Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Young Tae Kim | 3511 | 58.02% | 1 | 3.85% |
Balakrishna Godavarthi | 2000 | 33.05% | 8 | 30.77% |
Thierry Escande | 430 | 7.11% | 2 | 7.69% |
Kees Cook | 42 | 0.69% | 2 | 7.69% |
Marcel Holtmann | 17 | 0.28% | 3 | 11.54% |
Amit Pundir | 15 | 0.25% | 1 | 3.85% |
Loic Poulain | 15 | 0.25% | 1 | 3.85% |
Prasanna Karthik | 9 | 0.15% | 2 | 7.69% |
Bhaktipriya Shridhar | 3 | 0.05% | 1 | 3.85% |
Johannes Berg | 3 | 0.05% | 2 | 7.69% |
Colin Ian King | 2 | 0.03% | 1 | 3.85% |
Viresh Kumar | 2 | 0.03% | 1 | 3.85% |
Jia-Ju Bai | 2 | 0.03% | 1 | 3.85% |
Total | 6051 | 26 |
/* * Bluetooth Software UART Qualcomm protocol * * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management * protocol extension to H4. * * Copyright (C) 2007 Texas Instruments, Inc. * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. * * Acknowledgements: * This file is based on hci_ll.c, which was... * Written by Ohad Ben-Cohen <ohad@bencohen.org> * which was in turn based on hci_h4.c, which was written * by Maxim Krasnyansky and Marcel Holtmann. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/kernel.h> #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/serdev.h> #include <asm/unaligned.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include "hci_uart.h" #include "btqca.h" /* HCI_IBS protocol messages */ #define HCI_IBS_SLEEP_IND 0xFE #define HCI_IBS_WAKE_IND 0xFD #define HCI_IBS_WAKE_ACK 0xFC #define HCI_MAX_IBS_SIZE 10 /* Controller states */ #define STATE_IN_BAND_SLEEP_ENABLED 1 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 #define IBS_TX_IDLE_TIMEOUT_MS 2000 #define BAUDRATE_SETTLE_TIMEOUT_MS 300 /* susclk rate */ #define SUSCLK_RATE_32KHZ 32768 /* Controller debug log header */ #define QCA_DEBUG_HANDLE 0x2EDC /* HCI_IBS transmit side sleep protocol states */ enum tx_ibs_states { HCI_IBS_TX_ASLEEP, HCI_IBS_TX_WAKING, HCI_IBS_TX_AWAKE, }; /* HCI_IBS receive side sleep protocol states */ enum rx_states { HCI_IBS_RX_ASLEEP, HCI_IBS_RX_AWAKE, }; /* HCI_IBS transmit and receive side clock state vote */ enum hci_ibs_clock_state_vote { HCI_IBS_VOTE_STATS_UPDATE, HCI_IBS_TX_VOTE_CLOCK_ON, HCI_IBS_TX_VOTE_CLOCK_OFF, HCI_IBS_RX_VOTE_CLOCK_ON, HCI_IBS_RX_VOTE_CLOCK_OFF, }; struct qca_data { struct hci_uart *hu; struct sk_buff *rx_skb; struct sk_buff_head txq; struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ u8 rx_ibs_state; /* HCI_IBS receive side power state */ bool tx_vote; /* Clock must be on for TX */ bool rx_vote; /* Clock must be on for RX */ struct timer_list tx_idle_timer; u32 tx_idle_delay; struct timer_list wake_retrans_timer; u32 wake_retrans; struct workqueue_struct *workqueue; struct work_struct ws_awake_rx; struct work_struct ws_awake_device; struct work_struct ws_rx_vote_off; struct work_struct ws_tx_vote_off; unsigned long flags; /* For debugging purpose */ u64 ibs_sent_wacks; u64 ibs_sent_slps; u64 ibs_sent_wakes; u64 ibs_recv_wacks; u64 ibs_recv_slps; u64 ibs_recv_wakes; u64 vote_last_jif; u32 vote_on_ms; u32 vote_off_ms; u64 tx_votes_on; u64 rx_votes_on; u64 tx_votes_off; u64 rx_votes_off; u64 votes_on; u64 votes_off; }; enum qca_speed_type { QCA_INIT_SPEED = 1, QCA_OPER_SPEED }; /* * Voltage regulator information required for configuring the * QCA Bluetooth chipset */ struct qca_vreg { const char *name; unsigned int min_uV; unsigned int max_uV; unsigned int load_uA; }; struct qca_vreg_data { enum qca_btsoc_type soc_type; struct qca_vreg *vregs; size_t num_vregs; }; /* * Platform data for the QCA Bluetooth power driver. */ struct qca_power { struct device *dev; const struct qca_vreg_data *vreg_data; struct regulator_bulk_data *vreg_bulk; bool vregs_on; }; struct qca_serdev { struct hci_uart serdev_hu; struct gpio_desc *bt_en; struct clk *susclk; enum qca_btsoc_type btsoc_type; struct qca_power *bt_power; u32 init_speed; u32 oper_speed; }; static int qca_power_setup(struct hci_uart *hu, bool on); static void qca_power_shutdown(struct hci_uart *hu); static int qca_power_off(struct hci_dev *hdev); static void __serial_clock_on(struct tty_struct *tty) { /* TODO: Some chipset requires to enable UART clock on client * side to save power consumption or manual work is required. * Please put your code to control UART clock here if needed */ } static void __serial_clock_off(struct tty_struct *tty) { /* TODO: Some chipset requires to disable UART clock on client * side to save power consumption or manual work is required. * Please put your code to control UART clock off here if needed */ } /* serial_clock_vote needs to be called with the ibs lock held */ static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) { struct qca_data *qca = hu->priv; unsigned int diff; bool old_vote = (qca->tx_vote | qca->rx_vote); bool new_vote; switch (vote) { case HCI_IBS_VOTE_STATS_UPDATE: diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); if (old_vote) qca->vote_off_ms += diff; else qca->vote_on_ms += diff; return; case HCI_IBS_TX_VOTE_CLOCK_ON: qca->tx_vote = true; qca->tx_votes_on++; new_vote = true; break; case HCI_IBS_RX_VOTE_CLOCK_ON: qca->rx_vote = true; qca->rx_votes_on++; new_vote = true; break; case HCI_IBS_TX_VOTE_CLOCK_OFF: qca->tx_vote = false; qca->tx_votes_off++; new_vote = qca->rx_vote | qca->tx_vote; break; case HCI_IBS_RX_VOTE_CLOCK_OFF: qca->rx_vote = false; qca->rx_votes_off++; new_vote = qca->rx_vote | qca->tx_vote; break; default: BT_ERR("Voting irregularity"); return; } if (new_vote != old_vote) { if (new_vote) __serial_clock_on(hu->tty); else __serial_clock_off(hu->tty); BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", vote ? "true" : "false"); diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); if (new_vote) { qca->votes_on++; qca->vote_off_ms += diff; } else { qca->votes_off++; qca->vote_on_ms += diff; } qca->vote_last_jif = jiffies; } } /* Builds and sends an HCI_IBS command packet. * These are very simple packets with only 1 cmd byte. */ static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) { int err = 0; struct sk_buff *skb = NULL; struct qca_data *qca = hu->priv; BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); skb = bt_skb_alloc(1, GFP_ATOMIC); if (!skb) { BT_ERR("Failed to allocate memory for HCI_IBS packet"); return -ENOMEM; } /* Assign HCI_IBS type */ skb_put_u8(skb, cmd); skb_queue_tail(&qca->txq, skb); return err; } static void qca_wq_awake_device(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_awake_device); struct hci_uart *hu = qca->hu; unsigned long retrans_delay; BT_DBG("hu %p wq awake device", hu); /* Vote for serial clock */ serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); spin_lock(&qca->hci_ibs_lock); /* Send wake indication to device */ if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) BT_ERR("Failed to send WAKE to device"); qca->ibs_sent_wakes++; /* Start retransmit timer */ retrans_delay = msecs_to_jiffies(qca->wake_retrans); mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); spin_unlock(&qca->hci_ibs_lock); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } static void qca_wq_awake_rx(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_awake_rx); struct hci_uart *hu = qca->hu; BT_DBG("hu %p wq awake rx", hu); serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); spin_lock(&qca->hci_ibs_lock); qca->rx_ibs_state = HCI_IBS_RX_AWAKE; /* Always acknowledge device wake up, * sending IBS message doesn't count as TX ON. */ if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) BT_ERR("Failed to acknowledge device wake up"); qca->ibs_sent_wacks++; spin_unlock(&qca->hci_ibs_lock); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_rx_vote_off); struct hci_uart *hu = qca->hu; BT_DBG("hu %p rx clock vote off", hu); serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); } static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_tx_vote_off); struct hci_uart *hu = qca->hu; BT_DBG("hu %p tx clock vote off", hu); /* Run HCI tx handling unlocked */ hci_uart_tx_wakeup(hu); /* Now that message queued to tty driver, vote for tty clocks off. * It is up to the tty driver to pend the clocks off until tx done. */ serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); } static void hci_ibs_tx_idle_timeout(struct timer_list *t) { struct qca_data *qca = from_timer(qca, t, tx_idle_timer); struct hci_uart *hu = qca->hu; unsigned long flags; BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); spin_lock_irqsave_nested(&qca->hci_ibs_lock, flags, SINGLE_DEPTH_NESTING); switch (qca->tx_ibs_state) { case HCI_IBS_TX_AWAKE: /* TX_IDLE, go to SLEEP */ if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { BT_ERR("Failed to send SLEEP to device"); break; } qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; qca->ibs_sent_slps++; queue_work(qca->workqueue, &qca->ws_tx_vote_off); break; case HCI_IBS_TX_ASLEEP: case HCI_IBS_TX_WAKING: /* Fall through */ default: BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); } static void hci_ibs_wake_retrans_timeout(struct timer_list *t) { struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); struct hci_uart *hu = qca->hu; unsigned long flags, retrans_delay; bool retransmit = false; BT_DBG("hu %p wake retransmit timeout in %d state", hu, qca->tx_ibs_state); spin_lock_irqsave_nested(&qca->hci_ibs_lock, flags, SINGLE_DEPTH_NESTING); switch (qca->tx_ibs_state) { case HCI_IBS_TX_WAKING: /* No WAKE_ACK, retransmit WAKE */ retransmit = true; if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { BT_ERR("Failed to acknowledge device wake up"); break; } qca->ibs_sent_wakes++; retrans_delay = msecs_to_jiffies(qca->wake_retrans); mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); break; case HCI_IBS_TX_ASLEEP: case HCI_IBS_TX_AWAKE: /* Fall through */ default: BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); if (retransmit) hci_uart_tx_wakeup(hu); } /* Initialize protocol */ static int qca_open(struct hci_uart *hu) { struct qca_serdev *qcadev; struct qca_data *qca; int ret; BT_DBG("hu %p qca_open", hu); qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); if (!qca) return -ENOMEM; skb_queue_head_init(&qca->txq); skb_queue_head_init(&qca->tx_wait_q); spin_lock_init(&qca->hci_ibs_lock); qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); if (!qca->workqueue) { BT_ERR("QCA Workqueue not initialized properly"); kfree(qca); return -ENOMEM; } INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); qca->hu = hu; /* Assume we start with both sides asleep -- extra wakes OK */ qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; /* clocks actually on, but we start votes off */ qca->tx_vote = false; qca->rx_vote = false; qca->flags = 0; qca->ibs_sent_wacks = 0; qca->ibs_sent_slps = 0; qca->ibs_sent_wakes = 0; qca->ibs_recv_wacks = 0; qca->ibs_recv_slps = 0; qca->ibs_recv_wakes = 0; qca->vote_last_jif = jiffies; qca->vote_on_ms = 0; qca->vote_off_ms = 0; qca->votes_on = 0; qca->votes_off = 0; qca->tx_votes_on = 0; qca->tx_votes_off = 0; qca->rx_votes_on = 0; qca->rx_votes_off = 0; hu->priv = qca; if (hu->serdev) { qcadev = serdev_device_get_drvdata(hu->serdev); if (qcadev->btsoc_type != QCA_WCN3990) { gpiod_set_value_cansleep(qcadev->bt_en, 1); } else { hu->init_speed = qcadev->init_speed; hu->oper_speed = qcadev->oper_speed; ret = qca_power_setup(hu, true); if (ret) { destroy_workqueue(qca->workqueue); kfree_skb(qca->rx_skb); hu->priv = NULL; kfree(qca); return ret; } } } timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); qca->tx_idle_delay = IBS_TX_IDLE_TIMEOUT_MS; BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", qca->tx_idle_delay, qca->wake_retrans); return 0; } static void qca_debugfs_init(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; struct dentry *ibs_dir; umode_t mode; if (!hdev->debugfs) return; ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); /* read only */ mode = S_IRUGO; debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, &qca->ibs_sent_slps); debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, &qca->ibs_sent_wakes); debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, &qca->ibs_sent_wacks); debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, &qca->ibs_recv_slps); debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, &qca->ibs_recv_wakes); debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, &qca->ibs_recv_wacks); debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); /* read/write */ mode = S_IRUGO | S_IWUSR; debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); debugfs_create_u32("tx_idle_delay", mode, ibs_dir, &qca->tx_idle_delay); } /* Flush protocol data */ static int qca_flush(struct hci_uart *hu) { struct qca_data *qca = hu->priv; BT_DBG("hu %p qca flush", hu); skb_queue_purge(&qca->tx_wait_q); skb_queue_purge(&qca->txq); return 0; } /* Close protocol */ static int qca_close(struct hci_uart *hu) { struct qca_serdev *qcadev; struct qca_data *qca = hu->priv; BT_DBG("hu %p qca close", hu); serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); skb_queue_purge(&qca->tx_wait_q); skb_queue_purge(&qca->txq); del_timer(&qca->tx_idle_timer); del_timer(&qca->wake_retrans_timer); destroy_workqueue(qca->workqueue); qca->hu = NULL; if (hu->serdev) { qcadev = serdev_device_get_drvdata(hu->serdev); if (qcadev->btsoc_type == QCA_WCN3990) qca_power_shutdown(hu); else gpiod_set_value_cansleep(qcadev->bt_en, 0); } kfree_skb(qca->rx_skb); hu->priv = NULL; kfree(qca); return 0; } /* Called upon a wake-up-indication from the device. */ static void device_want_to_wakeup(struct hci_uart *hu) { unsigned long flags; struct qca_data *qca = hu->priv; BT_DBG("hu %p want to wake up", hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->ibs_recv_wakes++; switch (qca->rx_ibs_state) { case HCI_IBS_RX_ASLEEP: /* Make sure clock is on - we may have turned clock off since * receiving the wake up indicator awake rx clock. */ queue_work(qca->workqueue, &qca->ws_awake_rx); spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return; case HCI_IBS_RX_AWAKE: /* Always acknowledge device wake up, * sending IBS message doesn't count as TX ON. */ if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { BT_ERR("Failed to acknowledge device wake up"); break; } qca->ibs_sent_wacks++; break; default: /* Any other state is illegal */ BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", qca->rx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } /* Called upon a sleep-indication from the device. */ static void device_want_to_sleep(struct hci_uart *hu) { unsigned long flags; struct qca_data *qca = hu->priv; BT_DBG("hu %p want to sleep", hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->ibs_recv_slps++; switch (qca->rx_ibs_state) { case HCI_IBS_RX_AWAKE: /* Update state */ qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; /* Vote off rx clock under workqueue */ queue_work(qca->workqueue, &qca->ws_rx_vote_off); break; case HCI_IBS_RX_ASLEEP: /* Fall through */ default: /* Any other state is illegal */ BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", qca->rx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); } /* Called upon wake-up-acknowledgement from the device */ static void device_woke_up(struct hci_uart *hu) { unsigned long flags, idle_delay; struct qca_data *qca = hu->priv; struct sk_buff *skb = NULL; BT_DBG("hu %p woke up", hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->ibs_recv_wacks++; switch (qca->tx_ibs_state) { case HCI_IBS_TX_AWAKE: /* Expect one if we send 2 WAKEs */ BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", qca->tx_ibs_state); break; case HCI_IBS_TX_WAKING: /* Send pending packets */ while ((skb = skb_dequeue(&qca->tx_wait_q))) skb_queue_tail(&qca->txq, skb); /* Switch timers and change state to HCI_IBS_TX_AWAKE */ del_timer(&qca->wake_retrans_timer); idle_delay = msecs_to_jiffies(qca->tx_idle_delay); mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); qca->tx_ibs_state = HCI_IBS_TX_AWAKE; break; case HCI_IBS_TX_ASLEEP: /* Fall through */ default: BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", qca->tx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } /* Enqueue frame for transmittion (padding, crc, etc) may be called from * two simultaneous tasklets. */ static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) { unsigned long flags = 0, idle_delay; struct qca_data *qca = hu->priv; BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, qca->tx_ibs_state); /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); /* Don't go to sleep in middle of patch download or * Out-Of-Band(GPIOs control) sleep is selected. */ if (!test_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags)) { skb_queue_tail(&qca->txq, skb); return 0; } spin_lock_irqsave(&qca->hci_ibs_lock, flags); /* Act according to current state */ switch (qca->tx_ibs_state) { case HCI_IBS_TX_AWAKE: BT_DBG("Device awake, sending normally"); skb_queue_tail(&qca->txq, skb); idle_delay = msecs_to_jiffies(qca->tx_idle_delay); mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); break; case HCI_IBS_TX_ASLEEP: BT_DBG("Device asleep, waking up and queueing packet"); /* Save packet for later */ skb_queue_tail(&qca->tx_wait_q, skb); qca->tx_ibs_state = HCI_IBS_TX_WAKING; /* Schedule a work queue to wake up device */ queue_work(qca->workqueue, &qca->ws_awake_device); break; case HCI_IBS_TX_WAKING: BT_DBG("Device waking up, queueing packet"); /* Transient state; just keep packet for later */ skb_queue_tail(&qca->tx_wait_q, skb); break; default: BT_ERR("Illegal tx state: %d (losing packet)", qca->tx_ibs_state); kfree_skb(skb); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return 0; } static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); device_want_to_sleep(hu); kfree_skb(skb); return 0; } static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); device_want_to_wakeup(hu); kfree_skb(skb); return 0; } static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); device_woke_up(hu); kfree_skb(skb); return 0; } static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) { /* We receive debug logs from chip as an ACL packets. * Instead of sending the data to ACL to decode the * received data, we are pushing them to the above layers * as a diagnostic packet. */ if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) return hci_recv_diag(hdev, skb); return hci_recv_frame(hdev, skb); } #define QCA_IBS_SLEEP_IND_EVENT \ .type = HCI_IBS_SLEEP_IND, \ .hlen = 0, \ .loff = 0, \ .lsize = 0, \ .maxlen = HCI_MAX_IBS_SIZE #define QCA_IBS_WAKE_IND_EVENT \ .type = HCI_IBS_WAKE_IND, \ .hlen = 0, \ .loff = 0, \ .lsize = 0, \ .maxlen = HCI_MAX_IBS_SIZE #define QCA_IBS_WAKE_ACK_EVENT \ .type = HCI_IBS_WAKE_ACK, \ .hlen = 0, \ .loff = 0, \ .lsize = 0, \ .maxlen = HCI_MAX_IBS_SIZE static const struct h4_recv_pkt qca_recv_pkts[] = { { H4_RECV_ACL, .recv = qca_recv_acl_data }, { H4_RECV_SCO, .recv = hci_recv_frame }, { H4_RECV_EVENT, .recv = hci_recv_frame }, { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, }; static int qca_recv(struct hci_uart *hu, const void *data, int count) { struct qca_data *qca = hu->priv; if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) return -EUNATCH; qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); if (IS_ERR(qca->rx_skb)) { int err = PTR_ERR(qca->rx_skb); bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); qca->rx_skb = NULL; return err; } return count; } static struct sk_buff *qca_dequeue(struct hci_uart *hu) { struct qca_data *qca = hu->priv; return skb_dequeue(&qca->txq); } static uint8_t qca_get_baudrate_value(int speed) { switch (speed) { case 9600: return QCA_BAUDRATE_9600; case 19200: return QCA_BAUDRATE_19200; case 38400: return QCA_BAUDRATE_38400; case 57600: return QCA_BAUDRATE_57600; case 115200: return QCA_BAUDRATE_115200; case 230400: return QCA_BAUDRATE_230400; case 460800: return QCA_BAUDRATE_460800; case 500000: return QCA_BAUDRATE_500000; case 921600: return QCA_BAUDRATE_921600; case 1000000: return QCA_BAUDRATE_1000000; case 2000000: return QCA_BAUDRATE_2000000; case 3000000: return QCA_BAUDRATE_3000000; case 3200000: return QCA_BAUDRATE_3200000; case 3500000: return QCA_BAUDRATE_3500000; default: return QCA_BAUDRATE_115200; } } static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; struct sk_buff *skb; struct qca_serdev *qcadev; u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; if (baudrate > QCA_BAUDRATE_3200000) return -EINVAL; cmd[4] = baudrate; skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); if (!skb) { bt_dev_err(hdev, "Failed to allocate baudrate packet"); return -ENOMEM; } /* Disabling hardware flow control is mandatory while * sending change baudrate request to wcn3990 SoC. */ qcadev = serdev_device_get_drvdata(hu->serdev); if (qcadev->btsoc_type == QCA_WCN3990) hci_uart_set_flow_control(hu, true); /* Assign commands to change baudrate and packet type. */ skb_put_data(skb, cmd, sizeof(cmd)); hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; skb_queue_tail(&qca->txq, skb); hci_uart_tx_wakeup(hu); /* wait 300ms to change new baudrate on controller side * controller will come back after they receive this HCI command * then host can communicate with new baudrate to controller */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(BAUDRATE_SETTLE_TIMEOUT_MS)); set_current_state(TASK_RUNNING); if (qcadev->btsoc_type == QCA_WCN3990) hci_uart_set_flow_control(hu, false); return 0; } static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) { if (hu->serdev) serdev_device_set_baudrate(hu->serdev, speed); else hci_uart_set_baudrate(hu, speed); } static int qca_send_power_pulse(struct hci_dev *hdev, u8 cmd) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; struct sk_buff *skb; /* These power pulses are single byte command which are sent * at required baudrate to wcn3990. On wcn3990, we have an external * circuit at Tx pin which decodes the pulse sent at specific baudrate. * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT * and also we use the same power inputs to turn on and off for * Wi-Fi/BT. Powering up the power sources will not enable BT, until * we send a power on pulse at 115200 bps. This algorithm will help to * save power. Disabling hardware flow control is mandatory while * sending power pulses to SoC. */ bt_dev_dbg(hdev, "sending power pulse %02x to SoC", cmd); skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); if (!skb) return -ENOMEM; hci_uart_set_flow_control(hu, true); skb_put_u8(skb, cmd); hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; skb_queue_tail(&qca->txq, skb); hci_uart_tx_wakeup(hu); /* Wait for 100 uS for SoC to settle down */ usleep_range(100, 200); hci_uart_set_flow_control(hu, false); return 0; } static unsigned int qca_get_speed(struct hci_uart *hu, enum qca_speed_type speed_type) { unsigned int speed = 0; if (speed_type == QCA_INIT_SPEED) { if (hu->init_speed) speed = hu->init_speed; else if (hu->proto->init_speed) speed = hu->proto->init_speed; } else { if (hu->oper_speed) speed = hu->oper_speed; else if (hu->proto->oper_speed) speed = hu->proto->oper_speed; } return speed; } static int qca_check_speeds(struct hci_uart *hu) { struct qca_serdev *qcadev; qcadev = serdev_device_get_drvdata(hu->serdev); if (qcadev->btsoc_type == QCA_WCN3990) { if (!qca_get_speed(hu, QCA_INIT_SPEED) && !qca_get_speed(hu, QCA_OPER_SPEED)) return -EINVAL; } else { if (!qca_get_speed(hu, QCA_INIT_SPEED) || !qca_get_speed(hu, QCA_OPER_SPEED)) return -EINVAL; } return 0; } static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) { unsigned int speed, qca_baudrate; int ret; if (speed_type == QCA_INIT_SPEED) { speed = qca_get_speed(hu, QCA_INIT_SPEED); if (speed) host_set_baudrate(hu, speed); } else { speed = qca_get_speed(hu, QCA_OPER_SPEED); if (!speed) return 0; qca_baudrate = qca_get_baudrate_value(speed); bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); ret = qca_set_baudrate(hu->hdev, qca_baudrate); if (ret) return ret; host_set_baudrate(hu, speed); } return 0; } static int qca_wcn3990_init(struct hci_uart *hu) { struct hci_dev *hdev = hu->hdev; struct qca_serdev *qcadev; int ret; /* Check for vregs status, may be hci down has turned * off the voltage regulator. */ qcadev = serdev_device_get_drvdata(hu->serdev); if (!qcadev->bt_power->vregs_on) { serdev_device_close(hu->serdev); ret = qca_power_setup(hu, true); if (ret) return ret; ret = serdev_device_open(hu->serdev); if (ret) { bt_dev_err(hu->hdev, "failed to open port"); return ret; } } /* Forcefully enable wcn3990 to enter in to boot mode. */ host_set_baudrate(hu, 2400); ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWEROFF_PULSE); if (ret) return ret; qca_set_speed(hu, QCA_INIT_SPEED); ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWERON_PULSE); if (ret) return ret; /* Wait for 100 ms for SoC to boot */ msleep(100); /* Now the device is in ready state to communicate with host. * To sync host with device we need to reopen port. * Without this, we will have RTS and CTS synchronization * issues. */ serdev_device_close(hu->serdev); ret = serdev_device_open(hu->serdev); if (ret) { bt_dev_err(hu->hdev, "failed to open port"); return ret; } hci_uart_set_flow_control(hu, false); return 0; } static int qca_setup(struct hci_uart *hu) { struct hci_dev *hdev = hu->hdev; struct qca_data *qca = hu->priv; unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; struct qca_serdev *qcadev; int ret; int soc_ver = 0; qcadev = serdev_device_get_drvdata(hu->serdev); ret = qca_check_speeds(hu); if (ret) return ret; /* Patch downloading has to be done without IBS mode */ clear_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags); if (qcadev->btsoc_type == QCA_WCN3990) { bt_dev_info(hdev, "setting up wcn3990"); /* Enable NON_PERSISTENT_SETUP QUIRK to ensure to execute * setup for every hci up. */ set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); hu->hdev->shutdown = qca_power_off; ret = qca_wcn3990_init(hu); if (ret) return ret; ret = qca_read_soc_version(hdev, &soc_ver); if (ret) return ret; } else { bt_dev_info(hdev, "ROME setup"); qca_set_speed(hu, QCA_INIT_SPEED); } /* Setup user speed if needed */ speed = qca_get_speed(hu, QCA_OPER_SPEED); if (speed) { ret = qca_set_speed(hu, QCA_OPER_SPEED); if (ret) return ret; qca_baudrate = qca_get_baudrate_value(speed); } if (qcadev->btsoc_type != QCA_WCN3990) { /* Get QCA version information */ ret = qca_read_soc_version(hdev, &soc_ver); if (ret) return ret; } bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver); /* Setup patch / NVM configurations */ ret = qca_uart_setup(hdev, qca_baudrate, qcadev->btsoc_type, soc_ver); if (!ret) { set_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags); qca_debugfs_init(hdev); } else if (ret == -ENOENT) { /* No patch/nvm-config found, run with original fw/config */ ret = 0; } else if (ret == -EAGAIN) { /* * Userspace firmware loader will return -EAGAIN in case no * patch/nvm-config is found, so run with original fw/config. */ ret = 0; } /* Setup bdaddr */ hu->hdev->set_bdaddr = qca_set_bdaddr_rome; return ret; } static struct hci_uart_proto qca_proto = { .id = HCI_UART_QCA, .name = "QCA", .manufacturer = 29, .init_speed = 115200, .oper_speed = 3000000, .open = qca_open, .close = qca_close, .flush = qca_flush, .setup = qca_setup, .recv = qca_recv, .enqueue = qca_enqueue, .dequeue = qca_dequeue, }; static const struct qca_vreg_data qca_soc_data = { .soc_type = QCA_WCN3990, .vregs = (struct qca_vreg []) { { "vddio", 1800000, 1900000, 15000 }, { "vddxo", 1800000, 1900000, 80000 }, { "vddrf", 1300000, 1350000, 300000 }, { "vddch0", 3300000, 3400000, 450000 }, }, .num_vregs = 4, }; static void qca_power_shutdown(struct hci_uart *hu) { struct serdev_device *serdev = hu->serdev; unsigned char cmd = QCA_WCN3990_POWEROFF_PULSE; host_set_baudrate(hu, 2400); hci_uart_set_flow_control(hu, true); serdev_device_write_buf(serdev, &cmd, sizeof(cmd)); hci_uart_set_flow_control(hu, false); qca_power_setup(hu, false); } static int qca_power_off(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); qca_power_shutdown(hu); return 0; } static int qca_enable_regulator(struct qca_vreg vregs, struct regulator *regulator) { int ret; ret = regulator_set_voltage(regulator, vregs.min_uV, vregs.max_uV); if (ret) return ret; if (vregs.load_uA) ret = regulator_set_load(regulator, vregs.load_uA); if (ret) return ret; return regulator_enable(regulator); } static void qca_disable_regulator(struct qca_vreg vregs, struct regulator *regulator) { regulator_disable(regulator); regulator_set_voltage(regulator, 0, vregs.max_uV); if (vregs.load_uA) regulator_set_load(regulator, 0); } static int qca_power_setup(struct hci_uart *hu, bool on) { struct qca_vreg *vregs; struct regulator_bulk_data *vreg_bulk; struct qca_serdev *qcadev; int i, num_vregs, ret = 0; qcadev = serdev_device_get_drvdata(hu->serdev); if (!qcadev || !qcadev->bt_power || !qcadev->bt_power->vreg_data || !qcadev->bt_power->vreg_bulk) return -EINVAL; vregs = qcadev->bt_power->vreg_data->vregs; vreg_bulk = qcadev->bt_power->vreg_bulk; num_vregs = qcadev->bt_power->vreg_data->num_vregs; BT_DBG("on: %d", on); if (on && !qcadev->bt_power->vregs_on) { for (i = 0; i < num_vregs; i++) { ret = qca_enable_regulator(vregs[i], vreg_bulk[i].consumer); if (ret) break; } if (ret) { BT_ERR("failed to enable regulator:%s", vregs[i].name); /* turn off regulators which are enabled */ for (i = i - 1; i >= 0; i--) qca_disable_regulator(vregs[i], vreg_bulk[i].consumer); } else { qcadev->bt_power->vregs_on = true; } } else if (!on && qcadev->bt_power->vregs_on) { /* turn off regulator in reverse order */ i = qcadev->bt_power->vreg_data->num_vregs - 1; for ( ; i >= 0; i--) qca_disable_regulator(vregs[i], vreg_bulk[i].consumer); qcadev->bt_power->vregs_on = false; } return ret; } static int qca_init_regulators(struct qca_power *qca, const struct qca_vreg *vregs, size_t num_vregs) { int i; qca->vreg_bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(struct regulator_bulk_data), GFP_KERNEL); if (!qca->vreg_bulk) return -ENOMEM; for (i = 0; i < num_vregs; i++) qca->vreg_bulk[i].supply = vregs[i].name; return devm_regulator_bulk_get(qca->dev, num_vregs, qca->vreg_bulk); } static int qca_serdev_probe(struct serdev_device *serdev) { struct qca_serdev *qcadev; const struct qca_vreg_data *data; int err; qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); if (!qcadev) return -ENOMEM; qcadev->serdev_hu.serdev = serdev; data = of_device_get_match_data(&serdev->dev); serdev_device_set_drvdata(serdev, qcadev); if (data && data->soc_type == QCA_WCN3990) { qcadev->btsoc_type = QCA_WCN3990; qcadev->bt_power = devm_kzalloc(&serdev->dev, sizeof(struct qca_power), GFP_KERNEL); if (!qcadev->bt_power) return -ENOMEM; qcadev->bt_power->dev = &serdev->dev; qcadev->bt_power->vreg_data = data; err = qca_init_regulators(qcadev->bt_power, data->vregs, data->num_vregs); if (err) { BT_ERR("Failed to init regulators:%d", err); goto out; } qcadev->bt_power->vregs_on = false; device_property_read_u32(&serdev->dev, "max-speed", &qcadev->oper_speed); if (!qcadev->oper_speed) BT_DBG("UART will pick default operating speed"); err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); if (err) { BT_ERR("wcn3990 serdev registration failed"); goto out; } } else { qcadev->btsoc_type = QCA_ROME; qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(qcadev->bt_en)) { dev_err(&serdev->dev, "failed to acquire enable gpio\n"); return PTR_ERR(qcadev->bt_en); } qcadev->susclk = devm_clk_get(&serdev->dev, NULL); if (IS_ERR(qcadev->susclk)) { dev_err(&serdev->dev, "failed to acquire clk\n"); return PTR_ERR(qcadev->susclk); } err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); if (err) return err; err = clk_prepare_enable(qcadev->susclk); if (err) return err; err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); if (err) clk_disable_unprepare(qcadev->susclk); } out: return err; } static void qca_serdev_remove(struct serdev_device *serdev) { struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); if (qcadev->btsoc_type == QCA_WCN3990) qca_power_shutdown(&qcadev->serdev_hu); else clk_disable_unprepare(qcadev->susclk); hci_uart_unregister_device(&qcadev->serdev_hu); } static const struct of_device_id qca_bluetooth_of_match[] = { { .compatible = "qcom,qca6174-bt" }, { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); static struct serdev_device_driver qca_serdev_driver = { .probe = qca_serdev_probe, .remove = qca_serdev_remove, .driver = { .name = "hci_uart_qca", .of_match_table = qca_bluetooth_of_match, }, }; int __init qca_init(void) { serdev_device_driver_register(&qca_serdev_driver); return hci_uart_register_proto(&qca_proto); } int __exit qca_deinit(void) { serdev_device_driver_unregister(&qca_serdev_driver); return hci_uart_unregister_proto(&qca_proto); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1