Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 806 | 42.15% | 3 | 13.64% |
Per Forlin | 380 | 19.87% | 2 | 9.09% |
Jonas Aaberg | 293 | 15.32% | 2 | 9.09% |
Rabin Vincent | 292 | 15.27% | 8 | 36.36% |
Lee Jones | 139 | 7.27% | 5 | 22.73% |
Ben Dooks | 1 | 0.05% | 1 | 4.55% |
Narayanan G | 1 | 0.05% | 1 | 4.55% |
Total | 1912 | 22 |
/* * Copyright (C) ST-Ericsson SA 2007-2010 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson * License terms: GNU General Public License (GPL) version 2 */ #include <linux/kernel.h> #include <linux/platform_data/dma-ste-dma40.h> #include "ste_dma40_ll.h" static u8 d40_width_to_bits(enum dma_slave_buswidth width) { if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) return STEDMA40_ESIZE_8_BIT; else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) return STEDMA40_ESIZE_16_BIT; else if (width == DMA_SLAVE_BUSWIDTH_8_BYTES) return STEDMA40_ESIZE_64_BIT; else return STEDMA40_ESIZE_32_BIT; } /* Sets up proper LCSP1 and LCSP3 register for a logical channel */ void d40_log_cfg(struct stedma40_chan_cfg *cfg, u32 *lcsp1, u32 *lcsp3) { u32 l3 = 0; /* dst */ u32 l1 = 0; /* src */ /* src is mem? -> increase address pos */ if (cfg->dir == DMA_MEM_TO_DEV || cfg->dir == DMA_MEM_TO_MEM) l1 |= BIT(D40_MEM_LCSP1_SCFG_INCR_POS); /* dst is mem? -> increase address pos */ if (cfg->dir == DMA_DEV_TO_MEM || cfg->dir == DMA_MEM_TO_MEM) l3 |= BIT(D40_MEM_LCSP3_DCFG_INCR_POS); /* src is hw? -> master port 1 */ if (cfg->dir == DMA_DEV_TO_MEM || cfg->dir == DMA_DEV_TO_DEV) l1 |= BIT(D40_MEM_LCSP1_SCFG_MST_POS); /* dst is hw? -> master port 1 */ if (cfg->dir == DMA_MEM_TO_DEV || cfg->dir == DMA_DEV_TO_DEV) l3 |= BIT(D40_MEM_LCSP3_DCFG_MST_POS); l3 |= BIT(D40_MEM_LCSP3_DCFG_EIM_POS); l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS; l3 |= d40_width_to_bits(cfg->dst_info.data_width) << D40_MEM_LCSP3_DCFG_ESIZE_POS; l1 |= BIT(D40_MEM_LCSP1_SCFG_EIM_POS); l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; l1 |= d40_width_to_bits(cfg->src_info.data_width) << D40_MEM_LCSP1_SCFG_ESIZE_POS; *lcsp1 = l1; *lcsp3 = l3; } void d40_phy_cfg(struct stedma40_chan_cfg *cfg, u32 *src_cfg, u32 *dst_cfg) { u32 src = 0; u32 dst = 0; if ((cfg->dir == DMA_DEV_TO_MEM) || (cfg->dir == DMA_DEV_TO_DEV)) { /* Set master port to 1 */ src |= BIT(D40_SREG_CFG_MST_POS); src |= D40_TYPE_TO_EVENT(cfg->dev_type); if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) src |= BIT(D40_SREG_CFG_PHY_TM_POS); else src |= 3 << D40_SREG_CFG_PHY_TM_POS; } if ((cfg->dir == DMA_MEM_TO_DEV) || (cfg->dir == DMA_DEV_TO_DEV)) { /* Set master port to 1 */ dst |= BIT(D40_SREG_CFG_MST_POS); dst |= D40_TYPE_TO_EVENT(cfg->dev_type); if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) dst |= BIT(D40_SREG_CFG_PHY_TM_POS); else dst |= 3 << D40_SREG_CFG_PHY_TM_POS; } /* Interrupt on end of transfer for destination */ dst |= BIT(D40_SREG_CFG_TIM_POS); /* Generate interrupt on error */ src |= BIT(D40_SREG_CFG_EIM_POS); dst |= BIT(D40_SREG_CFG_EIM_POS); /* PSIZE */ if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) { src |= BIT(D40_SREG_CFG_PHY_PEN_POS); src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS; } if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) { dst |= BIT(D40_SREG_CFG_PHY_PEN_POS); dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS; } /* Element size */ src |= d40_width_to_bits(cfg->src_info.data_width) << D40_SREG_CFG_ESIZE_POS; dst |= d40_width_to_bits(cfg->dst_info.data_width) << D40_SREG_CFG_ESIZE_POS; /* Set the priority bit to high for the physical channel */ if (cfg->high_priority) { src |= BIT(D40_SREG_CFG_PRI_POS); dst |= BIT(D40_SREG_CFG_PRI_POS); } if (cfg->src_info.big_endian) src |= BIT(D40_SREG_CFG_LBE_POS); if (cfg->dst_info.big_endian) dst |= BIT(D40_SREG_CFG_LBE_POS); *src_cfg = src; *dst_cfg = dst; } static int d40_phy_fill_lli(struct d40_phy_lli *lli, dma_addr_t data, u32 data_size, dma_addr_t next_lli, u32 reg_cfg, struct stedma40_half_channel_info *info, unsigned int flags) { bool addr_inc = flags & LLI_ADDR_INC; bool term_int = flags & LLI_TERM_INT; unsigned int data_width = info->data_width; int psize = info->psize; int num_elems; if (psize == STEDMA40_PSIZE_PHY_1) num_elems = 1; else num_elems = 2 << psize; /* Must be aligned */ if (!IS_ALIGNED(data, data_width)) return -EINVAL; /* Transfer size can't be smaller than (num_elms * elem_size) */ if (data_size < num_elems * data_width) return -EINVAL; /* The number of elements. IE now many chunks */ lli->reg_elt = (data_size / data_width) << D40_SREG_ELEM_PHY_ECNT_POS; /* * Distance to next element sized entry. * Usually the size of the element unless you want gaps. */ if (addr_inc) lli->reg_elt |= data_width << D40_SREG_ELEM_PHY_EIDX_POS; /* Where the data is */ lli->reg_ptr = data; lli->reg_cfg = reg_cfg; /* If this scatter list entry is the last one, no next link */ if (next_lli == 0) lli->reg_lnk = BIT(D40_SREG_LNK_PHY_TCP_POS); else lli->reg_lnk = next_lli; /* Set/clear interrupt generation on this link item.*/ if (term_int) lli->reg_cfg |= BIT(D40_SREG_CFG_TIM_POS); else lli->reg_cfg &= ~BIT(D40_SREG_CFG_TIM_POS); /* * Post link - D40_SREG_LNK_PHY_PRE_POS = 0 * Relink happens after transfer completion. */ return 0; } static int d40_seg_size(int size, int data_width1, int data_width2) { u32 max_w = max(data_width1, data_width2); u32 min_w = min(data_width1, data_width2); u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w); if (seg_max > STEDMA40_MAX_SEG_SIZE) seg_max -= max_w; if (size <= seg_max) return size; if (size <= 2 * seg_max) return ALIGN(size / 2, max_w); return seg_max; } static struct d40_phy_lli * d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size, dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg, struct stedma40_half_channel_info *info, struct stedma40_half_channel_info *otherinfo, unsigned long flags) { bool lastlink = flags & LLI_LAST_LINK; bool addr_inc = flags & LLI_ADDR_INC; bool term_int = flags & LLI_TERM_INT; bool cyclic = flags & LLI_CYCLIC; int err; dma_addr_t next = lli_phys; int size_rest = size; int size_seg = 0; /* * This piece may be split up based on d40_seg_size(); we only want the * term int on the last part. */ if (term_int) flags &= ~LLI_TERM_INT; do { size_seg = d40_seg_size(size_rest, info->data_width, otherinfo->data_width); size_rest -= size_seg; if (size_rest == 0 && term_int) flags |= LLI_TERM_INT; if (size_rest == 0 && lastlink) next = cyclic ? first_phys : 0; else next = ALIGN(next + sizeof(struct d40_phy_lli), D40_LLI_ALIGN); err = d40_phy_fill_lli(lli, addr, size_seg, next, reg_cfg, info, flags); if (err) goto err; lli++; if (addr_inc) addr += size_seg; } while (size_rest); return lli; err: return NULL; } int d40_phy_sg_to_lli(struct scatterlist *sg, int sg_len, dma_addr_t target, struct d40_phy_lli *lli_sg, dma_addr_t lli_phys, u32 reg_cfg, struct stedma40_half_channel_info *info, struct stedma40_half_channel_info *otherinfo, unsigned long flags) { int total_size = 0; int i; struct scatterlist *current_sg = sg; struct d40_phy_lli *lli = lli_sg; dma_addr_t l_phys = lli_phys; if (!target) flags |= LLI_ADDR_INC; for_each_sg(sg, current_sg, sg_len, i) { dma_addr_t sg_addr = sg_dma_address(current_sg); unsigned int len = sg_dma_len(current_sg); dma_addr_t dst = target ?: sg_addr; total_size += sg_dma_len(current_sg); if (i == sg_len - 1) flags |= LLI_TERM_INT | LLI_LAST_LINK; l_phys = ALIGN(lli_phys + (lli - lli_sg) * sizeof(struct d40_phy_lli), D40_LLI_ALIGN); lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys, reg_cfg, info, otherinfo, flags); if (lli == NULL) return -EINVAL; } return total_size; } /* DMA logical lli operations */ static void d40_log_lli_link(struct d40_log_lli *lli_dst, struct d40_log_lli *lli_src, int next, unsigned int flags) { bool interrupt = flags & LLI_TERM_INT; u32 slos = 0; u32 dlos = 0; if (next != -EINVAL) { slos = next * 2; dlos = next * 2 + 1; } if (interrupt) { lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; } lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | (slos << D40_MEM_LCSP1_SLOS_POS); lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | (dlos << D40_MEM_LCSP1_SLOS_POS); } void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, struct d40_log_lli *lli_dst, struct d40_log_lli *lli_src, int next, unsigned int flags) { d40_log_lli_link(lli_dst, lli_src, next, flags); writel_relaxed(lli_src->lcsp02, &lcpa[0].lcsp0); writel_relaxed(lli_src->lcsp13, &lcpa[0].lcsp1); writel_relaxed(lli_dst->lcsp02, &lcpa[0].lcsp2); writel_relaxed(lli_dst->lcsp13, &lcpa[0].lcsp3); } void d40_log_lli_lcla_write(struct d40_log_lli *lcla, struct d40_log_lli *lli_dst, struct d40_log_lli *lli_src, int next, unsigned int flags) { d40_log_lli_link(lli_dst, lli_src, next, flags); writel_relaxed(lli_src->lcsp02, &lcla[0].lcsp02); writel_relaxed(lli_src->lcsp13, &lcla[0].lcsp13); writel_relaxed(lli_dst->lcsp02, &lcla[1].lcsp02); writel_relaxed(lli_dst->lcsp13, &lcla[1].lcsp13); } static void d40_log_fill_lli(struct d40_log_lli *lli, dma_addr_t data, u32 data_size, u32 reg_cfg, u32 data_width, unsigned int flags) { bool addr_inc = flags & LLI_ADDR_INC; lli->lcsp13 = reg_cfg; /* The number of elements to transfer */ lli->lcsp02 = ((data_size / data_width) << D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; BUG_ON((data_size / data_width) > STEDMA40_MAX_SEG_SIZE); /* 16 LSBs address of the current element */ lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; /* 16 MSBs address of the current element */ lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK; if (addr_inc) lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK; } static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg, dma_addr_t addr, int size, u32 lcsp13, /* src or dst*/ u32 data_width1, u32 data_width2, unsigned int flags) { bool addr_inc = flags & LLI_ADDR_INC; struct d40_log_lli *lli = lli_sg; int size_rest = size; int size_seg = 0; do { size_seg = d40_seg_size(size_rest, data_width1, data_width2); size_rest -= size_seg; d40_log_fill_lli(lli, addr, size_seg, lcsp13, data_width1, flags); if (addr_inc) addr += size_seg; lli++; } while (size_rest); return lli; } int d40_log_sg_to_lli(struct scatterlist *sg, int sg_len, dma_addr_t dev_addr, struct d40_log_lli *lli_sg, u32 lcsp13, /* src or dst*/ u32 data_width1, u32 data_width2) { int total_size = 0; struct scatterlist *current_sg = sg; int i; struct d40_log_lli *lli = lli_sg; unsigned long flags = 0; if (!dev_addr) flags |= LLI_ADDR_INC; for_each_sg(sg, current_sg, sg_len, i) { dma_addr_t sg_addr = sg_dma_address(current_sg); unsigned int len = sg_dma_len(current_sg); dma_addr_t addr = dev_addr ?: sg_addr; total_size += sg_dma_len(current_sg); lli = d40_log_buf_to_lli(lli, addr, len, lcsp13, data_width1, data_width2, flags); } return total_size; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1