Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herbert Xu | 4787 | 69.74% | 19 | 45.24% |
Huang Ying | 725 | 10.56% | 5 | 11.90% |
Adrian Hoban | 630 | 9.18% | 1 | 2.38% |
Loc Ho | 455 | 6.63% | 1 | 2.38% |
Stephan Mueller | 145 | 2.11% | 1 | 2.38% |
Jon Maxwell | 30 | 0.44% | 1 | 2.38% |
Kees Cook | 26 | 0.38% | 2 | 4.76% |
Eric Biggers | 20 | 0.29% | 2 | 4.76% |
Steffen Klassert | 10 | 0.15% | 1 | 2.38% |
Ard Biesheuvel | 8 | 0.12% | 1 | 2.38% |
Julia Lawall | 7 | 0.10% | 1 | 2.38% |
Jussi Kivilinna | 7 | 0.10% | 1 | 2.38% |
Rui Y Wang | 6 | 0.09% | 1 | 2.38% |
Mark D Rustad | 4 | 0.06% | 1 | 2.38% |
Christoph Lameter | 1 | 0.01% | 1 | 2.38% |
Colin Ian King | 1 | 0.01% | 1 | 2.38% |
Tejun Heo | 1 | 0.01% | 1 | 2.38% |
Gilad Ben-Yossef | 1 | 0.01% | 1 | 2.38% |
Total | 6864 | 42 |
/* * Software async crypto daemon. * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> * * Added AEAD support to cryptd. * Authors: Tadeusz Struk (tadeusz.struk@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/internal/hash.h> #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include <crypto/cryptd.h> #include <crypto/crypto_wq.h> #include <linux/atomic.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> static unsigned int cryptd_max_cpu_qlen = 1000; module_param(cryptd_max_cpu_qlen, uint, 0); MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth"); struct cryptd_cpu_queue { struct crypto_queue queue; struct work_struct work; }; struct cryptd_queue { struct cryptd_cpu_queue __percpu *cpu_queue; }; struct cryptd_instance_ctx { struct crypto_spawn spawn; struct cryptd_queue *queue; }; struct skcipherd_instance_ctx { struct crypto_skcipher_spawn spawn; struct cryptd_queue *queue; }; struct hashd_instance_ctx { struct crypto_shash_spawn spawn; struct cryptd_queue *queue; }; struct aead_instance_ctx { struct crypto_aead_spawn aead_spawn; struct cryptd_queue *queue; }; struct cryptd_blkcipher_ctx { atomic_t refcnt; struct crypto_blkcipher *child; }; struct cryptd_blkcipher_request_ctx { crypto_completion_t complete; }; struct cryptd_skcipher_ctx { atomic_t refcnt; struct crypto_sync_skcipher *child; }; struct cryptd_skcipher_request_ctx { crypto_completion_t complete; }; struct cryptd_hash_ctx { atomic_t refcnt; struct crypto_shash *child; }; struct cryptd_hash_request_ctx { crypto_completion_t complete; struct shash_desc desc; }; struct cryptd_aead_ctx { atomic_t refcnt; struct crypto_aead *child; }; struct cryptd_aead_request_ctx { crypto_completion_t complete; }; static void cryptd_queue_worker(struct work_struct *work); static int cryptd_init_queue(struct cryptd_queue *queue, unsigned int max_cpu_qlen) { int cpu; struct cryptd_cpu_queue *cpu_queue; queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); if (!queue->cpu_queue) return -ENOMEM; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); INIT_WORK(&cpu_queue->work, cryptd_queue_worker); } pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen); return 0; } static void cryptd_fini_queue(struct cryptd_queue *queue) { int cpu; struct cryptd_cpu_queue *cpu_queue; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); BUG_ON(cpu_queue->queue.qlen); } free_percpu(queue->cpu_queue); } static int cryptd_enqueue_request(struct cryptd_queue *queue, struct crypto_async_request *request) { int cpu, err; struct cryptd_cpu_queue *cpu_queue; atomic_t *refcnt; cpu = get_cpu(); cpu_queue = this_cpu_ptr(queue->cpu_queue); err = crypto_enqueue_request(&cpu_queue->queue, request); refcnt = crypto_tfm_ctx(request->tfm); if (err == -ENOSPC) goto out_put_cpu; queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); if (!atomic_read(refcnt)) goto out_put_cpu; atomic_inc(refcnt); out_put_cpu: put_cpu(); return err; } /* Called in workqueue context, do one real cryption work (via * req->complete) and reschedule itself if there are more work to * do. */ static void cryptd_queue_worker(struct work_struct *work) { struct cryptd_cpu_queue *cpu_queue; struct crypto_async_request *req, *backlog; cpu_queue = container_of(work, struct cryptd_cpu_queue, work); /* * Only handle one request at a time to avoid hogging crypto workqueue. * preempt_disable/enable is used to prevent being preempted by * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent * cryptd_enqueue_request() being accessed from software interrupts. */ local_bh_disable(); preempt_disable(); backlog = crypto_get_backlog(&cpu_queue->queue); req = crypto_dequeue_request(&cpu_queue->queue); preempt_enable(); local_bh_enable(); if (!req) return; if (backlog) backlog->complete(backlog, -EINPROGRESS); req->complete(req, 0); if (cpu_queue->queue.qlen) queue_work(kcrypto_wq, &cpu_queue->work); } static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); return ictx->queue; } static inline void cryptd_check_internal(struct rtattr **tb, u32 *type, u32 *mask) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return; *type |= algt->type & CRYPTO_ALG_INTERNAL; *mask |= algt->mask & CRYPTO_ALG_INTERNAL; } static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent, const u8 *key, unsigned int keylen) { struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent); struct crypto_blkcipher *child = ctx->child; int err; crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_blkcipher_setkey(child, key, keylen); crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static void cryptd_blkcipher_crypt(struct ablkcipher_request *req, struct crypto_blkcipher *child, int err, int (*crypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int len)) { struct cryptd_blkcipher_request_ctx *rctx; struct cryptd_blkcipher_ctx *ctx; struct crypto_ablkcipher *tfm; struct blkcipher_desc desc; int refcnt; rctx = ablkcipher_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; desc.tfm = child; desc.info = req->info; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypt(&desc, req->dst, req->src, req->nbytes); req->base.complete = rctx->complete; out: tfm = crypto_ablkcipher_reqtfm(req); ctx = crypto_ablkcipher_ctx(tfm); refcnt = atomic_read(&ctx->refcnt); local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) crypto_free_ablkcipher(tfm); } static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm); struct crypto_blkcipher *child = ctx->child; cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err, crypto_blkcipher_crt(child)->encrypt); } static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm); struct crypto_blkcipher *child = ctx->child; cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err, crypto_blkcipher_crt(child)->decrypt); } static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req, crypto_completion_t compl) { struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req); struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct cryptd_queue *queue; queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = compl; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req) { return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt); } static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req) { return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt); } static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); struct crypto_spawn *spawn = &ictx->spawn; struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_blkcipher *cipher; cipher = crypto_spawn_blkcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; tfm->crt_ablkcipher.reqsize = sizeof(struct cryptd_blkcipher_request_ctx); return 0; } static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_blkcipher(ctx->child); } static int cryptd_init_instance(struct crypto_instance *inst, struct crypto_alg *alg) { if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) return -ENAMETOOLONG; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); inst->alg.cra_priority = alg->cra_priority + 50; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; return 0; } static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, unsigned int tail) { char *p; struct crypto_instance *inst; int err; p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); inst = (void *)(p + head); err = cryptd_init_instance(inst, alg); if (err) goto out_free_inst; out: return p; out_free_inst: kfree(p); p = ERR_PTR(err); goto out; } static int cryptd_create_blkcipher(struct crypto_template *tmpl, struct rtattr **tb, struct cryptd_queue *queue) { struct cryptd_instance_ctx *ctx; struct crypto_instance *inst; struct crypto_alg *alg; u32 type = CRYPTO_ALG_TYPE_BLKCIPHER; u32 mask = CRYPTO_ALG_TYPE_MASK; int err; cryptd_check_internal(tb, &type, &mask); alg = crypto_get_attr_alg(tb, type, mask); if (IS_ERR(alg)) return PTR_ERR(alg); inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx)); err = PTR_ERR(inst); if (IS_ERR(inst)) goto out_put_alg; ctx = crypto_instance_ctx(inst); ctx->queue = queue; err = crypto_init_spawn(&ctx->spawn, alg, inst, CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC); if (err) goto out_free_inst; type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; if (alg->cra_flags & CRYPTO_ALG_INTERNAL) type |= CRYPTO_ALG_INTERNAL; inst->alg.cra_flags = type; inst->alg.cra_type = &crypto_ablkcipher_type; inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize; inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize; inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize; inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv; inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx); inst->alg.cra_init = cryptd_blkcipher_init_tfm; inst->alg.cra_exit = cryptd_blkcipher_exit_tfm; inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey; inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue; inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue; err = crypto_register_instance(tmpl, inst); if (err) { crypto_drop_spawn(&ctx->spawn); out_free_inst: kfree(inst); } out_put_alg: crypto_mod_put(alg); return err; } static int cryptd_skcipher_setkey(struct crypto_skcipher *parent, const u8 *key, unsigned int keylen) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent); struct crypto_sync_skcipher *child = ctx->child; int err; crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_sync_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_sync_skcipher_setkey(child, key, keylen); crypto_skcipher_set_flags(parent, crypto_sync_skcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static void cryptd_skcipher_complete(struct skcipher_request *req, int err) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); int refcnt = atomic_read(&ctx->refcnt); local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) crypto_free_skcipher(tfm); } static void cryptd_skcipher_encrypt(struct crypto_async_request *base, int err) { struct skcipher_request *req = skcipher_request_cast(base); struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_sync_skcipher *child = ctx->child; SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child); if (unlikely(err == -EINPROGRESS)) goto out; skcipher_request_set_sync_tfm(subreq, child); skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); err = crypto_skcipher_encrypt(subreq); skcipher_request_zero(subreq); req->base.complete = rctx->complete; out: cryptd_skcipher_complete(req, err); } static void cryptd_skcipher_decrypt(struct crypto_async_request *base, int err) { struct skcipher_request *req = skcipher_request_cast(base); struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_sync_skcipher *child = ctx->child; SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child); if (unlikely(err == -EINPROGRESS)) goto out; skcipher_request_set_sync_tfm(subreq, child); skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); err = crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); req->base.complete = rctx->complete; out: cryptd_skcipher_complete(req, err); } static int cryptd_skcipher_enqueue(struct skcipher_request *req, crypto_completion_t compl) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cryptd_queue *queue; queue = cryptd_get_queue(crypto_skcipher_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = compl; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req) { return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt); } static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req) { return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt); } static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst); struct crypto_skcipher_spawn *spawn = &ictx->spawn; struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *cipher; cipher = crypto_spawn_skcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = (struct crypto_sync_skcipher *)cipher; crypto_skcipher_set_reqsize( tfm, sizeof(struct cryptd_skcipher_request_ctx)); return 0; } static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_sync_skcipher(ctx->child); } static void cryptd_skcipher_free(struct skcipher_instance *inst) { struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst); crypto_drop_skcipher(&ctx->spawn); } static int cryptd_create_skcipher(struct crypto_template *tmpl, struct rtattr **tb, struct cryptd_queue *queue) { struct skcipherd_instance_ctx *ctx; struct skcipher_instance *inst; struct skcipher_alg *alg; const char *name; u32 type; u32 mask; int err; type = 0; mask = CRYPTO_ALG_ASYNC; cryptd_check_internal(tb, &type, &mask); name = crypto_attr_alg_name(tb[1]); if (IS_ERR(name)) return PTR_ERR(name); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = skcipher_instance_ctx(inst); ctx->queue = queue; crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); err = crypto_grab_skcipher(&ctx->spawn, name, type, mask); if (err) goto out_free_inst; alg = crypto_spawn_skcipher_alg(&ctx->spawn); err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base); if (err) goto out_drop_skcipher; inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg); inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg); inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg); inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg); inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx); inst->alg.init = cryptd_skcipher_init_tfm; inst->alg.exit = cryptd_skcipher_exit_tfm; inst->alg.setkey = cryptd_skcipher_setkey; inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue; inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue; inst->free = cryptd_skcipher_free; err = skcipher_register_instance(tmpl, inst); if (err) { out_drop_skcipher: crypto_drop_skcipher(&ctx->spawn); out_free_inst: kfree(inst); } return err; } static int cryptd_hash_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); struct crypto_shash_spawn *spawn = &ictx->spawn; struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_shash *hash; hash = crypto_spawn_shash(spawn); if (IS_ERR(hash)) return PTR_ERR(hash); ctx->child = hash; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct cryptd_hash_request_ctx) + crypto_shash_descsize(hash)); return 0; } static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_shash(ctx->child); } static int cryptd_hash_setkey(struct crypto_ahash *parent, const u8 *key, unsigned int keylen) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); struct crypto_shash *child = ctx->child; int err; crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_shash_setkey(child, key, keylen); crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int cryptd_hash_enqueue(struct ahash_request *req, crypto_completion_t compl) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_ahash_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = compl; return cryptd_enqueue_request(queue, &req->base); } static void cryptd_hash_complete(struct ahash_request *req, int err) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); int refcnt = atomic_read(&ctx->refcnt); local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) crypto_free_ahash(tfm); } static void cryptd_hash_init(struct crypto_async_request *req_async, int err) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_shash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct shash_desc *desc = &rctx->desc; if (unlikely(err == -EINPROGRESS)) goto out; desc->tfm = child; desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_shash_init(desc); req->base.complete = rctx->complete; out: cryptd_hash_complete(req, err); } static int cryptd_hash_init_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_init); } static void cryptd_hash_update(struct crypto_async_request *req_async, int err) { struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx; rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; err = shash_ahash_update(req, &rctx->desc); req->base.complete = rctx->complete; out: cryptd_hash_complete(req, err); } static int cryptd_hash_update_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_update); } static void cryptd_hash_final(struct crypto_async_request *req_async, int err) { struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; err = crypto_shash_final(&rctx->desc, req->result); req->base.complete = rctx->complete; out: cryptd_hash_complete(req, err); } static int cryptd_hash_final_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_final); } static void cryptd_hash_finup(struct crypto_async_request *req_async, int err) { struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; err = shash_ahash_finup(req, &rctx->desc); req->base.complete = rctx->complete; out: cryptd_hash_complete(req, err); } static int cryptd_hash_finup_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_finup); } static void cryptd_hash_digest(struct crypto_async_request *req_async, int err) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_shash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct shash_desc *desc = &rctx->desc; if (unlikely(err == -EINPROGRESS)) goto out; desc->tfm = child; desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = shash_ahash_digest(req, desc); req->base.complete = rctx->complete; out: cryptd_hash_complete(req, err); } static int cryptd_hash_digest_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_digest); } static int cryptd_hash_export(struct ahash_request *req, void *out) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return crypto_shash_export(&rctx->desc, out); } static int cryptd_hash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct shash_desc *desc = cryptd_shash_desc(req); desc->tfm = ctx->child; desc->flags = req->base.flags; return crypto_shash_import(desc, in); } static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, struct cryptd_queue *queue) { struct hashd_instance_ctx *ctx; struct ahash_instance *inst; struct shash_alg *salg; struct crypto_alg *alg; u32 type = 0; u32 mask = 0; int err; cryptd_check_internal(tb, &type, &mask); salg = shash_attr_alg(tb[1], type, mask); if (IS_ERR(salg)) return PTR_ERR(salg); alg = &salg->base; inst = cryptd_alloc_instance(alg, ahash_instance_headroom(), sizeof(*ctx)); err = PTR_ERR(inst); if (IS_ERR(inst)) goto out_put_alg; ctx = ahash_instance_ctx(inst); ctx->queue = queue; err = crypto_init_shash_spawn(&ctx->spawn, salg, ahash_crypto_instance(inst)); if (err) goto out_free_inst; inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC | (alg->cra_flags & (CRYPTO_ALG_INTERNAL | CRYPTO_ALG_OPTIONAL_KEY)); inst->alg.halg.digestsize = salg->digestsize; inst->alg.halg.statesize = salg->statesize; inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx); inst->alg.halg.base.cra_init = cryptd_hash_init_tfm; inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm; inst->alg.init = cryptd_hash_init_enqueue; inst->alg.update = cryptd_hash_update_enqueue; inst->alg.final = cryptd_hash_final_enqueue; inst->alg.finup = cryptd_hash_finup_enqueue; inst->alg.export = cryptd_hash_export; inst->alg.import = cryptd_hash_import; if (crypto_shash_alg_has_setkey(salg)) inst->alg.setkey = cryptd_hash_setkey; inst->alg.digest = cryptd_hash_digest_enqueue; err = ahash_register_instance(tmpl, inst); if (err) { crypto_drop_shash(&ctx->spawn); out_free_inst: kfree(inst); } out_put_alg: crypto_mod_put(alg); return err; } static int cryptd_aead_setkey(struct crypto_aead *parent, const u8 *key, unsigned int keylen) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; return crypto_aead_setkey(child, key, keylen); } static int cryptd_aead_setauthsize(struct crypto_aead *parent, unsigned int authsize) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; return crypto_aead_setauthsize(child, authsize); } static void cryptd_aead_crypt(struct aead_request *req, struct crypto_aead *child, int err, int (*crypt)(struct aead_request *req)) { struct cryptd_aead_request_ctx *rctx; struct cryptd_aead_ctx *ctx; crypto_completion_t compl; struct crypto_aead *tfm; int refcnt; rctx = aead_request_ctx(req); compl = rctx->complete; tfm = crypto_aead_reqtfm(req); if (unlikely(err == -EINPROGRESS)) goto out; aead_request_set_tfm(req, child); err = crypt( req ); out: ctx = crypto_aead_ctx(tfm); refcnt = atomic_read(&ctx->refcnt); local_bh_disable(); compl(&req->base, err); local_bh_enable(); if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) crypto_free_aead(tfm); } static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err) { struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); struct crypto_aead *child = ctx->child; struct aead_request *req; req = container_of(areq, struct aead_request, base); cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt); } static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err) { struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); struct crypto_aead *child = ctx->child; struct aead_request *req; req = container_of(areq, struct aead_request, base); cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt); } static int cryptd_aead_enqueue(struct aead_request *req, crypto_completion_t compl) { struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = compl; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_aead_encrypt_enqueue(struct aead_request *req) { return cryptd_aead_enqueue(req, cryptd_aead_encrypt ); } static int cryptd_aead_decrypt_enqueue(struct aead_request *req) { return cryptd_aead_enqueue(req, cryptd_aead_decrypt ); } static int cryptd_aead_init_tfm(struct crypto_aead *tfm) { struct aead_instance *inst = aead_alg_instance(tfm); struct aead_instance_ctx *ictx = aead_instance_ctx(inst); struct crypto_aead_spawn *spawn = &ictx->aead_spawn; struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_aead *cipher; cipher = crypto_spawn_aead(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; crypto_aead_set_reqsize( tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx), crypto_aead_reqsize(cipher))); return 0; } static void cryptd_aead_exit_tfm(struct crypto_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_aead(ctx->child); } static int cryptd_create_aead(struct crypto_template *tmpl, struct rtattr **tb, struct cryptd_queue *queue) { struct aead_instance_ctx *ctx; struct aead_instance *inst; struct aead_alg *alg; const char *name; u32 type = 0; u32 mask = CRYPTO_ALG_ASYNC; int err; cryptd_check_internal(tb, &type, &mask); name = crypto_attr_alg_name(tb[1]); if (IS_ERR(name)) return PTR_ERR(name); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = aead_instance_ctx(inst); ctx->queue = queue; crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst)); err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask); if (err) goto out_free_inst; alg = crypto_spawn_aead_alg(&ctx->aead_spawn); err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base); if (err) goto out_drop_aead; inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx); inst->alg.ivsize = crypto_aead_alg_ivsize(alg); inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg); inst->alg.init = cryptd_aead_init_tfm; inst->alg.exit = cryptd_aead_exit_tfm; inst->alg.setkey = cryptd_aead_setkey; inst->alg.setauthsize = cryptd_aead_setauthsize; inst->alg.encrypt = cryptd_aead_encrypt_enqueue; inst->alg.decrypt = cryptd_aead_decrypt_enqueue; err = aead_register_instance(tmpl, inst); if (err) { out_drop_aead: crypto_drop_aead(&ctx->aead_spawn); out_free_inst: kfree(inst); } return err; } static struct cryptd_queue queue; static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_BLKCIPHER: if ((algt->type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) return cryptd_create_blkcipher(tmpl, tb, &queue); return cryptd_create_skcipher(tmpl, tb, &queue); case CRYPTO_ALG_TYPE_DIGEST: return cryptd_create_hash(tmpl, tb, &queue); case CRYPTO_ALG_TYPE_AEAD: return cryptd_create_aead(tmpl, tb, &queue); } return -EINVAL; } static void cryptd_free(struct crypto_instance *inst) { struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst); struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst); switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_AHASH: crypto_drop_shash(&hctx->spawn); kfree(ahash_instance(inst)); return; case CRYPTO_ALG_TYPE_AEAD: crypto_drop_aead(&aead_ctx->aead_spawn); kfree(aead_instance(inst)); return; default: crypto_drop_spawn(&ctx->spawn); kfree(inst); } } static struct crypto_template cryptd_tmpl = { .name = "cryptd", .create = cryptd_create, .free = cryptd_free, .module = THIS_MODULE, }; struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_blkcipher_ctx *ctx; struct crypto_tfm *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); type = crypto_skcipher_type(type); mask &= ~CRYPTO_ALG_TYPE_MASK; mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK); tfm = crypto_alloc_base(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->__crt_alg->cra_module != THIS_MODULE) { crypto_free_tfm(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_tfm_ctx(tfm); atomic_set(&ctx->refcnt, 1); return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm)); } EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher); struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child); bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); return atomic_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued); void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); if (atomic_dec_and_test(&ctx->refcnt)) crypto_free_ablkcipher(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher); struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_skcipher_ctx *ctx; struct crypto_skcipher *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_skcipher(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_skcipher_ctx(tfm); atomic_set(&ctx->refcnt, 1); return container_of(tfm, struct cryptd_skcipher, base); } EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher); struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); return &ctx->child->base; } EXPORT_SYMBOL_GPL(cryptd_skcipher_child); bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); return atomic_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_skcipher_queued); void cryptd_free_skcipher(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); if (atomic_dec_and_test(&ctx->refcnt)) crypto_free_skcipher(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_skcipher); struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_hash_ctx *ctx; struct crypto_ahash *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_ahash(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_ahash_ctx(tfm); atomic_set(&ctx->refcnt, 1); return __cryptd_ahash_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_ahash); struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_ahash_child); struct shash_desc *cryptd_shash_desc(struct ahash_request *req) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return &rctx->desc; } EXPORT_SYMBOL_GPL(cryptd_shash_desc); bool cryptd_ahash_queued(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return atomic_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_ahash_queued); void cryptd_free_ahash(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); if (atomic_dec_and_test(&ctx->refcnt)) crypto_free_ahash(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_ahash); struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_aead_ctx *ctx; struct crypto_aead *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_aead(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_aead(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_aead_ctx(tfm); atomic_set(&ctx->refcnt, 1); return __cryptd_aead_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_aead); struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx; ctx = crypto_aead_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_aead_child); bool cryptd_aead_queued(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); return atomic_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_aead_queued); void cryptd_free_aead(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); if (atomic_dec_and_test(&ctx->refcnt)) crypto_free_aead(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_aead); static int __init cryptd_init(void) { int err; err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen); if (err) return err; err = crypto_register_template(&cryptd_tmpl); if (err) cryptd_fini_queue(&queue); return err; } static void __exit cryptd_exit(void) { cryptd_fini_queue(&queue); crypto_unregister_template(&cryptd_tmpl); } subsys_initcall(cryptd_init); module_exit(cryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async crypto daemon"); MODULE_ALIAS_CRYPTO("cryptd");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1