bio);
			/* now assemble so we handle the lowest level first */
			bio_list_merge(&bio_list_on_stack[0], &lower);
			bio_list_merge(&bio_list_on_stack[0], &same);
			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
		} else {
			if (unlikely(!blk_queue_dying(q) &&
					(bio->bi_opf & REQ_NOWAIT)))
				bio_wouldblock_error(bio);
			else
				bio_io_error(bio);
		}
		bio = bio_list_pop(&bio_list_on_stack[0]);
	} while (bio);
	current->bio_list = NULL; /* deactivate */

out:
	if (q)
		blk_queue_exit(q);
	return ret;
}
EXPORT_SYMBOL(generic_make_request);

/**
 * direct_make_request - hand a buffer directly to its device driver for I/O
 * @bio:  The bio describing the location in memory and on the device.
 *
 * This function behaves like generic_make_request(), but does not protect
 * against recursion.  Must only be used if the called driver is known
 * to not call generic_make_request (or direct_make_request) again from
 * its make_request function.  (Calling direct_make_request again from
 * a workqueue is perfectly fine as that doesn't recurse).
 */
blk_qc_t direct_make_request(struct bio *bio)
{
	struct request_queue *q = bio->bi_disk->queue;
	bool nowait = bio->bi_opf & REQ_NOWAIT;
	blk_qc_t ret;

	if (!generic_make_request_checks(bio))
		return BLK_QC_T_NONE;

	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
		if (nowait && !blk_queue_dying(q))
			bio->bi_status = BLK_STS_AGAIN;
		else
			bio->bi_status = BLK_STS_IOERR;
		bio_endio(bio);
		return BLK_QC_T_NONE;
	}

	ret = q->make_request_fn(q, bio);
	blk_queue_exit(q);
	return ret;
}
EXPORT_SYMBOL_GPL(direct_make_request);

/**
 * submit_bio - submit a bio to the block device layer for I/O
 * @bio: The &struct bio which describes the I/O
 *
 * submit_bio() is very similar in purpose to generic_make_request(), and
 * uses that function to do most of the work. Both are fairly rough
 * interfaces; @bio must be presetup and ready for I/O.
 *
 */
blk_qc_t submit_bio(struct bio *bio)
{
	/*
	 * If it's a regular read/write or a barrier with data attached,
	 * go through the normal accounting stuff before submission.
	 */
	if (bio_has_data(bio)) {
		unsigned int count;

		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
		else
			count = bio_sectors(bio);

		if (op_is_write(bio_op(bio))) {
			count_vm_events(PGPGOUT, count);
		} else {
			task_io_account_read(bio->bi_iter.bi_size);
			count_vm_events(PGPGIN, count);
		}

		if (unlikely(block_dump)) {
			char b[BDEVNAME_SIZE];
			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
			current->comm, task_pid_nr(current),
				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
				(unsigned long long)bio->bi_iter.bi_sector,
				bio_devname(bio, b), count);
		}
	}

	return generic_make_request(bio);
}
EXPORT_SYMBOL(submit_bio);

bool blk_poll(struct request_queue *q, blk_qc_t cookie)
{
	if (!q->poll_fn || !blk_qc_t_valid(cookie))
		return false;

	if (current->plug)
		blk_flush_plug_list(current->plug, false);
	return q->poll_fn(q, cookie);
}
EXPORT_SYMBOL_GPL(blk_poll);

/**
 * blk_cloned_rq_check_limits - Helper function to check a cloned request
 *                              for new the queue limits
 * @q:  the queue
 * @rq: the request being checked
 *
 * Description:
 *    @rq may have been made based on weaker limitations of upper-level queues
 *    in request stacking drivers, and it may violate the limitation of @q.
 *    Since the block layer and the underlying device driver trust @rq
 *    after it is inserted to @q, it should be checked against @q before
 *    the insertion using this generic function.
 *
 *    Request stacking drivers like request-based dm may change the queue
 *    limits when retrying requests on other queues. Those requests need
 *    to be checked against the new queue limits again during dispatch.
 */
static int blk_cloned_rq_check_limits(struct request_queue *q,
				      struct request *rq)
{
	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
		printk(KERN_ERR "%s: over max size limit.\n", __func__);
		return -EIO;
	}

	/*
	 * queue's settings related to segment counting like q->bounce_pfn
	 * may differ from that of other stacking queues.
	 * Recalculate it to check the request correctly on this queue's
	 * limitation.
	 */
	blk_recalc_rq_segments(rq);
	if (rq->nr_phys_segments > queue_max_segments(q)) {
		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
		return -EIO;
	}

	return 0;
}

/**
 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
 * @q:  the queue to submit the request
 * @rq: the request being queued
 */
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
	unsigned long flags;
	int where = ELEVATOR_INSERT_BACK;

	if (blk_cloned_rq_check_limits(q, rq))
		return BLK_STS_IOERR;

	if (rq->rq_disk &&
	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
		return BLK_STS_IOERR;

	if (q->mq_ops) {
		if (blk_queue_io_stat(q))
			blk_account_io_start(rq, true);
		/*
		 * Since we have a scheduler attached on the top device,
		 * bypass a potential scheduler on the bottom device for
		 * insert.
		 */
		return blk_mq_request_issue_directly(rq);
	}

	spin_lock_irqsave(q->queue_lock, flags);
	if (unlikely(blk_queue_dying(q))) {
		spin_unlock_irqrestore(q->queue_lock, flags);
		return BLK_STS_IOERR;
	}

	/*
	 * Submitting request must be dequeued before calling this function
	 * because it will be linked to another request_queue
	 */
	BUG_ON(blk_queued_rq(rq));

	if (op_is_flush(rq->cmd_flags))
		where = ELEVATOR_INSERT_FLUSH;

	add_acct_request(q, rq, where);
	if (where == ELEVATOR_INSERT_FLUSH)
		__blk_run_queue(q);
	spin_unlock_irqrestore(q->queue_lock, flags);

	return BLK_STS_OK;
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);

/**
 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
 * @rq: request to examine
 *
 * Description:
 *     A request could be merge of IOs which require different failure
 *     handling.  This function determines the number of bytes which
 *     can be failed from the beginning of the request without
 *     crossing into area which need to be retried further.
 *
 * Return:
 *     The number of bytes to fail.
 */
unsigned int blk_rq_err_bytes(const struct request *rq)
{
	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
	unsigned int bytes = 0;
	struct bio *bio;

	if (!(rq->rq_flags & RQF_MIXED_MERGE))
		return blk_rq_bytes(rq);

	/*
	 * Currently the only 'mixing' which can happen is between
	 * different fastfail types.  We can safely fail portions
	 * which have all the failfast bits that the first one has -
	 * the ones which are at least as eager to fail as the first
	 * one.
	 */
	for (bio = rq->bio; bio; bio = bio->bi_next) {
		if ((bio->bi_opf & ff) != ff)
			break;
		bytes += bio->bi_iter.bi_size;
	}

	/* this could lead to infinite loop */
	BUG_ON(blk_rq_bytes(rq) && !bytes);
	return bytes;
}
EXPORT_SYMBOL_GPL(blk_rq_err_bytes);

void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));
		struct hd_struct *part;
		int cpu;

		cpu = part_stat_lock();
		part = req->part;
		part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

void blk_account_io_done(struct request *req, u64 now)
{
	/*
	 * Account IO completion.  flush_rq isn't accounted as a
	 * normal IO on queueing nor completion.  Accounting the
	 * containing request is enough.
	 */
	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
		const int sgrp = op_stat_group(req_op(req));
		struct hd_struct *part;
		int cpu;

		cpu = part_stat_lock();
		part = req->part;

		part_stat_inc(cpu, part, ios[sgrp]);
		part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
		part_round_stats(req->q, cpu, part);
		part_dec_in_flight(req->q, part, rq_data_dir(req));

		hd_struct_put(part);
		part_stat_unlock();
	}
}

void blk_account_io_start(struct request *rq, bool new_io)
{
	struct hd_struct *part;
	int rw = rq_data_dir(rq);
	int cpu;

	if (!blk_do_io_stat(rq))
		return;

	cpu = part_stat_lock();

	if (!new_io) {
		part = rq->part;
		part_stat_inc(cpu, part, merges[rw]);
	} else {
		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
		if (!hd_struct_try_get(part)) {
			/*
			 * The partition is already being removed,
			 * the request will be accounted on the disk only
			 *
			 * We take a reference on disk->part0 although that
			 * partition will never be deleted, so we can treat
			 * it as any other partition.
			 */
			part = &rq->rq_disk->part0;
			hd_struct_get(part);
		}
		part_round_stats(rq->q, cpu, part);
		part_inc_in_flight(rq->q, part, rw);
		rq->part = part;
	}

	part_stat_unlock();
}

static struct request *elv_next_request(struct request_queue *q)
{
	struct request *rq;
	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);

	WARN_ON_ONCE(q->mq_ops);

	while (1) {
		list_for_each_entry(rq, &q->queue_head, queuelist) {
#ifdef CONFIG_PM
			/*
			 * If a request gets queued in state RPM_SUSPENDED
			 * then that's a kernel bug.
			 */
			WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
#endif
			return rq;
		}

		/*
		 * Flush request is running and flush request isn't queueable
		 * in the drive, we can hold the queue till flush request is
		 * finished. Even we don't do this, driver can't dispatch next
		 * requests and will requeue them. And this can improve
		 * throughput too. For example, we have request flush1, write1,
		 * flush 2. flush1 is dispatched, then queue is hold, write1
		 * isn't inserted to queue. After flush1 is finished, flush2
		 * will be dispatched. Since disk cache is already clean,
		 * flush2 will be finished very soon, so looks like flush2 is
		 * folded to flush1.
		 * Since the queue is hold, a flag is set to indicate the queue
		 * should be restarted later. Please see flush_end_io() for
		 * details.
		 */
		if (fq->flush_pending_idx != fq->flush_running_idx &&
				!queue_flush_queueable(q)) {
			fq->flush_queue_delayed = 1;
			return NULL;
		}
		if (unlikely(blk_queue_bypass(q)) ||
		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
			return NULL;
	}
}

/**
 * blk_peek_request - peek at the top of a request queue
 * @q: request queue to peek at
 *
 * Description:
 *     Return the request at the top of @q.  The returned request
 *     should be started using blk_start_request() before LLD starts
 *     processing it.
 *
 * Return:
 *     Pointer to the request at the top of @q if available.  Null
 *     otherwise.
 */
struct request *blk_peek_request(struct request_queue *q)
{
	struct request *rq;
	int ret;

	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	while ((rq = elv_next_request(q)) != NULL) {
		if (!(rq->rq_flags & RQF_STARTED)) {
			/*
			 * This is the first time the device driver
			 * sees this request (possibly after
			 * requeueing).  Notify IO scheduler.
			 */
			if (rq->rq_flags & RQF_SORTED)
				elv_activate_rq(q, rq);

			/*
			 * just mark as started even if we don't start
			 * it, a request that has been delayed should
			 * not be passed by new incoming requests
			 */
			rq->rq_flags |= RQF_STARTED;
			trace_block_rq_issue(q, rq);
		}

		if (!q->boundary_rq || q->boundary_rq == rq) {
			q->end_sector = rq_end_sector(rq);
			q->boundary_rq = NULL;
		}

		if (rq->rq_flags & RQF_DONTPREP)
			break;

		if (q->dma_drain_size && blk_rq_bytes(rq)) {
			/*
			 * make sure space for the drain appears we
			 * know we can do this because max_hw_segments
			 * has been adjusted to be one fewer than the
			 * device can handle
			 */
			rq->nr_phys_segments++;
		}

		if (!q->prep_rq_fn)
			break;

		ret = q->prep_rq_fn(q, rq);
		if (ret == BLKPREP_OK) {
			break;
		} else if (ret == BLKPREP_DEFER) {
			/*
			 * the request may have been (partially) prepped.
			 * we need to keep this request in the front to
			 * avoid resource deadlock.  RQF_STARTED will
			 * prevent other fs requests from passing this one.
			 */
			if (q->dma_drain_size && blk_rq_bytes(rq) &&
			    !(rq->rq_flags & RQF_DONTPREP)) {
				/*
				 * remove the space for the drain we added
				 * so that we don't add it again
				 */
				--rq->nr_phys_segments;
			}

			rq = NULL;
			break;
		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
			rq->rq_flags |= RQF_QUIET;
			/*
			 * Mark this request as started so we don't trigger
			 * any debug logic in the end I/O path.
			 */
			blk_start_request(rq);
			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
					BLK_STS_TARGET : BLK_STS_IOERR);
		} else {
			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
			break;
		}
	}

	return rq;
}
EXPORT_SYMBOL(blk_peek_request);

static void blk_dequeue_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	BUG_ON(list_empty(&rq->queuelist));
	BUG_ON(ELV_ON_HASH(rq));

	list_del_init(&rq->queuelist);

	/*
	 * the time frame between a request being removed from the lists
	 * and to it is freed is accounted as io that is in progress at
	 * the driver side.
	 */
	if (blk_account_rq(rq))
		q->in_flight[rq_is_sync(rq)]++;
}

/**
 * blk_start_request - start request processing on the driver
 * @req: request to dequeue
 *
 * Description:
 *     Dequeue @req and start timeout timer on it.  This hands off the
 *     request to the driver.
 */
void blk_start_request(struct request *req)
{
	lockdep_assert_held(req->q->queue_lock);
	WARN_ON_ONCE(req->q->mq_ops);

	blk_dequeue_request(req);

	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
		req->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		req->throtl_size = blk_rq_sectors(req);
#endif
		req->rq_flags |= RQF_STATS;
		rq_qos_issue(req->q, req);
	}

	BUG_ON(blk_rq_is_complete(req));
	blk_add_timer(req);
}
EXPORT_SYMBOL(blk_start_request);

/**
 * blk_fetch_request - fetch a request from a request queue
 * @q: request queue to fetch a request from
 *
 * Description:
 *     Return the request at the top of @q.  The request is started on
 *     return and LLD can start processing it immediately.
 *
 * Return:
 *     Pointer to the request at the top of @q if available.  Null
 *     otherwise.
 */
struct request *blk_fetch_request(struct request_queue *q)
{
	struct request *rq;

	lockdep_assert_held(q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	rq = blk_peek_request(q);
	if (rq)
		blk_start_request(rq);
	return rq;
}
EXPORT_SYMBOL(blk_fetch_request);

/*
 * Steal bios from a request and add them to a bio list.
 * The request must not have been partially completed before.
 */
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
	if (rq->bio) {
		if (list->tail)
			list->tail->bi_next = rq->bio;
		else
			list->head = rq->bio;
		list->tail = rq->biotail;

		rq->bio = NULL;
		rq->biotail = NULL;
	}

	rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);

/**
 * blk_update_request - Special helper function for request stacking drivers
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     This special helper function is only for request stacking drivers
 *     (e.g. request-based dm) so that they can handle partial completion.
 *     Actual device drivers should use blk_end_request instead.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
 *	blk_rq_bytes() and in blk_update_request().
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);

	if (!req->bio)
		return false;

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
				    unsigned int nr_bytes,
				    unsigned int bidi_bytes)
{
	if (blk_update_request(rq, error, nr_bytes))
		return true;

	/* Bidi request must be completed as a whole */
	if (unlikely(blk_bidi_rq(rq)) &&
	    blk_update_request(rq->next_rq, error, bidi_bytes))
		return true;

	if (blk_queue_add_random(rq->q))
		add_disk_randomness(rq->rq_disk);

	return false;
}

/**
 * blk_unprep_request - unprepare a request
 * @req:	the request
 *
 * This function makes a request ready for complete resubmission (or
 * completion).  It happens only after all error handling is complete,
 * so represents the appropriate moment to deallocate any resources
 * that were allocated to the request in the prep_rq_fn.  The queue
 * lock is held when calling this.
 */
void blk_unprep_request(struct request *req)
{
	struct request_queue *q = req->q;

	req->rq_flags &= ~RQF_DONTPREP;
	if (q->unprep_rq_fn)
		q->unprep_rq_fn(q, req);
}
EXPORT_SYMBOL_GPL(blk_unprep_request);

void blk_finish_request(struct request *req, blk_status_t error)
{
	struct request_queue *q = req->q;
	u64 now = ktime_get_ns();

	lockdep_assert_held(req->q->queue_lock);
	WARN_ON_ONCE(q->mq_ops);

	if (req->rq_flags & RQF_STATS)
		blk_stat_add(req, now);

	if (req->rq_flags & RQF_QUEUED)
		blk_queue_end_tag(q, req);

	BUG_ON(blk_queued_rq(req));

	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
		laptop_io_completion(req->q->backing_dev_info);

	blk_delete_timer(req);

	if (req->rq_flags & RQF_DONTPREP)
		blk_unprep_request(req);

	blk_account_io_done(req, now);

	if (req->end_io) {
		rq_qos_done(q, req);
		req->end_io(req, error);
	} else {
		if (blk_bidi_rq(req))
			__blk_put_request(req->next_rq->q, req->next_rq);

		__blk_put_request(q, req);
	}
}
EXPORT_SYMBOL(blk_finish_request);

/**
 * blk_end_bidi_request - Complete a bidi request
 * @rq:         the request to complete
 * @error:      block status code
 * @nr_bytes:   number of bytes to complete @rq
 * @bidi_bytes: number of bytes to complete @rq->next_rq
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
 *     Drivers that supports bidi can safely call this member for any
 *     type of request, bidi or uni.  In the later case @bidi_bytes is
 *     just ignored.
 *
 * Return:
 *     %false - we are done with this request
 *     %true  - still buffers pending for this request
 **/
static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
				 unsigned int nr_bytes, unsigned int bidi_bytes)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	WARN_ON_ONCE(q->mq_ops);

	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
		return true;

	spin_lock_irqsave(q->queue_lock, flags);
	blk_finish_request(rq, error);
	spin_unlock_irqrestore(q->queue_lock, flags);

	return false;
}

/**
 * __blk_end_bidi_request - Complete a bidi request with queue lock held
 * @rq:         the request to complete
 * @error:      block status code
 * @nr_bytes:   number of bytes to complete @rq
 * @bidi_bytes: number of bytes to complete @rq->next_rq
 *
 * Description:
 *     Identical to blk_end_bidi_request() except that queue lock is
 *     assumed to be locked on entry and remains so on return.
 *
 * Return:
 *     %false - we are done with this request
 *     %true  - still buffers pending for this request
 **/
static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
				   unsigned int nr_bytes, unsigned int bidi_bytes)
{
	lockdep_assert_held(rq->q->queue_lock);
	WARN_ON_ONCE(rq->q->mq_ops);

	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
		return true;

	blk_finish_request(rq, error);

	return false;
}

/**
 * blk_end_request - Helper function for drivers to complete the request.
 * @rq:       the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq.
 *     If @rq has leftover, sets it up for the next range of segments.
 *
 * Return:
 *     %false - we are done with this request
 *     %true  - still buffers pending for this request
 **/
bool blk_end_request(struct request *rq, blk_status_t error,
		unsigned int nr_bytes)
{
	WARN_ON_ONCE(rq->q->mq_ops);
	return blk_end_bidi_request(rq, error, nr_bytes, 0);
}
EXPORT_SYMBOL(blk_end_request);

/**
 * blk_end_request_all - Helper function for drives to finish the request.
 * @rq: the request to finish
 * @error: block status code
 *
 * Description:
 *     Completely finish @rq.
 */
void blk_end_request_all(struct request *rq, blk_status_t error)
{
	bool pending;
	unsigned int bidi_bytes = 0;

	if (unlikely(blk_bidi_rq(rq)))
		bidi_bytes = blk_rq_bytes(rq->next_rq);

	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
	BUG_ON(pending);
}
EXPORT_SYMBOL(blk_end_request_all);

/**
 * __blk_end_request - Helper function for drivers to complete the request.
 * @rq:       the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete
 *
 * Description:
 *     Must be called with queue lock held unlike blk_end_request().
 *
 * Return:
 *     %false - we are done with this request
 *     %true  - still buffers pending for this request
 **/
bool __blk_end_request(struct request *rq, blk_status_t error,
		unsigned int nr_bytes)
{
	lockdep_assert_held(rq->q->queue_lock);
	WARN_ON_ONCE(rq->q->mq_ops);

	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
}
EXPORT_SYMBOL(__blk_end_request);

/**
 * __blk_end_request_all - Helper function for drives to finish the request.
 * @rq: the request to finish
 * @error:    block status code
 *
 * Description:
 *     Completely finish @rq.  Must be called with queue lock held.
 */
void __blk_end_request_all(struct request *rq, blk_status_t error)
{
	bool pending;
	unsigned int bidi_bytes = 0;

	lockdep_assert_held(rq->q->queue_lock);
	WARN_ON_ONCE(rq->q->mq_ops);

	if (unlikely(blk_bidi_rq(rq)))
		bidi_bytes = blk_rq_bytes(rq->next_rq);

	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
	BUG_ON(pending);
}
EXPORT_SYMBOL(__blk_end_request_all);

/**
 * __blk_end_request_cur - Helper function to finish the current request chunk.
 * @rq: the request to finish the current chunk for
 * @error:    block status code
 *
 * Description:
 *     Complete the current consecutively mapped chunk from @rq.  Must
 *     be called with queue lock held.
 *
 * Return:
 *     %false - we are done with this request
 *     %true  - still buffers pending for this request
 */
bool __blk_end_request_cur(struct request *rq, blk_status_t error)
{
	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
}
EXPORT_SYMBOL(__blk_end_request_cur);

void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
		     struct bio *bio)
{
	if (bio_has_data(bio))
		rq->nr_phys_segments = bio_phys_segments(q, bio);
	else if (bio_op(bio) == REQ_OP_DISCARD)
		rq->nr_phys_segments = 1;

	rq->__data_len = bio->bi_iter.bi_size;
	rq->bio = rq->biotail = bio;

	if (bio->bi_disk)
		rq->rq_disk = bio->bi_disk;
}

#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
/**
 * rq_flush_dcache_pages - Helper function to flush all pages in a request
 * @rq: the request to be flushed
 *
 * Description:
 *     Flush all pages in @rq.
 */
void rq_flush_dcache_pages(struct request *rq)
{
	struct req_iterator iter;
	struct bio_vec bvec;

	rq_for_each_segment(bvec, rq, iter)
		flush_dcache_page(bvec.bv_page);
}
EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
#endif

/**
 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
 * @q : the queue of the device being checked
 *
 * Description:
 *    Check if underlying low-level drivers of a device are busy.
 *    If the drivers want to export their busy state, they must set own
 *    exporting function using blk_queue_lld_busy() first.
 *
 *    Basically, this function is used only by request stacking drivers
 *    to stop dispatching requests to underlying devices when underlying
 *    devices are busy.  This behavior helps more I/O merging on the queue
 *    of the request stacking driver and prevents I/O throughput regression
 *    on burst I/O load.
 *
 * Return:
 *    0 - Not busy (The request stacking driver should dispatch request)
 *    1 - Busy (The request stacking driver should stop dispatching request)
 */
int blk_lld_busy(struct request_queue *q)
{
	if (q->lld_busy_fn)
		return q->lld_busy_fn(q);

	return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);

/**
 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
 * @rq: the clone request to be cleaned up
 *
 * Description:
 *     Free all bios in @rq for a cloned request.
 */
void blk_rq_unprep_clone(struct request *rq)
{
	struct bio *bio;

	while ((bio = rq->bio) != NULL) {
		rq->bio = bio->bi_next;

		bio_put(bio);
	}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);

/*
 * Copy attributes of the original request to the clone request.
 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
 */
static void __blk_rq_prep_clone(struct request *dst, struct request *src)
{
	dst->cpu = src->cpu;
	dst->__sector = blk_rq_pos(src);
	dst->__data_len = blk_rq_bytes(src);
	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
		dst->special_vec = src->special_vec;
	}
	dst->nr_phys_segments = src->nr_phys_segments;
	dst->ioprio = src->ioprio;
	dst->extra_len = src->extra_len;
}

/**
 * blk_rq_prep_clone - Helper function to setup clone request
 * @rq: the request to be setup
 * @rq_src: original request to be cloned
 * @bs: bio_set that bios for clone are allocated from
 * @gfp_mask: memory allocation mask for bio
 * @bio_ctr: setup function to be called for each clone bio.
 *           Returns %0 for success, non %0 for failure.
 * @data: private data to be passed to @bio_ctr
 *
 * Description:
 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
 *     are not copied, and copying such parts is the caller's responsibility.
 *     Also, pages which the original bios are pointing to are not copied
 *     and the cloned bios just point same pages.
 *     So cloned bios must be completed before original bios, which means
 *     the caller must complete @rq before @rq_src.
 */
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
		      struct bio_set *bs, gfp_t gfp_mask,
		      int (*bio_ctr)(struct bio *, struct bio *, void *),
		      void *data)
{
	struct bio *bio, *bio_src;

	if (!bs)
		bs = &fs_bio_set;

	__rq_for_each_bio(bio_src, rq_src) {
		bio = bio_clone_fast(bio_src, gfp_mask, bs);
		if (!bio)
			goto free_and_out;

		if (bio_ctr && bio_ctr(bio, bio_src, data))
			goto free_and_out;

		if (rq->bio) {
			rq->biotail->bi_next = bio;
			rq->biotail = bio;
		} else
			rq->bio = rq->biotail = bio;
	}

	__blk_rq_prep_clone(rq, rq_src);

	return 0;

free_and_out:
	if (bio)
		bio_put(bio);
	blk_rq_unprep_clone(rq);

	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);

int kblockd_schedule_work(struct work_struct *work)
{
	return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);

int kblockd_schedule_work_on(int cpu, struct work_struct *work)
{
	return queue_work_on(cpu, kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work_on);

int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
				unsigned long delay)
{
	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);

/**
 * blk_start_plug - initialize blk_plug and track it inside the task_struct
 * @plug:	The &struct blk_plug that needs to be initialized
 *
 * Description:
 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
 *   pending I/O should the task end up blocking between blk_start_plug() and
 *   blk_finish_plug(). This is important from a performance perspective, but
 *   also ensures that we don't deadlock. For instance, if the task is blocking
 *   for a memory allocation, memory reclaim could end up wanting to free a
 *   page belonging to that request that is currently residing in our private
 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
 *   this kind of deadlock.
 */
void blk_start_plug(struct blk_plug *plug)
{
	struct task_struct *tsk = current;

	/*
	 * If this is a nested plug, don't actually assign it.
	 */
	if (tsk->plug)
		return;

	INIT_LIST_HEAD(&plug->list);
	INIT_LIST_HEAD(&plug->mq_list);
	INIT_LIST_HEAD(&plug->cb_list);
	/*
	 * Store ordering should not be needed here, since a potential
	 * preempt will imply a full memory barrier
	 */
	tsk->plug = plug;
}
EXPORT_SYMBOL(blk_start_plug);

static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->q < rqb->q ||
		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

/*
 * If 'from_schedule' is true, then postpone the dispatch of requests
 * until a safe kblockd context. We due this to avoid accidental big
 * additional stack usage in driver dispatch, in places where the originally
 * plugger did not intend it.
 */
static void queue_unplugged(struct request_queue *q, unsigned int depth,
			    bool from_schedule)
	__releases(q->queue_lock)
{
	lockdep_assert_held(q->queue_lock);

	trace_block_unplug(q, depth, !from_schedule);

	if (from_schedule)
		blk_run_queue_async(q);
	else
		__blk_run_queue(q);
	spin_unlock_irq(q->queue_lock);
}

static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(callbacks);

	while (!list_empty(&plug->cb_list)) {
		list_splice_init(&plug->cb_list, &callbacks);

		while (!list_empty(&callbacks)) {
			struct blk_plug_cb *cb = list_first_entry(&callbacks,
							  struct blk_plug_cb,
							  list);
			list_del(&cb->list);
			cb->callback(cb, from_schedule);
		}
	}
}

struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
				      int size)
{
	struct blk_plug *plug = current->plug;
	struct blk_plug_cb *cb;

	if (!plug)
		return NULL;

	list_for_each_entry(cb, &plug->cb_list, list)
		if (cb->callback == unplug && cb->data == data)
			return cb;

	/* Not currently on the callback list */
	BUG_ON(size < sizeof(*cb));
	cb = kzalloc(size, GFP_ATOMIC);
	if (cb) {
		cb->data = data;
		cb->callback = unplug;
		list_add(&cb->list, &plug->cb_list);
	}
	return cb;
}
EXPORT_SYMBOL(blk_check_plugged);

void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct request_queue *q;
	struct request *rq;
	LIST_HEAD(list);
	unsigned int depth;

	flush_plug_callbacks(plug, from_schedule);

	if (!list_empty(&plug->mq_list))
		blk_mq_flush_plug_list(plug, from_schedule);

	if (list_empty(&plug->list))
		return;

	list_splice_init(&plug->list, &list);

	list_sort(NULL, &list, plug_rq_cmp);

	q = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->q != q) {
			/*
			 * This drops the queue lock
			 */
			if (q)
				queue_unplugged(q, depth, from_schedule);
			q = rq->q;
			depth = 0;
			spin_lock_irq(q->queue_lock);
		}

		/*
		 * Short-circuit if @q is dead
		 */
		if (unlikely(blk_queue_dying(q))) {
			__blk_end_request_all(rq, BLK_STS_IOERR);
			continue;
		}

		/*
		 * rq is already accounted, so use raw insert
		 */
		if (op_is_flush(rq->cmd_flags))
			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
		else
			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);

		depth++;
	}

	/*
	 * This drops the queue lock
	 */
	if (q)
		queue_unplugged(q, depth, from_schedule);
}

void blk_finish_plug(struct blk_plug *plug)
{
	if (plug != current->plug)
		return;
	blk_flush_plug_list(plug, false);

	current->plug = NULL;
}
EXPORT_SYMBOL(blk_finish_plug);

int __init blk_dev_init(void)
{
	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
			FIELD_SIZEOF(struct request, cmd_flags));
	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
			FIELD_SIZEOF(struct bio, bi_opf));

	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
	kblockd_workqueue = alloc_workqueue("kblockd",
					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
	if (!kblockd_workqueue)
		panic("Failed to create kblockd\n");

	request_cachep = kmem_cache_create("blkdev_requests",
			sizeof(struct request), 0, SLAB_PANIC, NULL);

	blk_requestq_cachep = kmem_cache_create("request_queue",
			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);

#ifdef CONFIG_DEBUG_FS
	blk_debugfs_root = debugfs_create_dir("block", NULL);
#endif

	return 0;
}