Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhang Wei | 690 | 82.14% | 2 | 10.00% |
Ira W. Snyder | 51 | 6.07% | 8 | 40.00% |
Hongbo Zhang | 45 | 5.36% | 4 | 20.00% |
Al Viro | 25 | 2.98% | 1 | 5.00% |
Thomas Breitung | 12 | 1.43% | 1 | 5.00% |
Xuelin Shi | 5 | 0.60% | 1 | 5.00% |
Timur Tabi | 4 | 0.48% | 1 | 5.00% |
Dan J Williams | 4 | 0.48% | 1 | 5.00% |
Kevin Hao | 4 | 0.48% | 1 | 5.00% |
Total | 840 | 20 |
/* * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. * * Author: * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #ifndef __DMA_FSLDMA_H #define __DMA_FSLDMA_H #include <linux/device.h> #include <linux/dmapool.h> #include <linux/dmaengine.h> /* Define data structures needed by Freescale * MPC8540 and MPC8349 DMA controller. */ #define FSL_DMA_MR_CS 0x00000001 #define FSL_DMA_MR_CC 0x00000002 #define FSL_DMA_MR_CA 0x00000008 #define FSL_DMA_MR_EIE 0x00000040 #define FSL_DMA_MR_XFE 0x00000020 #define FSL_DMA_MR_EOLNIE 0x00000100 #define FSL_DMA_MR_EOLSIE 0x00000080 #define FSL_DMA_MR_EOSIE 0x00000200 #define FSL_DMA_MR_CDSM 0x00000010 #define FSL_DMA_MR_CTM 0x00000004 #define FSL_DMA_MR_EMP_EN 0x00200000 #define FSL_DMA_MR_EMS_EN 0x00040000 #define FSL_DMA_MR_DAHE 0x00002000 #define FSL_DMA_MR_SAHE 0x00001000 #define FSL_DMA_MR_SAHTS_MASK 0x0000C000 #define FSL_DMA_MR_DAHTS_MASK 0x00030000 #define FSL_DMA_MR_BWC_MASK 0x0f000000 /* * Bandwidth/pause control determines how many bytes a given * channel is allowed to transfer before the DMA engine pauses * the current channel and switches to the next channel */ #define FSL_DMA_MR_BWC 0x0A000000 /* Special MR definition for MPC8349 */ #define FSL_DMA_MR_EOTIE 0x00000080 #define FSL_DMA_MR_PRC_RM 0x00000800 #define FSL_DMA_SR_CH 0x00000020 #define FSL_DMA_SR_PE 0x00000010 #define FSL_DMA_SR_CB 0x00000004 #define FSL_DMA_SR_TE 0x00000080 #define FSL_DMA_SR_EOSI 0x00000002 #define FSL_DMA_SR_EOLSI 0x00000001 #define FSL_DMA_SR_EOCDI 0x00000001 #define FSL_DMA_SR_EOLNI 0x00000008 #define FSL_DMA_SATR_SBPATMU 0x20000000 #define FSL_DMA_SATR_STRANSINT_RIO 0x00c00000 #define FSL_DMA_SATR_SREADTYPE_SNOOP_READ 0x00050000 #define FSL_DMA_SATR_SREADTYPE_BP_IORH 0x00020000 #define FSL_DMA_SATR_SREADTYPE_BP_NREAD 0x00040000 #define FSL_DMA_SATR_SREADTYPE_BP_MREAD 0x00070000 #define FSL_DMA_DATR_DBPATMU 0x20000000 #define FSL_DMA_DATR_DTRANSINT_RIO 0x00c00000 #define FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE 0x00050000 #define FSL_DMA_DATR_DWRITETYPE_BP_FLUSH 0x00010000 #define FSL_DMA_EOL ((u64)0x1) #define FSL_DMA_SNEN ((u64)0x10) #define FSL_DMA_EOSIE 0x8 #define FSL_DMA_NLDA_MASK (~(u64)0x1f) #define FSL_DMA_BCR_MAX_CNT 0x03ffffffu #define FSL_DMA_DGSR_TE 0x80 #define FSL_DMA_DGSR_CH 0x20 #define FSL_DMA_DGSR_PE 0x10 #define FSL_DMA_DGSR_EOLNI 0x08 #define FSL_DMA_DGSR_CB 0x04 #define FSL_DMA_DGSR_EOSI 0x02 #define FSL_DMA_DGSR_EOLSI 0x01 #define FSL_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) typedef u64 __bitwise v64; typedef u32 __bitwise v32; struct fsl_dma_ld_hw { v64 src_addr; v64 dst_addr; v64 next_ln_addr; v32 count; v32 reserve; } __attribute__((aligned(32))); struct fsl_desc_sw { struct fsl_dma_ld_hw hw; struct list_head node; struct list_head tx_list; struct dma_async_tx_descriptor async_tx; } __attribute__((aligned(32))); struct fsldma_chan_regs { u32 mr; /* 0x00 - Mode Register */ u32 sr; /* 0x04 - Status Register */ u64 cdar; /* 0x08 - Current descriptor address register */ u64 sar; /* 0x10 - Source Address Register */ u64 dar; /* 0x18 - Destination Address Register */ u32 bcr; /* 0x20 - Byte Count Register */ u64 ndar; /* 0x24 - Next Descriptor Address Register */ }; struct fsldma_chan; #define FSL_DMA_MAX_CHANS_PER_DEVICE 8 struct fsldma_device { void __iomem *regs; /* DGSR register base */ struct device *dev; struct dma_device common; struct fsldma_chan *chan[FSL_DMA_MAX_CHANS_PER_DEVICE]; u32 feature; /* The same as DMA channels */ int irq; /* Channel IRQ */ }; /* Define macros for fsldma_chan->feature property */ #define FSL_DMA_LITTLE_ENDIAN 0x00000000 #define FSL_DMA_BIG_ENDIAN 0x00000001 #define FSL_DMA_IP_MASK 0x00000ff0 #define FSL_DMA_IP_85XX 0x00000010 #define FSL_DMA_IP_83XX 0x00000020 #define FSL_DMA_CHAN_PAUSE_EXT 0x00001000 #define FSL_DMA_CHAN_START_EXT 0x00002000 #ifdef CONFIG_PM struct fsldma_chan_regs_save { u32 mr; }; enum fsldma_pm_state { RUNNING = 0, SUSPENDED, }; #endif struct fsldma_chan { char name[8]; /* Channel name */ struct fsldma_chan_regs __iomem *regs; spinlock_t desc_lock; /* Descriptor operation lock */ /* * Descriptors which are queued to run, but have not yet been * submitted to the hardware for execution */ struct list_head ld_pending; /* * Descriptors which are currently being executed by the hardware */ struct list_head ld_running; /* * Descriptors which have finished execution by the hardware. These * descriptors have already had their cleanup actions run. They are * waiting for the ACK bit to be set by the async_tx API. */ struct list_head ld_completed; /* Link descriptors queue */ struct dma_chan common; /* DMA common channel */ struct dma_pool *desc_pool; /* Descriptors pool */ struct device *dev; /* Channel device */ int irq; /* Channel IRQ */ int id; /* Raw id of this channel */ struct tasklet_struct tasklet; u32 feature; bool idle; /* DMA controller is idle */ #ifdef CONFIG_PM struct fsldma_chan_regs_save regs_save; enum fsldma_pm_state pm_state; #endif void (*toggle_ext_pause)(struct fsldma_chan *fsl_chan, int enable); void (*toggle_ext_start)(struct fsldma_chan *fsl_chan, int enable); void (*set_src_loop_size)(struct fsldma_chan *fsl_chan, int size); void (*set_dst_loop_size)(struct fsldma_chan *fsl_chan, int size); void (*set_request_count)(struct fsldma_chan *fsl_chan, int size); }; #define to_fsl_chan(chan) container_of(chan, struct fsldma_chan, common) #define to_fsl_desc(lh) container_of(lh, struct fsl_desc_sw, node) #define tx_to_fsl_desc(tx) container_of(tx, struct fsl_desc_sw, async_tx) #ifndef __powerpc64__ static u64 in_be64(const u64 __iomem *addr) { return ((u64)in_be32((u32 __iomem *)addr) << 32) | (in_be32((u32 __iomem *)addr + 1)); } static void out_be64(u64 __iomem *addr, u64 val) { out_be32((u32 __iomem *)addr, val >> 32); out_be32((u32 __iomem *)addr + 1, (u32)val); } /* There is no asm instructions for 64 bits reverse loads and stores */ static u64 in_le64(const u64 __iomem *addr) { return ((u64)in_le32((u32 __iomem *)addr + 1) << 32) | (in_le32((u32 __iomem *)addr)); } static void out_le64(u64 __iomem *addr, u64 val) { out_le32((u32 __iomem *)addr + 1, val >> 32); out_le32((u32 __iomem *)addr, (u32)val); } #endif #define DMA_IN(fsl_chan, addr, width) \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ in_be##width(addr) : in_le##width(addr)) #define DMA_OUT(fsl_chan, addr, val, width) \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ out_be##width(addr, val) : out_le##width(addr, val)) #define DMA_TO_CPU(fsl_chan, d, width) \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ be##width##_to_cpu((__force __be##width)(v##width)d) : \ le##width##_to_cpu((__force __le##width)(v##width)d)) #define CPU_TO_DMA(fsl_chan, c, width) \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ (__force v##width)cpu_to_be##width(c) : \ (__force v##width)cpu_to_le##width(c)) #endif /* __DMA_FSLDMA_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1