Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luis R. Rodriguez | 1779 | 38.84% | 31 | 25.83% |
Ming Lei | 1287 | 28.10% | 21 | 17.50% |
Takashi Iwai | 407 | 8.89% | 8 | 6.67% |
Manuel Estrada Sainz | 303 | 6.62% | 2 | 1.67% |
Stephen Boyd | 225 | 4.91% | 4 | 3.33% |
Dmitry Torokhov | 115 | 2.51% | 2 | 1.67% |
Andres Rodriguez | 82 | 1.79% | 4 | 3.33% |
Daniel Wagner | 56 | 1.22% | 4 | 3.33% |
Linus Torvalds | 55 | 1.20% | 1 | 0.83% |
Andrew Morton | 39 | 0.85% | 6 | 5.00% |
Rafael J. Wysocki | 37 | 0.81% | 2 | 1.67% |
Abhay Salunke | 31 | 0.68% | 1 | 0.83% |
Rishabh Bhatnagar | 29 | 0.63% | 1 | 0.83% |
Kees Cook | 19 | 0.41% | 2 | 1.67% |
David Woodhouse | 15 | 0.33% | 3 | 2.50% |
Daniel Mack | 15 | 0.33% | 1 | 0.83% |
Neil Horman | 14 | 0.31% | 1 | 0.83% |
Björn Andersson | 14 | 0.31% | 2 | 1.67% |
Brian Norris | 10 | 0.22% | 1 | 0.83% |
Chuansheng Liu | 7 | 0.15% | 1 | 0.83% |
Matthieu CASTET | 5 | 0.11% | 1 | 0.83% |
Johannes Berg | 5 | 0.11% | 2 | 1.67% |
Tejun Heo | 3 | 0.07% | 1 | 0.83% |
Kay Sievers | 3 | 0.07% | 2 | 1.67% |
Randy Dunlap | 3 | 0.07% | 1 | 0.83% |
Sebastian Capella | 3 | 0.07% | 1 | 0.83% |
Mimi Zohar | 3 | 0.07% | 1 | 0.83% |
Shaibal Dutta | 3 | 0.07% | 1 | 0.83% |
Sukadev Bhattiprolu | 2 | 0.04% | 1 | 0.83% |
Greg Kroah-Hartman | 2 | 0.04% | 2 | 1.67% |
zhang jun | 1 | 0.02% | 1 | 0.83% |
Laura Garcia Liebana | 1 | 0.02% | 1 | 0.83% |
Björn Helgaas | 1 | 0.02% | 1 | 0.83% |
Chen Feng | 1 | 0.02% | 1 | 0.83% |
Maxime Bizon | 1 | 0.02% | 1 | 0.83% |
Christoph Hellwig | 1 | 0.02% | 1 | 0.83% |
Bob Liu | 1 | 0.02% | 1 | 0.83% |
Markus Rechberger | 1 | 0.02% | 1 | 0.83% |
Shaohua Li | 1 | 0.02% | 1 | 0.83% |
Total | 4580 | 120 |
// SPDX-License-Identifier: GPL-2.0 /* * main.c - Multi purpose firmware loading support * * Copyright (c) 2003 Manuel Estrada Sainz * * Please see Documentation/firmware_class/ for more information. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/device.h> #include <linux/module.h> #include <linux/init.h> #include <linux/timer.h> #include <linux/vmalloc.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/workqueue.h> #include <linux/highmem.h> #include <linux/firmware.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/file.h> #include <linux/list.h> #include <linux/fs.h> #include <linux/async.h> #include <linux/pm.h> #include <linux/suspend.h> #include <linux/syscore_ops.h> #include <linux/reboot.h> #include <linux/security.h> #include <generated/utsrelease.h> #include "../base.h" #include "firmware.h" #include "fallback.h" MODULE_AUTHOR("Manuel Estrada Sainz"); MODULE_DESCRIPTION("Multi purpose firmware loading support"); MODULE_LICENSE("GPL"); struct firmware_cache { /* firmware_buf instance will be added into the below list */ spinlock_t lock; struct list_head head; int state; #ifdef CONFIG_PM_SLEEP /* * Names of firmware images which have been cached successfully * will be added into the below list so that device uncache * helper can trace which firmware images have been cached * before. */ spinlock_t name_lock; struct list_head fw_names; struct delayed_work work; struct notifier_block pm_notify; #endif }; struct fw_cache_entry { struct list_head list; const char *name; }; struct fw_name_devm { unsigned long magic; const char *name; }; static inline struct fw_priv *to_fw_priv(struct kref *ref) { return container_of(ref, struct fw_priv, ref); } #define FW_LOADER_NO_CACHE 0 #define FW_LOADER_START_CACHE 1 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just * guarding for corner cases a global lock should be OK */ DEFINE_MUTEX(fw_lock); static struct firmware_cache fw_cache; /* Builtin firmware support */ #ifdef CONFIG_FW_LOADER extern struct builtin_fw __start_builtin_fw[]; extern struct builtin_fw __end_builtin_fw[]; static void fw_copy_to_prealloc_buf(struct firmware *fw, void *buf, size_t size) { if (!buf || size < fw->size) return; memcpy(buf, fw->data, fw->size); } static bool fw_get_builtin_firmware(struct firmware *fw, const char *name, void *buf, size_t size) { struct builtin_fw *b_fw; for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) { if (strcmp(name, b_fw->name) == 0) { fw->size = b_fw->size; fw->data = b_fw->data; fw_copy_to_prealloc_buf(fw, buf, size); return true; } } return false; } static bool fw_is_builtin_firmware(const struct firmware *fw) { struct builtin_fw *b_fw; for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) if (fw->data == b_fw->data) return true; return false; } #else /* Module case - no builtin firmware support */ static inline bool fw_get_builtin_firmware(struct firmware *fw, const char *name, void *buf, size_t size) { return false; } static inline bool fw_is_builtin_firmware(const struct firmware *fw) { return false; } #endif static void fw_state_init(struct fw_priv *fw_priv) { struct fw_state *fw_st = &fw_priv->fw_st; init_completion(&fw_st->completion); fw_st->status = FW_STATUS_UNKNOWN; } static inline int fw_state_wait(struct fw_priv *fw_priv) { return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); } static int fw_cache_piggyback_on_request(const char *name); static struct fw_priv *__allocate_fw_priv(const char *fw_name, struct firmware_cache *fwc, void *dbuf, size_t size) { struct fw_priv *fw_priv; fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); if (!fw_priv) return NULL; fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); if (!fw_priv->fw_name) { kfree(fw_priv); return NULL; } kref_init(&fw_priv->ref); fw_priv->fwc = fwc; fw_priv->data = dbuf; fw_priv->allocated_size = size; fw_state_init(fw_priv); #ifdef CONFIG_FW_LOADER_USER_HELPER INIT_LIST_HEAD(&fw_priv->pending_list); #endif pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); return fw_priv; } static struct fw_priv *__lookup_fw_priv(const char *fw_name) { struct fw_priv *tmp; struct firmware_cache *fwc = &fw_cache; list_for_each_entry(tmp, &fwc->head, list) if (!strcmp(tmp->fw_name, fw_name)) return tmp; return NULL; } /* Returns 1 for batching firmware requests with the same name */ static int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc, struct fw_priv **fw_priv, void *dbuf, size_t size, enum fw_opt opt_flags) { struct fw_priv *tmp; spin_lock(&fwc->lock); if (!(opt_flags & FW_OPT_NOCACHE)) { tmp = __lookup_fw_priv(fw_name); if (tmp) { kref_get(&tmp->ref); spin_unlock(&fwc->lock); *fw_priv = tmp; pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); return 1; } } tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size); if (tmp) { INIT_LIST_HEAD(&tmp->list); if (!(opt_flags & FW_OPT_NOCACHE)) list_add(&tmp->list, &fwc->head); } spin_unlock(&fwc->lock); *fw_priv = tmp; return tmp ? 0 : -ENOMEM; } static void __free_fw_priv(struct kref *ref) __releases(&fwc->lock) { struct fw_priv *fw_priv = to_fw_priv(ref); struct firmware_cache *fwc = fw_priv->fwc; pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", __func__, fw_priv->fw_name, fw_priv, fw_priv->data, (unsigned int)fw_priv->size); list_del(&fw_priv->list); spin_unlock(&fwc->lock); #ifdef CONFIG_FW_LOADER_USER_HELPER if (fw_priv->is_paged_buf) { int i; vunmap(fw_priv->data); for (i = 0; i < fw_priv->nr_pages; i++) __free_page(fw_priv->pages[i]); vfree(fw_priv->pages); } else #endif if (!fw_priv->allocated_size) vfree(fw_priv->data); kfree_const(fw_priv->fw_name); kfree(fw_priv); } static void free_fw_priv(struct fw_priv *fw_priv) { struct firmware_cache *fwc = fw_priv->fwc; spin_lock(&fwc->lock); if (!kref_put(&fw_priv->ref, __free_fw_priv)) spin_unlock(&fwc->lock); } /* direct firmware loading support */ static char fw_path_para[256]; static const char * const fw_path[] = { fw_path_para, "/lib/firmware/updates/" UTS_RELEASE, "/lib/firmware/updates", "/lib/firmware/" UTS_RELEASE, "/lib/firmware" }; /* * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' * from kernel command line because firmware_class is generally built in * kernel instead of module. */ module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); static int fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv) { loff_t size; int i, len; int rc = -ENOENT; char *path; enum kernel_read_file_id id = READING_FIRMWARE; size_t msize = INT_MAX; /* Already populated data member means we're loading into a buffer */ if (fw_priv->data) { id = READING_FIRMWARE_PREALLOC_BUFFER; msize = fw_priv->allocated_size; } path = __getname(); if (!path) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(fw_path); i++) { /* skip the unset customized path */ if (!fw_path[i][0]) continue; len = snprintf(path, PATH_MAX, "%s/%s", fw_path[i], fw_priv->fw_name); if (len >= PATH_MAX) { rc = -ENAMETOOLONG; break; } fw_priv->size = 0; rc = kernel_read_file_from_path(path, &fw_priv->data, &size, msize, id); if (rc) { if (rc == -ENOENT) dev_dbg(device, "loading %s failed with error %d\n", path, rc); else dev_warn(device, "loading %s failed with error %d\n", path, rc); continue; } dev_dbg(device, "direct-loading %s\n", fw_priv->fw_name); fw_priv->size = size; fw_state_done(fw_priv); break; } __putname(path); return rc; } /* firmware holds the ownership of pages */ static void firmware_free_data(const struct firmware *fw) { /* Loaded directly? */ if (!fw->priv) { vfree(fw->data); return; } free_fw_priv(fw->priv); } /* store the pages buffer info firmware from buf */ static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) { fw->priv = fw_priv; #ifdef CONFIG_FW_LOADER_USER_HELPER fw->pages = fw_priv->pages; #endif fw->size = fw_priv->size; fw->data = fw_priv->data; pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", __func__, fw_priv->fw_name, fw_priv, fw_priv->data, (unsigned int)fw_priv->size); } #ifdef CONFIG_PM_SLEEP static void fw_name_devm_release(struct device *dev, void *res) { struct fw_name_devm *fwn = res; if (fwn->magic == (unsigned long)&fw_cache) pr_debug("%s: fw_name-%s devm-%p released\n", __func__, fwn->name, res); kfree_const(fwn->name); } static int fw_devm_match(struct device *dev, void *res, void *match_data) { struct fw_name_devm *fwn = res; return (fwn->magic == (unsigned long)&fw_cache) && !strcmp(fwn->name, match_data); } static struct fw_name_devm *fw_find_devm_name(struct device *dev, const char *name) { struct fw_name_devm *fwn; fwn = devres_find(dev, fw_name_devm_release, fw_devm_match, (void *)name); return fwn; } static bool fw_cache_is_setup(struct device *dev, const char *name) { struct fw_name_devm *fwn; fwn = fw_find_devm_name(dev, name); if (fwn) return true; return false; } /* add firmware name into devres list */ static int fw_add_devm_name(struct device *dev, const char *name) { struct fw_name_devm *fwn; if (fw_cache_is_setup(dev, name)) return 0; fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), GFP_KERNEL); if (!fwn) return -ENOMEM; fwn->name = kstrdup_const(name, GFP_KERNEL); if (!fwn->name) { devres_free(fwn); return -ENOMEM; } fwn->magic = (unsigned long)&fw_cache; devres_add(dev, fwn); return 0; } #else static bool fw_cache_is_setup(struct device *dev, const char *name) { return false; } static int fw_add_devm_name(struct device *dev, const char *name) { return 0; } #endif int assign_fw(struct firmware *fw, struct device *device, enum fw_opt opt_flags) { struct fw_priv *fw_priv = fw->priv; int ret; mutex_lock(&fw_lock); if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { mutex_unlock(&fw_lock); return -ENOENT; } /* * add firmware name into devres list so that we can auto cache * and uncache firmware for device. * * device may has been deleted already, but the problem * should be fixed in devres or driver core. */ /* don't cache firmware handled without uevent */ if (device && (opt_flags & FW_OPT_UEVENT) && !(opt_flags & FW_OPT_NOCACHE)) { ret = fw_add_devm_name(device, fw_priv->fw_name); if (ret) { mutex_unlock(&fw_lock); return ret; } } /* * After caching firmware image is started, let it piggyback * on request firmware. */ if (!(opt_flags & FW_OPT_NOCACHE) && fw_priv->fwc->state == FW_LOADER_START_CACHE) { if (fw_cache_piggyback_on_request(fw_priv->fw_name)) kref_get(&fw_priv->ref); } /* pass the pages buffer to driver at the last minute */ fw_set_page_data(fw_priv, fw); mutex_unlock(&fw_lock); return 0; } /* prepare firmware and firmware_buf structs; * return 0 if a firmware is already assigned, 1 if need to load one, * or a negative error code */ static int _request_firmware_prepare(struct firmware **firmware_p, const char *name, struct device *device, void *dbuf, size_t size, enum fw_opt opt_flags) { struct firmware *firmware; struct fw_priv *fw_priv; int ret; *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); if (!firmware) { dev_err(device, "%s: kmalloc(struct firmware) failed\n", __func__); return -ENOMEM; } if (fw_get_builtin_firmware(firmware, name, dbuf, size)) { dev_dbg(device, "using built-in %s\n", name); return 0; /* assigned */ } ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, opt_flags); /* * bind with 'priv' now to avoid warning in failure path * of requesting firmware. */ firmware->priv = fw_priv; if (ret > 0) { ret = fw_state_wait(fw_priv); if (!ret) { fw_set_page_data(fw_priv, firmware); return 0; /* assigned */ } } if (ret < 0) return ret; return 1; /* need to load */ } /* * Batched requests need only one wake, we need to do this step last due to the * fallback mechanism. The buf is protected with kref_get(), and it won't be * released until the last user calls release_firmware(). * * Failed batched requests are possible as well, in such cases we just share * the struct fw_priv and won't release it until all requests are woken * and have gone through this same path. */ static void fw_abort_batch_reqs(struct firmware *fw) { struct fw_priv *fw_priv; /* Loaded directly? */ if (!fw || !fw->priv) return; fw_priv = fw->priv; if (!fw_state_is_aborted(fw_priv)) fw_state_aborted(fw_priv); } /* called from request_firmware() and request_firmware_work_func() */ static int _request_firmware(const struct firmware **firmware_p, const char *name, struct device *device, void *buf, size_t size, enum fw_opt opt_flags) { struct firmware *fw = NULL; int ret; if (!firmware_p) return -EINVAL; if (!name || name[0] == '\0') { ret = -EINVAL; goto out; } ret = _request_firmware_prepare(&fw, name, device, buf, size, opt_flags); if (ret <= 0) /* error or already assigned */ goto out; ret = fw_get_filesystem_firmware(device, fw->priv); if (ret) { if (!(opt_flags & FW_OPT_NO_WARN)) dev_warn(device, "Direct firmware load for %s failed with error %d\n", name, ret); ret = firmware_fallback_sysfs(fw, name, device, opt_flags, ret); } else ret = assign_fw(fw, device, opt_flags); out: if (ret < 0) { fw_abort_batch_reqs(fw); release_firmware(fw); fw = NULL; } *firmware_p = fw; return ret; } /** * request_firmware() - send firmware request and wait for it * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * @firmware_p will be used to return a firmware image by the name * of @name for device @device. * * Should be called from user context where sleeping is allowed. * * @name will be used as $FIRMWARE in the uevent environment and * should be distinctive enough not to be confused with any other * firmware image for this or any other device. * * Caller must hold the reference count of @device. * * The function can be called safely inside device's suspend and * resume callback. **/ int request_firmware(const struct firmware **firmware_p, const char *name, struct device *device) { int ret; /* Need to pin this module until return */ __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, NULL, 0, FW_OPT_UEVENT); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL(request_firmware); /** * firmware_request_nowarn() - request for an optional fw module * @firmware: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * This function is similar in behaviour to request_firmware(), except * it doesn't produce warning messages when the file is not found. * The sysfs fallback mechanism is enabled if direct filesystem lookup fails, * however, however failures to find the firmware file with it are still * suppressed. It is therefore up to the driver to check for the return value * of this call and to decide when to inform the users of errors. **/ int firmware_request_nowarn(const struct firmware **firmware, const char *name, struct device *device) { int ret; /* Need to pin this module until return */ __module_get(THIS_MODULE); ret = _request_firmware(firmware, name, device, NULL, 0, FW_OPT_UEVENT | FW_OPT_NO_WARN); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL_GPL(firmware_request_nowarn); /** * request_firmware_direct() - load firmware directly without usermode helper * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * This function works pretty much like request_firmware(), but this doesn't * fall back to usermode helper even if the firmware couldn't be loaded * directly from fs. Hence it's useful for loading optional firmwares, which * aren't always present, without extra long timeouts of udev. **/ int request_firmware_direct(const struct firmware **firmware_p, const char *name, struct device *device) { int ret; __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, NULL, 0, FW_OPT_UEVENT | FW_OPT_NO_WARN | FW_OPT_NOFALLBACK); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL_GPL(request_firmware_direct); /** * firmware_request_cache() - cache firmware for suspend so resume can use it * @name: name of firmware file * @device: device for which firmware should be cached for * * There are some devices with an optimization that enables the device to not * require loading firmware on system reboot. This optimization may still * require the firmware present on resume from suspend. This routine can be * used to ensure the firmware is present on resume from suspend in these * situations. This helper is not compatible with drivers which use * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. **/ int firmware_request_cache(struct device *device, const char *name) { int ret; mutex_lock(&fw_lock); ret = fw_add_devm_name(device, name); mutex_unlock(&fw_lock); return ret; } EXPORT_SYMBOL_GPL(firmware_request_cache); /** * request_firmware_into_buf() - load firmware into a previously allocated buffer * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded and DMA region allocated * @buf: address of buffer to load firmware into * @size: size of buffer * * This function works pretty much like request_firmware(), but it doesn't * allocate a buffer to hold the firmware data. Instead, the firmware * is loaded directly into the buffer pointed to by @buf and the @firmware_p * data member is pointed at @buf. * * This function doesn't cache firmware either. */ int request_firmware_into_buf(const struct firmware **firmware_p, const char *name, struct device *device, void *buf, size_t size) { int ret; if (fw_cache_is_setup(device, name)) return -EOPNOTSUPP; __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, buf, size, FW_OPT_UEVENT | FW_OPT_NOCACHE); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL(request_firmware_into_buf); /** * release_firmware() - release the resource associated with a firmware image * @fw: firmware resource to release **/ void release_firmware(const struct firmware *fw) { if (fw) { if (!fw_is_builtin_firmware(fw)) firmware_free_data(fw); kfree(fw); } } EXPORT_SYMBOL(release_firmware); /* Async support */ struct firmware_work { struct work_struct work; struct module *module; const char *name; struct device *device; void *context; void (*cont)(const struct firmware *fw, void *context); enum fw_opt opt_flags; }; static void request_firmware_work_func(struct work_struct *work) { struct firmware_work *fw_work; const struct firmware *fw; fw_work = container_of(work, struct firmware_work, work); _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, fw_work->opt_flags); fw_work->cont(fw, fw_work->context); put_device(fw_work->device); /* taken in request_firmware_nowait() */ module_put(fw_work->module); kfree_const(fw_work->name); kfree(fw_work); } /** * request_firmware_nowait() - asynchronous version of request_firmware * @module: module requesting the firmware * @uevent: sends uevent to copy the firmware image if this flag * is non-zero else the firmware copy must be done manually. * @name: name of firmware file * @device: device for which firmware is being loaded * @gfp: allocation flags * @context: will be passed over to @cont, and * @fw may be %NULL if firmware request fails. * @cont: function will be called asynchronously when the firmware * request is over. * * Caller must hold the reference count of @device. * * Asynchronous variant of request_firmware() for user contexts: * - sleep for as small periods as possible since it may * increase kernel boot time of built-in device drivers * requesting firmware in their ->probe() methods, if * @gfp is GFP_KERNEL. * * - can't sleep at all if @gfp is GFP_ATOMIC. **/ int request_firmware_nowait( struct module *module, bool uevent, const char *name, struct device *device, gfp_t gfp, void *context, void (*cont)(const struct firmware *fw, void *context)) { struct firmware_work *fw_work; fw_work = kzalloc(sizeof(struct firmware_work), gfp); if (!fw_work) return -ENOMEM; fw_work->module = module; fw_work->name = kstrdup_const(name, gfp); if (!fw_work->name) { kfree(fw_work); return -ENOMEM; } fw_work->device = device; fw_work->context = context; fw_work->cont = cont; fw_work->opt_flags = FW_OPT_NOWAIT | (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); if (!uevent && fw_cache_is_setup(device, name)) { kfree_const(fw_work->name); kfree(fw_work); return -EOPNOTSUPP; } if (!try_module_get(module)) { kfree_const(fw_work->name); kfree(fw_work); return -EFAULT; } get_device(fw_work->device); INIT_WORK(&fw_work->work, request_firmware_work_func); schedule_work(&fw_work->work); return 0; } EXPORT_SYMBOL(request_firmware_nowait); #ifdef CONFIG_PM_SLEEP static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); /** * cache_firmware() - cache one firmware image in kernel memory space * @fw_name: the firmware image name * * Cache firmware in kernel memory so that drivers can use it when * system isn't ready for them to request firmware image from userspace. * Once it returns successfully, driver can use request_firmware or its * nowait version to get the cached firmware without any interacting * with userspace * * Return 0 if the firmware image has been cached successfully * Return !0 otherwise * */ static int cache_firmware(const char *fw_name) { int ret; const struct firmware *fw; pr_debug("%s: %s\n", __func__, fw_name); ret = request_firmware(&fw, fw_name, NULL); if (!ret) kfree(fw); pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); return ret; } static struct fw_priv *lookup_fw_priv(const char *fw_name) { struct fw_priv *tmp; struct firmware_cache *fwc = &fw_cache; spin_lock(&fwc->lock); tmp = __lookup_fw_priv(fw_name); spin_unlock(&fwc->lock); return tmp; } /** * uncache_firmware() - remove one cached firmware image * @fw_name: the firmware image name * * Uncache one firmware image which has been cached successfully * before. * * Return 0 if the firmware cache has been removed successfully * Return !0 otherwise * */ static int uncache_firmware(const char *fw_name) { struct fw_priv *fw_priv; struct firmware fw; pr_debug("%s: %s\n", __func__, fw_name); if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0)) return 0; fw_priv = lookup_fw_priv(fw_name); if (fw_priv) { free_fw_priv(fw_priv); return 0; } return -EINVAL; } static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) { struct fw_cache_entry *fce; fce = kzalloc(sizeof(*fce), GFP_ATOMIC); if (!fce) goto exit; fce->name = kstrdup_const(name, GFP_ATOMIC); if (!fce->name) { kfree(fce); fce = NULL; goto exit; } exit: return fce; } static int __fw_entry_found(const char *name) { struct firmware_cache *fwc = &fw_cache; struct fw_cache_entry *fce; list_for_each_entry(fce, &fwc->fw_names, list) { if (!strcmp(fce->name, name)) return 1; } return 0; } static int fw_cache_piggyback_on_request(const char *name) { struct firmware_cache *fwc = &fw_cache; struct fw_cache_entry *fce; int ret = 0; spin_lock(&fwc->name_lock); if (__fw_entry_found(name)) goto found; fce = alloc_fw_cache_entry(name); if (fce) { ret = 1; list_add(&fce->list, &fwc->fw_names); pr_debug("%s: fw: %s\n", __func__, name); } found: spin_unlock(&fwc->name_lock); return ret; } static void free_fw_cache_entry(struct fw_cache_entry *fce) { kfree_const(fce->name); kfree(fce); } static void __async_dev_cache_fw_image(void *fw_entry, async_cookie_t cookie) { struct fw_cache_entry *fce = fw_entry; struct firmware_cache *fwc = &fw_cache; int ret; ret = cache_firmware(fce->name); if (ret) { spin_lock(&fwc->name_lock); list_del(&fce->list); spin_unlock(&fwc->name_lock); free_fw_cache_entry(fce); } } /* called with dev->devres_lock held */ static void dev_create_fw_entry(struct device *dev, void *res, void *data) { struct fw_name_devm *fwn = res; const char *fw_name = fwn->name; struct list_head *head = data; struct fw_cache_entry *fce; fce = alloc_fw_cache_entry(fw_name); if (fce) list_add(&fce->list, head); } static int devm_name_match(struct device *dev, void *res, void *match_data) { struct fw_name_devm *fwn = res; return (fwn->magic == (unsigned long)match_data); } static void dev_cache_fw_image(struct device *dev, void *data) { LIST_HEAD(todo); struct fw_cache_entry *fce; struct fw_cache_entry *fce_next; struct firmware_cache *fwc = &fw_cache; devres_for_each_res(dev, fw_name_devm_release, devm_name_match, &fw_cache, dev_create_fw_entry, &todo); list_for_each_entry_safe(fce, fce_next, &todo, list) { list_del(&fce->list); spin_lock(&fwc->name_lock); /* only one cache entry for one firmware */ if (!__fw_entry_found(fce->name)) { list_add(&fce->list, &fwc->fw_names); } else { free_fw_cache_entry(fce); fce = NULL; } spin_unlock(&fwc->name_lock); if (fce) async_schedule_domain(__async_dev_cache_fw_image, (void *)fce, &fw_cache_domain); } } static void __device_uncache_fw_images(void) { struct firmware_cache *fwc = &fw_cache; struct fw_cache_entry *fce; spin_lock(&fwc->name_lock); while (!list_empty(&fwc->fw_names)) { fce = list_entry(fwc->fw_names.next, struct fw_cache_entry, list); list_del(&fce->list); spin_unlock(&fwc->name_lock); uncache_firmware(fce->name); free_fw_cache_entry(fce); spin_lock(&fwc->name_lock); } spin_unlock(&fwc->name_lock); } /** * device_cache_fw_images() - cache devices' firmware * * If one device called request_firmware or its nowait version * successfully before, the firmware names are recored into the * device's devres link list, so device_cache_fw_images can call * cache_firmware() to cache these firmwares for the device, * then the device driver can load its firmwares easily at * time when system is not ready to complete loading firmware. */ static void device_cache_fw_images(void) { struct firmware_cache *fwc = &fw_cache; DEFINE_WAIT(wait); pr_debug("%s\n", __func__); /* cancel uncache work */ cancel_delayed_work_sync(&fwc->work); fw_fallback_set_cache_timeout(); mutex_lock(&fw_lock); fwc->state = FW_LOADER_START_CACHE; dpm_for_each_dev(NULL, dev_cache_fw_image); mutex_unlock(&fw_lock); /* wait for completion of caching firmware for all devices */ async_synchronize_full_domain(&fw_cache_domain); fw_fallback_set_default_timeout(); } /** * device_uncache_fw_images() - uncache devices' firmware * * uncache all firmwares which have been cached successfully * by device_uncache_fw_images earlier */ static void device_uncache_fw_images(void) { pr_debug("%s\n", __func__); __device_uncache_fw_images(); } static void device_uncache_fw_images_work(struct work_struct *work) { device_uncache_fw_images(); } /** * device_uncache_fw_images_delay() - uncache devices firmwares * @delay: number of milliseconds to delay uncache device firmwares * * uncache all devices's firmwares which has been cached successfully * by device_cache_fw_images after @delay milliseconds. */ static void device_uncache_fw_images_delay(unsigned long delay) { queue_delayed_work(system_power_efficient_wq, &fw_cache.work, msecs_to_jiffies(delay)); } static int fw_pm_notify(struct notifier_block *notify_block, unsigned long mode, void *unused) { switch (mode) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: case PM_RESTORE_PREPARE: /* * kill pending fallback requests with a custom fallback * to avoid stalling suspend. */ kill_pending_fw_fallback_reqs(true); device_cache_fw_images(); break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: case PM_POST_RESTORE: /* * In case that system sleep failed and syscore_suspend is * not called. */ mutex_lock(&fw_lock); fw_cache.state = FW_LOADER_NO_CACHE; mutex_unlock(&fw_lock); device_uncache_fw_images_delay(10 * MSEC_PER_SEC); break; } return 0; } /* stop caching firmware once syscore_suspend is reached */ static int fw_suspend(void) { fw_cache.state = FW_LOADER_NO_CACHE; return 0; } static struct syscore_ops fw_syscore_ops = { .suspend = fw_suspend, }; static int __init register_fw_pm_ops(void) { int ret; spin_lock_init(&fw_cache.name_lock); INIT_LIST_HEAD(&fw_cache.fw_names); INIT_DELAYED_WORK(&fw_cache.work, device_uncache_fw_images_work); fw_cache.pm_notify.notifier_call = fw_pm_notify; ret = register_pm_notifier(&fw_cache.pm_notify); if (ret) return ret; register_syscore_ops(&fw_syscore_ops); return ret; } static inline void unregister_fw_pm_ops(void) { unregister_syscore_ops(&fw_syscore_ops); unregister_pm_notifier(&fw_cache.pm_notify); } #else static int fw_cache_piggyback_on_request(const char *name) { return 0; } static inline int register_fw_pm_ops(void) { return 0; } static inline void unregister_fw_pm_ops(void) { } #endif static void __init fw_cache_init(void) { spin_lock_init(&fw_cache.lock); INIT_LIST_HEAD(&fw_cache.head); fw_cache.state = FW_LOADER_NO_CACHE; } static int fw_shutdown_notify(struct notifier_block *unused1, unsigned long unused2, void *unused3) { /* * Kill all pending fallback requests to avoid both stalling shutdown, * and avoid a deadlock with the usermode_lock. */ kill_pending_fw_fallback_reqs(false); return NOTIFY_DONE; } static struct notifier_block fw_shutdown_nb = { .notifier_call = fw_shutdown_notify, }; static int __init firmware_class_init(void) { int ret; /* No need to unfold these on exit */ fw_cache_init(); ret = register_fw_pm_ops(); if (ret) return ret; ret = register_reboot_notifier(&fw_shutdown_nb); if (ret) goto out; return register_sysfs_loader(); out: unregister_fw_pm_ops(); return ret; } static void __exit firmware_class_exit(void) { unregister_fw_pm_ops(); unregister_reboot_notifier(&fw_shutdown_nb); unregister_sysfs_loader(); } fs_initcall(firmware_class_init); module_exit(firmware_class_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1