Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herbert Xu | 6382 | 34.66% | 21 | 13.55% |
Jussi Kivilinna | 1679 | 9.12% | 25 | 16.13% |
Stephan Mueller | 1253 | 6.81% | 7 | 4.52% |
Rui Y Wang | 1144 | 6.21% | 1 | 0.65% |
Giovanni Cabiddu | 1044 | 5.67% | 3 | 1.94% |
Salvatore Benedetto | 885 | 4.81% | 3 | 1.94% |
Tadeusz Struk | 616 | 3.35% | 3 | 1.94% |
Jarod Wilson | 595 | 3.23% | 12 | 7.74% |
Ard Biesheuvel | 557 | 3.03% | 4 | 2.58% |
Eric Biggers | 554 | 3.01% | 6 | 3.87% |
Gilad Ben-Yossef | 546 | 2.97% | 8 | 5.16% |
Horia Geantă | 389 | 2.11% | 3 | 1.94% |
Geert Uytterhoeven | 295 | 1.60% | 5 | 3.23% |
Tudor-Dan Ambarus | 256 | 1.39% | 1 | 0.65% |
Johannes Goetzfried | 234 | 1.27% | 6 | 3.87% |
Raveendra Padasalagi | 208 | 1.13% | 2 | 1.29% |
Kamil Konieczny | 190 | 1.03% | 1 | 0.65% |
Ondrej Mosnáček | 190 | 1.03% | 2 | 1.29% |
Nitesh Lal | 188 | 1.02% | 1 | 0.65% |
Marcus Meissner | 171 | 0.93% | 3 | 1.94% |
Mahipal Challa | 136 | 0.74% | 1 | 0.65% |
Laura Abbott | 106 | 0.58% | 1 | 0.65% |
Martin Willi | 102 | 0.55% | 4 | 2.58% |
KOVACS Krisztian | 72 | 0.39% | 1 | 0.65% |
Youquan Song | 64 | 0.35% | 2 | 1.29% |
Boris Brezillon | 58 | 0.32% | 1 | 0.65% |
Jan Stancek | 51 | 0.28% | 1 | 0.65% |
JoonSoo Kim | 47 | 0.26% | 1 | 0.65% |
Nick Terrell | 43 | 0.23% | 1 | 0.65% |
Cristian Stoica | 42 | 0.23% | 5 | 3.23% |
Richard W.M. Jones | 38 | 0.21% | 1 | 0.65% |
David S. Miller | 35 | 0.19% | 1 | 0.65% |
Milan Broz | 35 | 0.19% | 3 | 1.94% |
Adrian Hoban | 31 | 0.17% | 1 | 0.65% |
Alexander Shishkin | 29 | 0.16% | 1 | 0.65% |
Puneet Saxena | 26 | 0.14% | 1 | 0.65% |
Neil Horman | 23 | 0.12% | 1 | 0.65% |
Jan-Simon Möller | 17 | 0.09% | 1 | 0.65% |
Yanjiang Jin | 15 | 0.08% | 1 | 0.65% |
Rabin Vincent | 15 | 0.08% | 1 | 0.65% |
Andrew Lutomirski | 12 | 0.07% | 1 | 0.65% |
Andrey Ryabinin | 11 | 0.06% | 1 | 0.65% |
Jerome Marchand | 8 | 0.04% | 1 | 0.65% |
Marcelo H. Cerri | 5 | 0.03% | 1 | 0.65% |
Kees Cook | 5 | 0.03% | 1 | 0.65% |
Tim Chen | 4 | 0.02% | 1 | 0.65% |
Wolfram Sang | 3 | 0.02% | 1 | 0.65% |
Joey Pabalinas | 2 | 0.01% | 1 | 0.65% |
Total | 18411 | 155 |
/* * Algorithm testing framework and tests. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> * Copyright (c) 2007 Nokia Siemens Networks * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> * * Updated RFC4106 AES-GCM testing. * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Copyright (c) 2010, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/aead.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/err.h> #include <linux/fips.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/string.h> #include <crypto/rng.h> #include <crypto/drbg.h> #include <crypto/akcipher.h> #include <crypto/kpp.h> #include <crypto/acompress.h> #include "internal.h" static bool notests; module_param(notests, bool, 0644); MODULE_PARM_DESC(notests, "disable crypto self-tests"); #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS /* a perfect nop */ int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { return 0; } #else #include "testmgr.h" /* * Need slab memory for testing (size in number of pages). */ #define XBUFSIZE 8 /* * Indexes into the xbuf to simulate cross-page access. */ #define IDX1 32 #define IDX2 32400 #define IDX3 1511 #define IDX4 8193 #define IDX5 22222 #define IDX6 17101 #define IDX7 27333 #define IDX8 3000 /* * Used by test_cipher() */ #define ENCRYPT 1 #define DECRYPT 0 struct aead_test_suite { struct { const struct aead_testvec *vecs; unsigned int count; } enc, dec; }; struct cipher_test_suite { const struct cipher_testvec *vecs; unsigned int count; }; struct comp_test_suite { struct { const struct comp_testvec *vecs; unsigned int count; } comp, decomp; }; struct hash_test_suite { const struct hash_testvec *vecs; unsigned int count; }; struct cprng_test_suite { const struct cprng_testvec *vecs; unsigned int count; }; struct drbg_test_suite { const struct drbg_testvec *vecs; unsigned int count; }; struct akcipher_test_suite { const struct akcipher_testvec *vecs; unsigned int count; }; struct kpp_test_suite { const struct kpp_testvec *vecs; unsigned int count; }; struct alg_test_desc { const char *alg; int (*test)(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask); int fips_allowed; /* set if alg is allowed in fips mode */ union { struct aead_test_suite aead; struct cipher_test_suite cipher; struct comp_test_suite comp; struct hash_test_suite hash; struct cprng_test_suite cprng; struct drbg_test_suite drbg; struct akcipher_test_suite akcipher; struct kpp_test_suite kpp; } suite; }; static const unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 }; static void hexdump(unsigned char *buf, unsigned int len) { print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 16, 1, buf, len, false); } static int testmgr_alloc_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) { buf[i] = (void *)__get_free_page(GFP_KERNEL); if (!buf[i]) goto err_free_buf; } return 0; err_free_buf: while (i-- > 0) free_page((unsigned long)buf[i]); return -ENOMEM; } static void testmgr_free_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) free_page((unsigned long)buf[i]); } static int ahash_guard_result(char *result, char c, int size) { int i; for (i = 0; i < size; i++) { if (result[i] != c) return -EINVAL; } return 0; } static int ahash_partial_update(struct ahash_request **preq, struct crypto_ahash *tfm, const struct hash_testvec *template, void *hash_buff, int k, int temp, struct scatterlist *sg, const char *algo, char *result, struct crypto_wait *wait) { char *state; struct ahash_request *req; int statesize, ret = -EINVAL; static const unsigned char guard[] = { 0x00, 0xba, 0xad, 0x00 }; int digestsize = crypto_ahash_digestsize(tfm); req = *preq; statesize = crypto_ahash_statesize( crypto_ahash_reqtfm(req)); state = kmalloc(statesize + sizeof(guard), GFP_KERNEL); if (!state) { pr_err("alg: hash: Failed to alloc state for %s\n", algo); goto out_nostate; } memcpy(state + statesize, guard, sizeof(guard)); memset(result, 1, digestsize); ret = crypto_ahash_export(req, state); WARN_ON(memcmp(state + statesize, guard, sizeof(guard))); if (ret) { pr_err("alg: hash: Failed to export() for %s\n", algo); goto out; } ret = ahash_guard_result(result, 1, digestsize); if (ret) { pr_err("alg: hash: Failed, export used req->result for %s\n", algo); goto out; } ahash_request_free(req); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: hash: Failed to alloc request for %s\n", algo); goto out_noreq; } ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, wait); memcpy(hash_buff, template->plaintext + temp, template->tap[k]); sg_init_one(&sg[0], hash_buff, template->tap[k]); ahash_request_set_crypt(req, sg, result, template->tap[k]); ret = crypto_ahash_import(req, state); if (ret) { pr_err("alg: hash: Failed to import() for %s\n", algo); goto out; } ret = ahash_guard_result(result, 1, digestsize); if (ret) { pr_err("alg: hash: Failed, import used req->result for %s\n", algo); goto out; } ret = crypto_wait_req(crypto_ahash_update(req), wait); if (ret) goto out; *preq = req; ret = 0; goto out_noreq; out: ahash_request_free(req); out_noreq: kfree(state); out_nostate: return ret; } enum hash_test { HASH_TEST_DIGEST, HASH_TEST_FINAL, HASH_TEST_FINUP }; static int __test_hash(struct crypto_ahash *tfm, const struct hash_testvec *template, unsigned int tcount, enum hash_test test_type, const int align_offset) { const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); size_t digest_size = crypto_ahash_digestsize(tfm); unsigned int i, j, k, temp; struct scatterlist sg[8]; char *result; char *key; struct ahash_request *req; struct crypto_wait wait; void *hash_buff; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; result = kmalloc(digest_size, GFP_KERNEL); if (!result) return ret; key = kmalloc(MAX_KEYLEN, GFP_KERNEL); if (!key) goto out_nobuf; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; crypto_init_wait(&wait); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { printk(KERN_ERR "alg: hash: Failed to allocate request for " "%s\n", algo); goto out_noreq; } ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) continue; ret = -EINVAL; if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE)) goto out; j++; memset(result, 0, digest_size); hash_buff = xbuf[0]; hash_buff += align_offset; memcpy(hash_buff, template[i].plaintext, template[i].psize); sg_init_one(&sg[0], hash_buff, template[i].psize); if (template[i].ksize) { crypto_ahash_clear_flags(tfm, ~0); if (template[i].ksize > MAX_KEYLEN) { pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n", j, algo, template[i].ksize, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].ksize); ret = crypto_ahash_setkey(tfm, key, template[i].ksize); if (ret) { printk(KERN_ERR "alg: hash: setkey failed on " "test %d for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].psize); switch (test_type) { case HASH_TEST_DIGEST: ret = crypto_wait_req(crypto_ahash_digest(req), &wait); if (ret) { pr_err("alg: hash: digest failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } break; case HASH_TEST_FINAL: memset(result, 1, digest_size); ret = crypto_wait_req(crypto_ahash_init(req), &wait); if (ret) { pr_err("alg: hash: init failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = ahash_guard_result(result, 1, digest_size); if (ret) { pr_err("alg: hash: init failed on test %d " "for %s: used req->result\n", j, algo); goto out; } ret = crypto_wait_req(crypto_ahash_update(req), &wait); if (ret) { pr_err("alg: hash: update failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = ahash_guard_result(result, 1, digest_size); if (ret) { pr_err("alg: hash: update failed on test %d " "for %s: used req->result\n", j, algo); goto out; } ret = crypto_wait_req(crypto_ahash_final(req), &wait); if (ret) { pr_err("alg: hash: final failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } break; case HASH_TEST_FINUP: memset(result, 1, digest_size); ret = crypto_wait_req(crypto_ahash_init(req), &wait); if (ret) { pr_err("alg: hash: init failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = ahash_guard_result(result, 1, digest_size); if (ret) { pr_err("alg: hash: init failed on test %d " "for %s: used req->result\n", j, algo); goto out; } ret = crypto_wait_req(crypto_ahash_finup(req), &wait); if (ret) { pr_err("alg: hash: final failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } break; } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { printk(KERN_ERR "alg: hash: Test %d failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } if (test_type) goto out; j = 0; for (i = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (!template[i].np) continue; j++; memset(result, 0, digest_size); temp = 0; sg_init_table(sg, template[i].np); ret = -EINVAL; for (k = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; sg_set_buf(&sg[k], memcpy(xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].plaintext + temp, template[i].tap[k]), template[i].tap[k]); temp += template[i].tap[k]; } if (template[i].ksize) { if (template[i].ksize > MAX_KEYLEN) { pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n", j, algo, template[i].ksize, MAX_KEYLEN); ret = -EINVAL; goto out; } crypto_ahash_clear_flags(tfm, ~0); memcpy(key, template[i].key, template[i].ksize); ret = crypto_ahash_setkey(tfm, key, template[i].ksize); if (ret) { printk(KERN_ERR "alg: hash: setkey " "failed on chunking test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].psize); ret = crypto_wait_req(crypto_ahash_digest(req), &wait); if (ret) { pr_err("alg: hash: digest failed on chunking test %d for %s: ret=%d\n", j, algo, -ret); goto out; } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { printk(KERN_ERR "alg: hash: Chunking test %d " "failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } /* partial update exercise */ j = 0; for (i = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (template[i].np < 2) continue; j++; memset(result, 0, digest_size); ret = -EINVAL; hash_buff = xbuf[0]; memcpy(hash_buff, template[i].plaintext, template[i].tap[0]); sg_init_one(&sg[0], hash_buff, template[i].tap[0]); if (template[i].ksize) { crypto_ahash_clear_flags(tfm, ~0); if (template[i].ksize > MAX_KEYLEN) { pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n", j, algo, template[i].ksize, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].ksize); ret = crypto_ahash_setkey(tfm, key, template[i].ksize); if (ret) { pr_err("alg: hash: setkey failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].tap[0]); ret = crypto_wait_req(crypto_ahash_init(req), &wait); if (ret) { pr_err("alg: hash: init failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } ret = crypto_wait_req(crypto_ahash_update(req), &wait); if (ret) { pr_err("alg: hash: update failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } temp = template[i].tap[0]; for (k = 1; k < template[i].np; k++) { ret = ahash_partial_update(&req, tfm, &template[i], hash_buff, k, temp, &sg[0], algo, result, &wait); if (ret) { pr_err("alg: hash: partial update failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out_noreq; } temp += template[i].tap[k]; } ret = crypto_wait_req(crypto_ahash_final(req), &wait); if (ret) { pr_err("alg: hash: final failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { pr_err("alg: hash: Partial Test %d failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } ret = 0; out: ahash_request_free(req); out_noreq: testmgr_free_buf(xbuf); out_nobuf: kfree(key); kfree(result); return ret; } static int test_hash(struct crypto_ahash *tfm, const struct hash_testvec *template, unsigned int tcount, enum hash_test test_type) { unsigned int alignmask; int ret; ret = __test_hash(tfm, template, tcount, test_type, 0); if (ret) return ret; /* test unaligned buffers, check with one byte offset */ ret = __test_hash(tfm, template, tcount, test_type, 1); if (ret) return ret; alignmask = crypto_tfm_alg_alignmask(&tfm->base); if (alignmask) { /* Check if alignment mask for tfm is correctly set. */ ret = __test_hash(tfm, template, tcount, test_type, alignmask + 1); if (ret) return ret; } return 0; } static int __test_aead(struct crypto_aead *tfm, int enc, const struct aead_testvec *template, unsigned int tcount, const bool diff_dst, const int align_offset) { const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm)); unsigned int i, j, k, n, temp; int ret = -ENOMEM; char *q; char *key; struct aead_request *req; struct scatterlist *sg; struct scatterlist *sgout; const char *e, *d; struct crypto_wait wait; unsigned int authsize, iv_len; void *input; void *output; void *assoc; char *iv; char *xbuf[XBUFSIZE]; char *xoutbuf[XBUFSIZE]; char *axbuf[XBUFSIZE]; iv = kzalloc(MAX_IVLEN, GFP_KERNEL); if (!iv) return ret; key = kmalloc(MAX_KEYLEN, GFP_KERNEL); if (!key) goto out_noxbuf; if (testmgr_alloc_buf(xbuf)) goto out_noxbuf; if (testmgr_alloc_buf(axbuf)) goto out_noaxbuf; if (diff_dst && testmgr_alloc_buf(xoutbuf)) goto out_nooutbuf; /* avoid "the frame size is larger than 1024 bytes" compiler warning */ sg = kmalloc(array3_size(sizeof(*sg), 8, (diff_dst ? 4 : 2)), GFP_KERNEL); if (!sg) goto out_nosg; sgout = &sg[16]; if (diff_dst) d = "-ddst"; else d = ""; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; crypto_init_wait(&wait); req = aead_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: aead%s: Failed to allocate request for %s\n", d, algo); goto out; } aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); iv_len = crypto_aead_ivsize(tfm); for (i = 0, j = 0; i < tcount; i++) { if (template[i].np) continue; j++; /* some templates have no input data but they will * touch input */ input = xbuf[0]; input += align_offset; assoc = axbuf[0]; ret = -EINVAL; if (WARN_ON(align_offset + template[i].ilen > PAGE_SIZE || template[i].alen > PAGE_SIZE)) goto out; memcpy(input, template[i].input, template[i].ilen); memcpy(assoc, template[i].assoc, template[i].alen); if (template[i].iv) memcpy(iv, template[i].iv, iv_len); else memset(iv, 0, iv_len); crypto_aead_clear_flags(tfm, ~0); if (template[i].wk) crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); if (template[i].klen > MAX_KEYLEN) { pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n", d, j, algo, template[i].klen, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].klen); ret = crypto_aead_setkey(tfm, key, template[i].klen); if (template[i].fail == !ret) { pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n", d, j, algo, crypto_aead_get_flags(tfm)); goto out; } else if (ret) continue; authsize = abs(template[i].rlen - template[i].ilen); ret = crypto_aead_setauthsize(tfm, authsize); if (ret) { pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n", d, authsize, j, algo); goto out; } k = !!template[i].alen; sg_init_table(sg, k + 1); sg_set_buf(&sg[0], assoc, template[i].alen); sg_set_buf(&sg[k], input, template[i].ilen + (enc ? authsize : 0)); output = input; if (diff_dst) { sg_init_table(sgout, k + 1); sg_set_buf(&sgout[0], assoc, template[i].alen); output = xoutbuf[0]; output += align_offset; sg_set_buf(&sgout[k], output, template[i].rlen + (enc ? 0 : authsize)); } aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].ilen, iv); aead_request_set_ad(req, template[i].alen); ret = crypto_wait_req(enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req), &wait); switch (ret) { case 0: if (template[i].novrfy) { /* verification was supposed to fail */ pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n", d, e, j, algo); /* so really, we got a bad message */ ret = -EBADMSG; goto out; } break; case -EBADMSG: if (template[i].novrfy) /* verification failure was expected */ continue; /* fall through */ default: pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } q = output; if (memcmp(q, template[i].result, template[i].rlen)) { pr_err("alg: aead%s: Test %d failed on %s for %s\n", d, j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } } for (i = 0, j = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (!template[i].np) continue; j++; if (template[i].iv) memcpy(iv, template[i].iv, iv_len); else memset(iv, 0, MAX_IVLEN); crypto_aead_clear_flags(tfm, ~0); if (template[i].wk) crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); if (template[i].klen > MAX_KEYLEN) { pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n", d, j, algo, template[i].klen, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].klen); ret = crypto_aead_setkey(tfm, key, template[i].klen); if (template[i].fail == !ret) { pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n", d, j, algo, crypto_aead_get_flags(tfm)); goto out; } else if (ret) continue; authsize = abs(template[i].rlen - template[i].ilen); ret = -EINVAL; sg_init_table(sg, template[i].anp + template[i].np); if (diff_dst) sg_init_table(sgout, template[i].anp + template[i].np); ret = -EINVAL; for (k = 0, temp = 0; k < template[i].anp; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].atap[k] > PAGE_SIZE)) goto out; sg_set_buf(&sg[k], memcpy(axbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].assoc + temp, template[i].atap[k]), template[i].atap[k]); if (diff_dst) sg_set_buf(&sgout[k], axbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].atap[k]); temp += template[i].atap[k]; } for (k = 0, temp = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memcpy(q, template[i].input + temp, template[i].tap[k]); sg_set_buf(&sg[template[i].anp + k], q, template[i].tap[k]); if (diff_dst) { q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memset(q, 0, template[i].tap[k]); sg_set_buf(&sgout[template[i].anp + k], q, template[i].tap[k]); } n = template[i].tap[k]; if (k == template[i].np - 1 && enc) n += authsize; if (offset_in_page(q) + n < PAGE_SIZE) q[n] = 0; temp += template[i].tap[k]; } ret = crypto_aead_setauthsize(tfm, authsize); if (ret) { pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n", d, authsize, j, algo); goto out; } if (enc) { if (WARN_ON(sg[template[i].anp + k - 1].offset + sg[template[i].anp + k - 1].length + authsize > PAGE_SIZE)) { ret = -EINVAL; goto out; } if (diff_dst) sgout[template[i].anp + k - 1].length += authsize; sg[template[i].anp + k - 1].length += authsize; } aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].ilen, iv); aead_request_set_ad(req, template[i].alen); ret = crypto_wait_req(enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req), &wait); switch (ret) { case 0: if (template[i].novrfy) { /* verification was supposed to fail */ pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n", d, e, j, algo); /* so really, we got a bad message */ ret = -EBADMSG; goto out; } break; case -EBADMSG: if (template[i].novrfy) /* verification failure was expected */ continue; /* fall through */ default: pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } ret = -EINVAL; for (k = 0, temp = 0; k < template[i].np; k++) { if (diff_dst) q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); else q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); n = template[i].tap[k]; if (k == template[i].np - 1) n += enc ? authsize : -authsize; if (memcmp(q, template[i].result + temp, n)) { pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n", d, j, e, k, algo); hexdump(q, n); goto out; } q += n; if (k == template[i].np - 1 && !enc) { if (!diff_dst && memcmp(q, template[i].input + temp + n, authsize)) n = authsize; else n = 0; } else { for (n = 0; offset_in_page(q + n) && q[n]; n++) ; } if (n) { pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n", d, j, e, k, algo, n); hexdump(q, n); goto out; } temp += template[i].tap[k]; } } ret = 0; out: aead_request_free(req); kfree(sg); out_nosg: if (diff_dst) testmgr_free_buf(xoutbuf); out_nooutbuf: testmgr_free_buf(axbuf); out_noaxbuf: testmgr_free_buf(xbuf); out_noxbuf: kfree(key); kfree(iv); return ret; } static int test_aead(struct crypto_aead *tfm, int enc, const struct aead_testvec *template, unsigned int tcount) { unsigned int alignmask; int ret; /* test 'dst == src' case */ ret = __test_aead(tfm, enc, template, tcount, false, 0); if (ret) return ret; /* test 'dst != src' case */ ret = __test_aead(tfm, enc, template, tcount, true, 0); if (ret) return ret; /* test unaligned buffers, check with one byte offset */ ret = __test_aead(tfm, enc, template, tcount, true, 1); if (ret) return ret; alignmask = crypto_tfm_alg_alignmask(&tfm->base); if (alignmask) { /* Check if alignment mask for tfm is correctly set. */ ret = __test_aead(tfm, enc, template, tcount, true, alignmask + 1); if (ret) return ret; } return 0; } static int test_cipher(struct crypto_cipher *tfm, int enc, const struct cipher_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); unsigned int i, j, k; char *q; const char *e; const char *input, *result; void *data; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) continue; if (fips_enabled && template[i].fips_skip) continue; input = enc ? template[i].ptext : template[i].ctext; result = enc ? template[i].ctext : template[i].ptext; j++; ret = -EINVAL; if (WARN_ON(template[i].len > PAGE_SIZE)) goto out; data = xbuf[0]; memcpy(data, input, template[i].len); crypto_cipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_cipher_setkey(tfm, template[i].key, template[i].klen); if (template[i].fail == !ret) { printk(KERN_ERR "alg: cipher: setkey failed " "on test %d for %s: flags=%x\n", j, algo, crypto_cipher_get_flags(tfm)); goto out; } else if (ret) continue; for (k = 0; k < template[i].len; k += crypto_cipher_blocksize(tfm)) { if (enc) crypto_cipher_encrypt_one(tfm, data + k, data + k); else crypto_cipher_decrypt_one(tfm, data + k, data + k); } q = data; if (memcmp(q, result, template[i].len)) { printk(KERN_ERR "alg: cipher: Test %d failed " "on %s for %s\n", j, e, algo); hexdump(q, template[i].len); ret = -EINVAL; goto out; } } ret = 0; out: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int __test_skcipher(struct crypto_skcipher *tfm, int enc, const struct cipher_testvec *template, unsigned int tcount, const bool diff_dst, const int align_offset) { const char *algo = crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); unsigned int i, j, k, n, temp; char *q; struct skcipher_request *req; struct scatterlist sg[8]; struct scatterlist sgout[8]; const char *e, *d; struct crypto_wait wait; const char *input, *result; void *data; char iv[MAX_IVLEN]; char *xbuf[XBUFSIZE]; char *xoutbuf[XBUFSIZE]; int ret = -ENOMEM; unsigned int ivsize = crypto_skcipher_ivsize(tfm); if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (diff_dst && testmgr_alloc_buf(xoutbuf)) goto out_nooutbuf; if (diff_dst) d = "-ddst"; else d = ""; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; crypto_init_wait(&wait); req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: skcipher%s: Failed to allocate request for %s\n", d, algo); goto out; } skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); j = 0; for (i = 0; i < tcount; i++) { if (template[i].np && !template[i].also_non_np) continue; if (fips_enabled && template[i].fips_skip) continue; if (template[i].iv && !(template[i].generates_iv && enc)) memcpy(iv, template[i].iv, ivsize); else memset(iv, 0, MAX_IVLEN); input = enc ? template[i].ptext : template[i].ctext; result = enc ? template[i].ctext : template[i].ptext; j++; ret = -EINVAL; if (WARN_ON(align_offset + template[i].len > PAGE_SIZE)) goto out; data = xbuf[0]; data += align_offset; memcpy(data, input, template[i].len); crypto_skcipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_skcipher_setkey(tfm, template[i].key, template[i].klen); if (template[i].fail == !ret) { pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n", d, j, algo, crypto_skcipher_get_flags(tfm)); goto out; } else if (ret) continue; sg_init_one(&sg[0], data, template[i].len); if (diff_dst) { data = xoutbuf[0]; data += align_offset; sg_init_one(&sgout[0], data, template[i].len); } skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].len, iv); ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req), &wait); if (ret) { pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } q = data; if (memcmp(q, result, template[i].len)) { pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n", d, j, e, algo); hexdump(q, template[i].len); ret = -EINVAL; goto out; } if (template[i].generates_iv && enc && memcmp(iv, template[i].iv, crypto_skcipher_ivsize(tfm))) { pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n", d, j, e, algo); hexdump(iv, crypto_skcipher_ivsize(tfm)); ret = -EINVAL; goto out; } } j = 0; for (i = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (!template[i].np) continue; if (fips_enabled && template[i].fips_skip) continue; if (template[i].iv && !(template[i].generates_iv && enc)) memcpy(iv, template[i].iv, ivsize); else memset(iv, 0, MAX_IVLEN); input = enc ? template[i].ptext : template[i].ctext; result = enc ? template[i].ctext : template[i].ptext; j++; crypto_skcipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_skcipher_setkey(tfm, template[i].key, template[i].klen); if (template[i].fail == !ret) { pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n", d, j, algo, crypto_skcipher_get_flags(tfm)); goto out; } else if (ret) continue; temp = 0; ret = -EINVAL; sg_init_table(sg, template[i].np); if (diff_dst) sg_init_table(sgout, template[i].np); for (k = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memcpy(q, input + temp, template[i].tap[k]); if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE) q[template[i].tap[k]] = 0; sg_set_buf(&sg[k], q, template[i].tap[k]); if (diff_dst) { q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); sg_set_buf(&sgout[k], q, template[i].tap[k]); memset(q, 0, template[i].tap[k]); if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE) q[template[i].tap[k]] = 0; } temp += template[i].tap[k]; } skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].len, iv); ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req), &wait); if (ret) { pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } temp = 0; ret = -EINVAL; for (k = 0; k < template[i].np; k++) { if (diff_dst) q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); else q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); if (memcmp(q, result + temp, template[i].tap[k])) { pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n", d, j, e, k, algo); hexdump(q, template[i].tap[k]); goto out; } q += template[i].tap[k]; for (n = 0; offset_in_page(q + n) && q[n]; n++) ; if (n) { pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n", d, j, e, k, algo, n); hexdump(q, n); goto out; } temp += template[i].tap[k]; } } ret = 0; out: skcipher_request_free(req); if (diff_dst) testmgr_free_buf(xoutbuf); out_nooutbuf: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int test_skcipher(struct crypto_skcipher *tfm, int enc, const struct cipher_testvec *template, unsigned int tcount) { unsigned int alignmask; int ret; /* test 'dst == src' case */ ret = __test_skcipher(tfm, enc, template, tcount, false, 0); if (ret) return ret; /* test 'dst != src' case */ ret = __test_skcipher(tfm, enc, template, tcount, true, 0); if (ret) return ret; /* test unaligned buffers, check with one byte offset */ ret = __test_skcipher(tfm, enc, template, tcount, true, 1); if (ret) return ret; alignmask = crypto_tfm_alg_alignmask(&tfm->base); if (alignmask) { /* Check if alignment mask for tfm is correctly set. */ ret = __test_skcipher(tfm, enc, template, tcount, true, alignmask + 1); if (ret) return ret; } return 0; } static int test_comp(struct crypto_comp *tfm, const struct comp_testvec *ctemplate, const struct comp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); char *output, *decomp_output; unsigned int i; int ret; output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!output) return -ENOMEM; decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!decomp_output) { kfree(output); return -ENOMEM; } for (i = 0; i < ctcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(output, 0, COMP_BUF_SIZE); memset(decomp_output, 0, COMP_BUF_SIZE); ilen = ctemplate[i].inlen; ret = crypto_comp_compress(tfm, ctemplate[i].input, ilen, output, &dlen); if (ret) { printk(KERN_ERR "alg: comp: compression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } ilen = dlen; dlen = COMP_BUF_SIZE; ret = crypto_comp_decompress(tfm, output, ilen, decomp_output, &dlen); if (ret) { pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != ctemplate[i].inlen) { printk(KERN_ERR "alg: comp: Compression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(decomp_output, ctemplate[i].input, ctemplate[i].inlen)) { pr_err("alg: comp: compression failed: output differs: on test %d for %s\n", i + 1, algo); hexdump(decomp_output, dlen); ret = -EINVAL; goto out; } } for (i = 0; i < dtcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(decomp_output, 0, COMP_BUF_SIZE); ilen = dtemplate[i].inlen; ret = crypto_comp_decompress(tfm, dtemplate[i].input, ilen, decomp_output, &dlen); if (ret) { printk(KERN_ERR "alg: comp: decompression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != dtemplate[i].outlen) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(decomp_output, dtemplate[i].output, dlen)) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s\n", i + 1, algo); hexdump(decomp_output, dlen); ret = -EINVAL; goto out; } } ret = 0; out: kfree(decomp_output); kfree(output); return ret; } static int test_acomp(struct crypto_acomp *tfm, const struct comp_testvec *ctemplate, const struct comp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)); unsigned int i; char *output, *decomp_out; int ret; struct scatterlist src, dst; struct acomp_req *req; struct crypto_wait wait; output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!output) return -ENOMEM; decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!decomp_out) { kfree(output); return -ENOMEM; } for (i = 0; i < ctcount; i++) { unsigned int dlen = COMP_BUF_SIZE; int ilen = ctemplate[i].inlen; void *input_vec; input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL); if (!input_vec) { ret = -ENOMEM; goto out; } memset(output, 0, dlen); crypto_init_wait(&wait); sg_init_one(&src, input_vec, ilen); sg_init_one(&dst, output, dlen); req = acomp_request_alloc(tfm); if (!req) { pr_err("alg: acomp: request alloc failed for %s\n", algo); kfree(input_vec); ret = -ENOMEM; goto out; } acomp_request_set_params(req, &src, &dst, ilen, dlen); acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_wait_req(crypto_acomp_compress(req), &wait); if (ret) { pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", i + 1, algo, -ret); kfree(input_vec); acomp_request_free(req); goto out; } ilen = req->dlen; dlen = COMP_BUF_SIZE; sg_init_one(&src, output, ilen); sg_init_one(&dst, decomp_out, dlen); crypto_init_wait(&wait); acomp_request_set_params(req, &src, &dst, ilen, dlen); ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); if (ret) { pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", i + 1, algo, -ret); kfree(input_vec); acomp_request_free(req); goto out; } if (req->dlen != ctemplate[i].inlen) { pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n", i + 1, algo, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } if (memcmp(input_vec, decomp_out, req->dlen)) { pr_err("alg: acomp: Compression test %d failed for %s\n", i + 1, algo); hexdump(output, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } kfree(input_vec); acomp_request_free(req); } for (i = 0; i < dtcount; i++) { unsigned int dlen = COMP_BUF_SIZE; int ilen = dtemplate[i].inlen; void *input_vec; input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL); if (!input_vec) { ret = -ENOMEM; goto out; } memset(output, 0, dlen); crypto_init_wait(&wait); sg_init_one(&src, input_vec, ilen); sg_init_one(&dst, output, dlen); req = acomp_request_alloc(tfm); if (!req) { pr_err("alg: acomp: request alloc failed for %s\n", algo); kfree(input_vec); ret = -ENOMEM; goto out; } acomp_request_set_params(req, &src, &dst, ilen, dlen); acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); if (ret) { pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n", i + 1, algo, -ret); kfree(input_vec); acomp_request_free(req); goto out; } if (req->dlen != dtemplate[i].outlen) { pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n", i + 1, algo, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } if (memcmp(output, dtemplate[i].output, req->dlen)) { pr_err("alg: acomp: Decompression test %d failed for %s\n", i + 1, algo); hexdump(output, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } kfree(input_vec); acomp_request_free(req); } ret = 0; out: kfree(decomp_out); kfree(output); return ret; } static int test_cprng(struct crypto_rng *tfm, const struct cprng_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); int err = 0, i, j, seedsize; u8 *seed; char result[32]; seedsize = crypto_rng_seedsize(tfm); seed = kmalloc(seedsize, GFP_KERNEL); if (!seed) { printk(KERN_ERR "alg: cprng: Failed to allocate seed space " "for %s\n", algo); return -ENOMEM; } for (i = 0; i < tcount; i++) { memset(result, 0, 32); memcpy(seed, template[i].v, template[i].vlen); memcpy(seed + template[i].vlen, template[i].key, template[i].klen); memcpy(seed + template[i].vlen + template[i].klen, template[i].dt, template[i].dtlen); err = crypto_rng_reset(tfm, seed, seedsize); if (err) { printk(KERN_ERR "alg: cprng: Failed to reset rng " "for %s\n", algo); goto out; } for (j = 0; j < template[i].loops; j++) { err = crypto_rng_get_bytes(tfm, result, template[i].rlen); if (err < 0) { printk(KERN_ERR "alg: cprng: Failed to obtain " "the correct amount of random data for " "%s (requested %d)\n", algo, template[i].rlen); goto out; } } err = memcmp(result, template[i].result, template[i].rlen); if (err) { printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", i, algo); hexdump(result, template[i].rlen); err = -EINVAL; goto out; } } out: kfree(seed); return err; } static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_aead *tfm; int err = 0; tfm = crypto_alloc_aead(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: aead: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.aead.enc.vecs) { err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs, desc->suite.aead.enc.count); if (err) goto out; } if (!err && desc->suite.aead.dec.vecs) err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs, desc->suite.aead.dec.count); out: crypto_free_aead(tfm); return err; } static int alg_test_cipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct cipher_test_suite *suite = &desc->suite.cipher; struct crypto_cipher *tfm; int err; tfm = crypto_alloc_cipher(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: cipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count); if (!err) err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count); crypto_free_cipher(tfm); return err; } static int alg_test_skcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct cipher_test_suite *suite = &desc->suite.cipher; struct crypto_skcipher *tfm; int err; tfm = crypto_alloc_skcipher(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: skcipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_skcipher(tfm, ENCRYPT, suite->vecs, suite->count); if (!err) err = test_skcipher(tfm, DECRYPT, suite->vecs, suite->count); crypto_free_skcipher(tfm); return err; } static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_comp *comp; struct crypto_acomp *acomp; int err; u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK; if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) { acomp = crypto_alloc_acomp(driver, type, mask); if (IS_ERR(acomp)) { pr_err("alg: acomp: Failed to load transform for %s: %ld\n", driver, PTR_ERR(acomp)); return PTR_ERR(acomp); } err = test_acomp(acomp, desc->suite.comp.comp.vecs, desc->suite.comp.decomp.vecs, desc->suite.comp.comp.count, desc->suite.comp.decomp.count); crypto_free_acomp(acomp); } else { comp = crypto_alloc_comp(driver, type, mask); if (IS_ERR(comp)) { pr_err("alg: comp: Failed to load transform for %s: %ld\n", driver, PTR_ERR(comp)); return PTR_ERR(comp); } err = test_comp(comp, desc->suite.comp.comp.vecs, desc->suite.comp.decomp.vecs, desc->suite.comp.comp.count, desc->suite.comp.decomp.count); crypto_free_comp(comp); } return err; } static int __alg_test_hash(const struct hash_testvec *template, unsigned int tcount, const char *driver, u32 type, u32 mask) { struct crypto_ahash *tfm; int err; tfm = crypto_alloc_ahash(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: hash: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_hash(tfm, template, tcount, HASH_TEST_DIGEST); if (!err) err = test_hash(tfm, template, tcount, HASH_TEST_FINAL); if (!err) err = test_hash(tfm, template, tcount, HASH_TEST_FINUP); crypto_free_ahash(tfm); return err; } static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct hash_testvec *template = desc->suite.hash.vecs; unsigned int tcount = desc->suite.hash.count; unsigned int nr_unkeyed, nr_keyed; int err; /* * For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests * first, before setting a key on the tfm. To make this easier, we * require that the unkeyed test vectors (if any) are listed first. */ for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) { if (template[nr_unkeyed].ksize) break; } for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) { if (!template[nr_unkeyed + nr_keyed].ksize) { pr_err("alg: hash: test vectors for %s out of order, " "unkeyed ones must come first\n", desc->alg); return -EINVAL; } } err = 0; if (nr_unkeyed) { err = __alg_test_hash(template, nr_unkeyed, driver, type, mask); template += nr_unkeyed; } if (!err && nr_keyed) err = __alg_test_hash(template, nr_keyed, driver, type, mask); return err; } static int alg_test_crc32c(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_shash *tfm; u32 val; int err; err = alg_test_hash(desc, driver, type, mask); if (err) goto out; tfm = crypto_alloc_shash(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); err = PTR_ERR(tfm); goto out; } do { SHASH_DESC_ON_STACK(shash, tfm); u32 *ctx = (u32 *)shash_desc_ctx(shash); shash->tfm = tfm; shash->flags = 0; *ctx = le32_to_cpu(420553207); err = crypto_shash_final(shash, (u8 *)&val); if (err) { printk(KERN_ERR "alg: crc32c: Operation failed for " "%s: %d\n", driver, err); break; } if (val != ~420553207) { printk(KERN_ERR "alg: crc32c: Test failed for %s: " "%d\n", driver, val); err = -EINVAL; } } while (0); crypto_free_shash(tfm); out: return err; } static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_rng *rng; int err; rng = crypto_alloc_rng(driver, type, mask); if (IS_ERR(rng)) { printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(rng)); return PTR_ERR(rng); } err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); crypto_free_rng(rng); return err; } static int drbg_cavs_test(const struct drbg_testvec *test, int pr, const char *driver, u32 type, u32 mask) { int ret = -EAGAIN; struct crypto_rng *drng; struct drbg_test_data test_data; struct drbg_string addtl, pers, testentropy; unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); if (!buf) return -ENOMEM; drng = crypto_alloc_rng(driver, type, mask); if (IS_ERR(drng)) { printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " "%s\n", driver); kzfree(buf); return -ENOMEM; } test_data.testentropy = &testentropy; drbg_string_fill(&testentropy, test->entropy, test->entropylen); drbg_string_fill(&pers, test->pers, test->perslen); ret = crypto_drbg_reset_test(drng, &pers, &test_data); if (ret) { printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); goto outbuf; } drbg_string_fill(&addtl, test->addtla, test->addtllen); if (pr) { drbg_string_fill(&testentropy, test->entpra, test->entprlen); ret = crypto_drbg_get_bytes_addtl_test(drng, buf, test->expectedlen, &addtl, &test_data); } else { ret = crypto_drbg_get_bytes_addtl(drng, buf, test->expectedlen, &addtl); } if (ret < 0) { printk(KERN_ERR "alg: drbg: could not obtain random data for " "driver %s\n", driver); goto outbuf; } drbg_string_fill(&addtl, test->addtlb, test->addtllen); if (pr) { drbg_string_fill(&testentropy, test->entprb, test->entprlen); ret = crypto_drbg_get_bytes_addtl_test(drng, buf, test->expectedlen, &addtl, &test_data); } else { ret = crypto_drbg_get_bytes_addtl(drng, buf, test->expectedlen, &addtl); } if (ret < 0) { printk(KERN_ERR "alg: drbg: could not obtain random data for " "driver %s\n", driver); goto outbuf; } ret = memcmp(test->expected, buf, test->expectedlen); outbuf: crypto_free_rng(drng); kzfree(buf); return ret; } static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { int err = 0; int pr = 0; int i = 0; const struct drbg_testvec *template = desc->suite.drbg.vecs; unsigned int tcount = desc->suite.drbg.count; if (0 == memcmp(driver, "drbg_pr_", 8)) pr = 1; for (i = 0; i < tcount; i++) { err = drbg_cavs_test(&template[i], pr, driver, type, mask); if (err) { printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", i, driver); err = -EINVAL; break; } } return err; } static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec, const char *alg) { struct kpp_request *req; void *input_buf = NULL; void *output_buf = NULL; void *a_public = NULL; void *a_ss = NULL; void *shared_secret = NULL; struct crypto_wait wait; unsigned int out_len_max; int err = -ENOMEM; struct scatterlist src, dst; req = kpp_request_alloc(tfm, GFP_KERNEL); if (!req) return err; crypto_init_wait(&wait); err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size); if (err < 0) goto free_req; out_len_max = crypto_kpp_maxsize(tfm); output_buf = kzalloc(out_len_max, GFP_KERNEL); if (!output_buf) { err = -ENOMEM; goto free_req; } /* Use appropriate parameter as base */ kpp_request_set_input(req, NULL, 0); sg_init_one(&dst, output_buf, out_len_max); kpp_request_set_output(req, &dst, out_len_max); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); /* Compute party A's public key */ err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); if (err) { pr_err("alg: %s: Party A: generate public key test failed. err %d\n", alg, err); goto free_output; } if (vec->genkey) { /* Save party A's public key */ a_public = kzalloc(out_len_max, GFP_KERNEL); if (!a_public) { err = -ENOMEM; goto free_output; } memcpy(a_public, sg_virt(req->dst), out_len_max); } else { /* Verify calculated public key */ if (memcmp(vec->expected_a_public, sg_virt(req->dst), vec->expected_a_public_size)) { pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n", alg); err = -EINVAL; goto free_output; } } /* Calculate shared secret key by using counter part (b) public key. */ input_buf = kzalloc(vec->b_public_size, GFP_KERNEL); if (!input_buf) { err = -ENOMEM; goto free_output; } memcpy(input_buf, vec->b_public, vec->b_public_size); sg_init_one(&src, input_buf, vec->b_public_size); sg_init_one(&dst, output_buf, out_len_max); kpp_request_set_input(req, &src, vec->b_public_size); kpp_request_set_output(req, &dst, out_len_max); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); if (err) { pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n", alg, err); goto free_all; } if (vec->genkey) { /* Save the shared secret obtained by party A */ a_ss = kzalloc(vec->expected_ss_size, GFP_KERNEL); if (!a_ss) { err = -ENOMEM; goto free_all; } memcpy(a_ss, sg_virt(req->dst), vec->expected_ss_size); /* * Calculate party B's shared secret by using party A's * public key. */ err = crypto_kpp_set_secret(tfm, vec->b_secret, vec->b_secret_size); if (err < 0) goto free_all; sg_init_one(&src, a_public, vec->expected_a_public_size); sg_init_one(&dst, output_buf, out_len_max); kpp_request_set_input(req, &src, vec->expected_a_public_size); kpp_request_set_output(req, &dst, out_len_max); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); if (err) { pr_err("alg: %s: Party B: compute shared secret failed. err %d\n", alg, err); goto free_all; } shared_secret = a_ss; } else { shared_secret = (void *)vec->expected_ss; } /* * verify shared secret from which the user will derive * secret key by executing whatever hash it has chosen */ if (memcmp(shared_secret, sg_virt(req->dst), vec->expected_ss_size)) { pr_err("alg: %s: compute shared secret test failed. Invalid output\n", alg); err = -EINVAL; } free_all: kfree(a_ss); kfree(input_buf); free_output: kfree(a_public); kfree(output_buf); free_req: kpp_request_free(req); return err; } static int test_kpp(struct crypto_kpp *tfm, const char *alg, const struct kpp_testvec *vecs, unsigned int tcount) { int ret, i; for (i = 0; i < tcount; i++) { ret = do_test_kpp(tfm, vecs++, alg); if (ret) { pr_err("alg: %s: test failed on vector %d, err=%d\n", alg, i + 1, ret); return ret; } } return 0; } static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_kpp *tfm; int err = 0; tfm = crypto_alloc_kpp(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: kpp: Failed to load tfm for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.kpp.vecs) err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs, desc->suite.kpp.count); crypto_free_kpp(tfm); return err; } static int test_akcipher_one(struct crypto_akcipher *tfm, const struct akcipher_testvec *vecs) { char *xbuf[XBUFSIZE]; struct akcipher_request *req; void *outbuf_enc = NULL; void *outbuf_dec = NULL; struct crypto_wait wait; unsigned int out_len_max, out_len = 0; int err = -ENOMEM; struct scatterlist src, dst, src_tab[2]; if (testmgr_alloc_buf(xbuf)) return err; req = akcipher_request_alloc(tfm, GFP_KERNEL); if (!req) goto free_xbuf; crypto_init_wait(&wait); if (vecs->public_key_vec) err = crypto_akcipher_set_pub_key(tfm, vecs->key, vecs->key_len); else err = crypto_akcipher_set_priv_key(tfm, vecs->key, vecs->key_len); if (err) goto free_req; err = -ENOMEM; out_len_max = crypto_akcipher_maxsize(tfm); outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); if (!outbuf_enc) goto free_req; if (WARN_ON(vecs->m_size > PAGE_SIZE)) goto free_all; memcpy(xbuf[0], vecs->m, vecs->m_size); sg_init_table(src_tab, 2); sg_set_buf(&src_tab[0], xbuf[0], 8); sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8); sg_init_one(&dst, outbuf_enc, out_len_max); akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size, out_len_max); akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); err = crypto_wait_req(vecs->siggen_sigver_test ? /* Run asymmetric signature generation */ crypto_akcipher_sign(req) : /* Run asymmetric encrypt */ crypto_akcipher_encrypt(req), &wait); if (err) { pr_err("alg: akcipher: encrypt test failed. err %d\n", err); goto free_all; } if (req->dst_len != vecs->c_size) { pr_err("alg: akcipher: encrypt test failed. Invalid output len\n"); err = -EINVAL; goto free_all; } /* verify that encrypted message is equal to expected */ if (memcmp(vecs->c, outbuf_enc, vecs->c_size)) { pr_err("alg: akcipher: encrypt test failed. Invalid output\n"); hexdump(outbuf_enc, vecs->c_size); err = -EINVAL; goto free_all; } /* Don't invoke decrypt for vectors with public key */ if (vecs->public_key_vec) { err = 0; goto free_all; } outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); if (!outbuf_dec) { err = -ENOMEM; goto free_all; } if (WARN_ON(vecs->c_size > PAGE_SIZE)) goto free_all; memcpy(xbuf[0], vecs->c, vecs->c_size); sg_init_one(&src, xbuf[0], vecs->c_size); sg_init_one(&dst, outbuf_dec, out_len_max); crypto_init_wait(&wait); akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max); err = crypto_wait_req(vecs->siggen_sigver_test ? /* Run asymmetric signature verification */ crypto_akcipher_verify(req) : /* Run asymmetric decrypt */ crypto_akcipher_decrypt(req), &wait); if (err) { pr_err("alg: akcipher: decrypt test failed. err %d\n", err); goto free_all; } out_len = req->dst_len; if (out_len < vecs->m_size) { pr_err("alg: akcipher: decrypt test failed. " "Invalid output len %u\n", out_len); err = -EINVAL; goto free_all; } /* verify that decrypted message is equal to the original msg */ if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) || memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size, vecs->m_size)) { pr_err("alg: akcipher: decrypt test failed. Invalid output\n"); hexdump(outbuf_dec, out_len); err = -EINVAL; } free_all: kfree(outbuf_dec); kfree(outbuf_enc); free_req: akcipher_request_free(req); free_xbuf: testmgr_free_buf(xbuf); return err; } static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, const struct akcipher_testvec *vecs, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm)); int ret, i; for (i = 0; i < tcount; i++) { ret = test_akcipher_one(tfm, vecs++); if (!ret) continue; pr_err("alg: akcipher: test %d failed for %s, err=%d\n", i + 1, algo, ret); return ret; } return 0; } static int alg_test_akcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_akcipher *tfm; int err = 0; tfm = crypto_alloc_akcipher(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.akcipher.vecs) err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, desc->suite.akcipher.count); crypto_free_akcipher(tfm); return err; } static int alg_test_null(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { return 0; } #define __VECS(tv) { .vecs = tv, .count = ARRAY_SIZE(tv) } /* Please keep this list sorted by algorithm name. */ static const struct alg_test_desc alg_test_descs[] = { { .alg = "aegis128", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(aegis128_enc_tv_template), .dec = __VECS(aegis128_dec_tv_template), } } }, { .alg = "aegis128l", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(aegis128l_enc_tv_template), .dec = __VECS(aegis128l_dec_tv_template), } } }, { .alg = "aegis256", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(aegis256_enc_tv_template), .dec = __VECS(aegis256_dec_tv_template), } } }, { .alg = "ansi_cprng", .test = alg_test_cprng, .suite = { .cprng = __VECS(ansi_cprng_aes_tv_template) } }, { .alg = "authenc(hmac(md5),ecb(cipher_null))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_md5_ecb_cipher_null_enc_tv_template), .dec = __VECS(hmac_md5_ecb_cipher_null_dec_tv_template) } } }, { .alg = "authenc(hmac(sha1),cbc(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha1_aes_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha1),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha1_des_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha1),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha1_des3_ede_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha1),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha1),ecb(cipher_null))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha1_ecb_cipher_null_enc_tv_temp), .dec = __VECS(hmac_sha1_ecb_cipher_null_dec_tv_temp) } } }, { .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha224),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha224_des_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha224),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha224_des3_ede_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha256),cbc(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha256_aes_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha256),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha256_des_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha256),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha256_des3_ede_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha256),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha384),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha384_des_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha384),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha384_des3_ede_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha384),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha512),cbc(aes))", .fips_allowed = 1, .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha512_aes_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha512),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(hmac_sha512_des_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha512),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(hmac_sha512_des3_ede_cbc_enc_tv_temp) } } }, { .alg = "authenc(hmac(sha512),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "cbc(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_cbc_tv_template) }, }, { .alg = "cbc(anubis)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(anubis_cbc_tv_template) }, }, { .alg = "cbc(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(bf_cbc_tv_template) }, }, { .alg = "cbc(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_cbc_tv_template) }, }, { .alg = "cbc(cast5)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast5_cbc_tv_template) }, }, { .alg = "cbc(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_cbc_tv_template) }, }, { .alg = "cbc(des)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(des_cbc_tv_template) }, }, { .alg = "cbc(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(des3_ede_cbc_tv_template) }, }, { /* Same as cbc(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "cbc(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "cbc(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_cbc_tv_template) }, }, { .alg = "cbc(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_cbc_tv_template) } }, { .alg = "cbc(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_cbc_tv_template) }, }, { .alg = "cbcmac(aes)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = __VECS(aes_cbcmac_tv_template) } }, { .alg = "ccm(aes)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(aes_ccm_enc_tv_template), .dec = __VECS(aes_ccm_dec_tv_template) } } }, { .alg = "chacha20", .test = alg_test_skcipher, .suite = { .cipher = __VECS(chacha20_tv_template) }, }, { .alg = "cmac(aes)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = __VECS(aes_cmac128_tv_template) } }, { .alg = "cmac(des3_ede)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = __VECS(des3_ede_cmac64_tv_template) } }, { .alg = "compress_null", .test = alg_test_null, }, { .alg = "crc32", .test = alg_test_hash, .suite = { .hash = __VECS(crc32_tv_template) } }, { .alg = "crc32c", .test = alg_test_crc32c, .fips_allowed = 1, .suite = { .hash = __VECS(crc32c_tv_template) } }, { .alg = "crct10dif", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(crct10dif_tv_template) } }, { .alg = "ctr(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_ctr_tv_template) } }, { .alg = "ctr(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(bf_ctr_tv_template) } }, { .alg = "ctr(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_ctr_tv_template) } }, { .alg = "ctr(cast5)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast5_ctr_tv_template) } }, { .alg = "ctr(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_ctr_tv_template) } }, { .alg = "ctr(des)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(des_ctr_tv_template) } }, { .alg = "ctr(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(des3_ede_ctr_tv_template) } }, { /* Same as ctr(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ctr(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ctr(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_ctr_tv_template) } }, { .alg = "ctr(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_ctr_tv_template) } }, { .alg = "ctr(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_ctr_tv_template) } }, { .alg = "cts(cbc(aes))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cts_mode_tv_template) } }, { .alg = "deflate", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(deflate_comp_tv_template), .decomp = __VECS(deflate_decomp_tv_template) } } }, { .alg = "dh", .test = alg_test_kpp, .fips_allowed = 1, .suite = { .kpp = __VECS(dh_tv_template) } }, { .alg = "digest_null", .test = alg_test_null, }, { .alg = "drbg_nopr_ctr_aes128", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_ctr_aes128_tv_template) } }, { .alg = "drbg_nopr_ctr_aes192", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_ctr_aes192_tv_template) } }, { .alg = "drbg_nopr_ctr_aes256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_ctr_aes256_tv_template) } }, { /* * There is no need to specifically test the DRBG with every * backend cipher -- covered by drbg_nopr_hmac_sha256 test */ .alg = "drbg_nopr_hmac_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_hmac_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_hmac_sha256_tv_template) } }, { /* covered by drbg_nopr_hmac_sha256 test */ .alg = "drbg_nopr_hmac_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_hmac_sha512", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "drbg_nopr_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_sha256_tv_template) } }, { /* covered by drbg_nopr_sha256 test */ .alg = "drbg_nopr_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_sha512", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_ctr_aes128", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_pr_ctr_aes128_tv_template) } }, { /* covered by drbg_pr_ctr_aes128 test */ .alg = "drbg_pr_ctr_aes192", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_ctr_aes256", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_pr_hmac_sha256_tv_template) } }, { /* covered by drbg_pr_hmac_sha256 test */ .alg = "drbg_pr_hmac_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha512", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "drbg_pr_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_pr_sha256_tv_template) } }, { /* covered by drbg_pr_sha256 test */ .alg = "drbg_pr_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_sha512", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "ecb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_tv_template) } }, { .alg = "ecb(anubis)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(anubis_tv_template) } }, { .alg = "ecb(arc4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(arc4_tv_template) } }, { .alg = "ecb(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(bf_tv_template) } }, { .alg = "ecb(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_tv_template) } }, { .alg = "ecb(cast5)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast5_tv_template) } }, { .alg = "ecb(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_tv_template) } }, { .alg = "ecb(cipher_null)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ecb(des)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(des_tv_template) } }, { .alg = "ecb(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(des3_ede_tv_template) } }, { .alg = "ecb(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = { .vecs = fcrypt_pcbc_tv_template, .count = 1 } } }, { .alg = "ecb(khazad)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(khazad_tv_template) } }, { /* Same as ecb(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ecb(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ecb(seed)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(seed_tv_template) } }, { .alg = "ecb(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_tv_template) } }, { .alg = "ecb(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_tv_template) } }, { .alg = "ecb(tea)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tea_tv_template) } }, { .alg = "ecb(tnepres)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tnepres_tv_template) } }, { .alg = "ecb(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_tv_template) } }, { .alg = "ecb(xeta)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(xeta_tv_template) } }, { .alg = "ecb(xtea)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(xtea_tv_template) } }, { .alg = "ecdh", .test = alg_test_kpp, .fips_allowed = 1, .suite = { .kpp = __VECS(ecdh_tv_template) } }, { .alg = "gcm(aes)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(aes_gcm_enc_tv_template), .dec = __VECS(aes_gcm_dec_tv_template) } } }, { .alg = "ghash", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(ghash_tv_template) } }, { .alg = "hmac(md5)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_md5_tv_template) } }, { .alg = "hmac(rmd128)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_rmd128_tv_template) } }, { .alg = "hmac(rmd160)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_rmd160_tv_template) } }, { .alg = "hmac(sha1)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha1_tv_template) } }, { .alg = "hmac(sha224)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha224_tv_template) } }, { .alg = "hmac(sha256)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha256_tv_template) } }, { .alg = "hmac(sha3-224)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_224_tv_template) } }, { .alg = "hmac(sha3-256)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_256_tv_template) } }, { .alg = "hmac(sha3-384)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_384_tv_template) } }, { .alg = "hmac(sha3-512)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_512_tv_template) } }, { .alg = "hmac(sha384)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha384_tv_template) } }, { .alg = "hmac(sha512)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha512_tv_template) } }, { .alg = "jitterentropy_rng", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "kw(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_kw_tv_template) } }, { .alg = "lrw(aes)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(aes_lrw_tv_template) } }, { .alg = "lrw(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_lrw_tv_template) } }, { .alg = "lrw(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_lrw_tv_template) } }, { .alg = "lrw(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_lrw_tv_template) } }, { .alg = "lrw(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_lrw_tv_template) } }, { .alg = "lz4", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lz4_comp_tv_template), .decomp = __VECS(lz4_decomp_tv_template) } } }, { .alg = "lz4hc", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lz4hc_comp_tv_template), .decomp = __VECS(lz4hc_decomp_tv_template) } } }, { .alg = "lzo", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lzo_comp_tv_template), .decomp = __VECS(lzo_decomp_tv_template) } } }, { .alg = "md4", .test = alg_test_hash, .suite = { .hash = __VECS(md4_tv_template) } }, { .alg = "md5", .test = alg_test_hash, .suite = { .hash = __VECS(md5_tv_template) } }, { .alg = "michael_mic", .test = alg_test_hash, .suite = { .hash = __VECS(michael_mic_tv_template) } }, { .alg = "morus1280", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(morus1280_enc_tv_template), .dec = __VECS(morus1280_dec_tv_template), } } }, { .alg = "morus640", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(morus640_enc_tv_template), .dec = __VECS(morus640_dec_tv_template), } } }, { .alg = "ofb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_ofb_tv_template) } }, { /* Same as ofb(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ofb(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "pcbc(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(fcrypt_pcbc_tv_template) } }, { .alg = "pkcs1pad(rsa,sha224)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "pkcs1pad(rsa,sha256)", .test = alg_test_akcipher, .fips_allowed = 1, .suite = { .akcipher = __VECS(pkcs1pad_rsa_tv_template) } }, { .alg = "pkcs1pad(rsa,sha384)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "pkcs1pad(rsa,sha512)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "poly1305", .test = alg_test_hash, .suite = { .hash = __VECS(poly1305_tv_template) } }, { .alg = "rfc3686(ctr(aes))", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_ctr_rfc3686_tv_template) } }, { .alg = "rfc4106(gcm(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(aes_gcm_rfc4106_enc_tv_template), .dec = __VECS(aes_gcm_rfc4106_dec_tv_template) } } }, { .alg = "rfc4309(ccm(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = __VECS(aes_ccm_rfc4309_enc_tv_template), .dec = __VECS(aes_ccm_rfc4309_dec_tv_template) } } }, { .alg = "rfc4543(gcm(aes))", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(aes_gcm_rfc4543_enc_tv_template), .dec = __VECS(aes_gcm_rfc4543_dec_tv_template), } } }, { .alg = "rfc7539(chacha20,poly1305)", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(rfc7539_enc_tv_template), .dec = __VECS(rfc7539_dec_tv_template), } } }, { .alg = "rfc7539esp(chacha20,poly1305)", .test = alg_test_aead, .suite = { .aead = { .enc = __VECS(rfc7539esp_enc_tv_template), .dec = __VECS(rfc7539esp_dec_tv_template), } } }, { .alg = "rmd128", .test = alg_test_hash, .suite = { .hash = __VECS(rmd128_tv_template) } }, { .alg = "rmd160", .test = alg_test_hash, .suite = { .hash = __VECS(rmd160_tv_template) } }, { .alg = "rmd256", .test = alg_test_hash, .suite = { .hash = __VECS(rmd256_tv_template) } }, { .alg = "rmd320", .test = alg_test_hash, .suite = { .hash = __VECS(rmd320_tv_template) } }, { .alg = "rsa", .test = alg_test_akcipher, .fips_allowed = 1, .suite = { .akcipher = __VECS(rsa_tv_template) } }, { .alg = "salsa20", .test = alg_test_skcipher, .suite = { .cipher = __VECS(salsa20_stream_tv_template) } }, { .alg = "sha1", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha1_tv_template) } }, { .alg = "sha224", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha224_tv_template) } }, { .alg = "sha256", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha256_tv_template) } }, { .alg = "sha3-224", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_224_tv_template) } }, { .alg = "sha3-256", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_256_tv_template) } }, { .alg = "sha3-384", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_384_tv_template) } }, { .alg = "sha3-512", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_512_tv_template) } }, { .alg = "sha384", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha384_tv_template) } }, { .alg = "sha512", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha512_tv_template) } }, { .alg = "sm3", .test = alg_test_hash, .suite = { .hash = __VECS(sm3_tv_template) } }, { .alg = "tgr128", .test = alg_test_hash, .suite = { .hash = __VECS(tgr128_tv_template) } }, { .alg = "tgr160", .test = alg_test_hash, .suite = { .hash = __VECS(tgr160_tv_template) } }, { .alg = "tgr192", .test = alg_test_hash, .suite = { .hash = __VECS(tgr192_tv_template) } }, { .alg = "vmac64(aes)", .test = alg_test_hash, .suite = { .hash = __VECS(vmac64_aes_tv_template) } }, { .alg = "wp256", .test = alg_test_hash, .suite = { .hash = __VECS(wp256_tv_template) } }, { .alg = "wp384", .test = alg_test_hash, .suite = { .hash = __VECS(wp384_tv_template) } }, { .alg = "wp512", .test = alg_test_hash, .suite = { .hash = __VECS(wp512_tv_template) } }, { .alg = "xcbc(aes)", .test = alg_test_hash, .suite = { .hash = __VECS(aes_xcbc128_tv_template) } }, { .alg = "xts(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_xts_tv_template) } }, { .alg = "xts(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_xts_tv_template) } }, { .alg = "xts(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_xts_tv_template) } }, { /* Same as xts(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "xts(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "xts(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_xts_tv_template) } }, { .alg = "xts(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_xts_tv_template) } }, { .alg = "xts4096(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "xts512(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "zlib-deflate", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(zlib_deflate_comp_tv_template), .decomp = __VECS(zlib_deflate_decomp_tv_template) } } }, { .alg = "zstd", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(zstd_comp_tv_template), .decomp = __VECS(zstd_decomp_tv_template) } } } }; static bool alg_test_descs_checked; static void alg_test_descs_check_order(void) { int i; /* only check once */ if (alg_test_descs_checked) return; alg_test_descs_checked = true; for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { int diff = strcmp(alg_test_descs[i - 1].alg, alg_test_descs[i].alg); if (WARN_ON(diff > 0)) { pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", alg_test_descs[i - 1].alg, alg_test_descs[i].alg); } if (WARN_ON(diff == 0)) { pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", alg_test_descs[i].alg); } } } static int alg_find_test(const char *alg) { int start = 0; int end = ARRAY_SIZE(alg_test_descs); while (start < end) { int i = (start + end) / 2; int diff = strcmp(alg_test_descs[i].alg, alg); if (diff > 0) { end = i; continue; } if (diff < 0) { start = i + 1; continue; } return i; } return -1; } int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { int i; int j; int rc; if (!fips_enabled && notests) { printk_once(KERN_INFO "alg: self-tests disabled\n"); return 0; } alg_test_descs_check_order(); if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { char nalg[CRYPTO_MAX_ALG_NAME]; if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= sizeof(nalg)) return -ENAMETOOLONG; i = alg_find_test(nalg); if (i < 0) goto notest; if (fips_enabled && !alg_test_descs[i].fips_allowed) goto non_fips_alg; rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); goto test_done; } i = alg_find_test(alg); j = alg_find_test(driver); if (i < 0 && j < 0) goto notest; if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) || (j >= 0 && !alg_test_descs[j].fips_allowed))) goto non_fips_alg; rc = 0; if (i >= 0) rc |= alg_test_descs[i].test(alg_test_descs + i, driver, type, mask); if (j >= 0 && j != i) rc |= alg_test_descs[j].test(alg_test_descs + j, driver, type, mask); test_done: if (fips_enabled && rc) panic("%s: %s alg self test failed in fips mode!\n", driver, alg); if (fips_enabled && !rc) pr_info("alg: self-tests for %s (%s) passed\n", driver, alg); return rc; notest: printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); return 0; non_fips_alg: return -EINVAL; } #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ EXPORT_SYMBOL_GPL(alg_test);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1