Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 2352 | 56.44% | 2 | 5.88% |
Felix Kuhling | 1396 | 33.50% | 11 | 32.35% |
Yong Zhao | 141 | 3.38% | 1 | 2.94% |
Moses Reuben | 73 | 1.75% | 1 | 2.94% |
Lan Xiao | 55 | 1.32% | 1 | 2.94% |
Andres Rodriguez | 45 | 1.08% | 2 | 5.88% |
Shaoyun Liu | 36 | 0.86% | 5 | 14.71% |
Oak Zeng | 31 | 0.74% | 2 | 5.88% |
Edward O'Callaghan | 9 | 0.22% | 1 | 2.94% |
Harish Kasiviswanathan | 5 | 0.12% | 1 | 2.94% |
Flora Cui | 5 | 0.12% | 1 | 2.94% |
Kent Russell | 5 | 0.12% | 1 | 2.94% |
Kees Cook | 4 | 0.10% | 1 | 2.94% |
Alex Deucher | 4 | 0.10% | 1 | 2.94% |
Colin Ian King | 3 | 0.07% | 1 | 2.94% |
Christian König | 2 | 0.05% | 1 | 2.94% |
Amber Lin | 1 | 0.02% | 1 | 2.94% |
Total | 4167 | 34 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/fdtable.h> #include <linux/uaccess.h> #include <linux/firmware.h> #include <drm/drmP.h> #include "amdgpu.h" #include "amdgpu_amdkfd.h" #include "cikd.h" #include "cik_sdma.h" #include "amdgpu_ucode.h" #include "gfx_v7_0.h" #include "gca/gfx_7_2_d.h" #include "gca/gfx_7_2_enum.h" #include "gca/gfx_7_2_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" #include "gmc/gmc_7_1_d.h" #include "gmc/gmc_7_1_sh_mask.h" #include "cik_structs.h" enum hqd_dequeue_request_type { NO_ACTION = 0, DRAIN_PIPE, RESET_WAVES }; enum { MAX_TRAPID = 8, /* 3 bits in the bitfield. */ MAX_WATCH_ADDRESSES = 4 }; enum { ADDRESS_WATCH_REG_ADDR_HI = 0, ADDRESS_WATCH_REG_ADDR_LO, ADDRESS_WATCH_REG_CNTL, ADDRESS_WATCH_REG_MAX }; /* not defined in the CI/KV reg file */ enum { ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL, ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF, ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000, /* extend the mask to 26 bits to match the low address field */ ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6, ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF }; static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = { mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL, mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL, mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL, mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL }; union TCP_WATCH_CNTL_BITS { struct { uint32_t mask:24; uint32_t vmid:4; uint32_t atc:1; uint32_t mode:2; uint32_t valid:1; } bitfields, bits; uint32_t u32All; signed int i32All; float f32All; }; /* * Register access functions */ static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases); static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid); static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id); static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm); static int kgd_hqd_dump(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs); static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, uint32_t __user *wptr, struct mm_struct *mm); static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs); static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id); static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id); static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int utimeout); static int kgd_address_watch_disable(struct kgd_dev *kgd); static int kgd_address_watch_execute(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo); static int kgd_wave_control_execute(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd); static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset); static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid); static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, uint8_t vmid); static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type); static void set_scratch_backing_va(struct kgd_dev *kgd, uint64_t va, uint32_t vmid); static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, uint64_t page_table_base); static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid); static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid); static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd); /* Because of REG_GET_FIELD() being used, we put this function in the * asic specific file. */ static int get_tile_config(struct kgd_dev *kgd, struct tile_config *config) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; config->gb_addr_config = adev->gfx.config.gb_addr_config; config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFBANK); config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFRANKS); config->tile_config_ptr = adev->gfx.config.tile_mode_array; config->num_tile_configs = ARRAY_SIZE(adev->gfx.config.tile_mode_array); config->macro_tile_config_ptr = adev->gfx.config.macrotile_mode_array; config->num_macro_tile_configs = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); return 0; } static const struct kfd2kgd_calls kfd2kgd = { .init_gtt_mem_allocation = alloc_gtt_mem, .free_gtt_mem = free_gtt_mem, .get_local_mem_info = get_local_mem_info, .get_gpu_clock_counter = get_gpu_clock_counter, .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz, .alloc_pasid = amdgpu_pasid_alloc, .free_pasid = amdgpu_pasid_free, .program_sh_mem_settings = kgd_program_sh_mem_settings, .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, .init_interrupts = kgd_init_interrupts, .hqd_load = kgd_hqd_load, .hqd_sdma_load = kgd_hqd_sdma_load, .hqd_dump = kgd_hqd_dump, .hqd_sdma_dump = kgd_hqd_sdma_dump, .hqd_is_occupied = kgd_hqd_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_destroy = kgd_hqd_destroy, .hqd_sdma_destroy = kgd_hqd_sdma_destroy, .address_watch_disable = kgd_address_watch_disable, .address_watch_execute = kgd_address_watch_execute, .wave_control_execute = kgd_wave_control_execute, .address_watch_get_offset = kgd_address_watch_get_offset, .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid, .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid, .get_fw_version = get_fw_version, .set_scratch_backing_va = set_scratch_backing_va, .get_tile_config = get_tile_config, .get_cu_info = get_cu_info, .get_vram_usage = amdgpu_amdkfd_get_vram_usage, .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm, .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm, .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm, .release_process_vm = amdgpu_amdkfd_gpuvm_release_process_vm, .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir, .set_vm_context_page_table_base = set_vm_context_page_table_base, .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu, .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu, .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu, .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu, .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory, .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel, .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos, .invalidate_tlbs = invalidate_tlbs, .invalidate_tlbs_vmid = invalidate_tlbs_vmid, .submit_ib = amdgpu_amdkfd_submit_ib, .get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info, .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg, .gpu_recover = amdgpu_amdkfd_gpu_reset, .set_compute_idle = amdgpu_amdkfd_set_compute_idle }; struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void) { return (struct kfd2kgd_calls *)&kfd2kgd; } static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) { return (struct amdgpu_device *)kgd; } static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue); mutex_lock(&adev->srbm_mutex); WREG32(mmSRBM_GFX_CNTL, value); } static void unlock_srbm(struct kgd_dev *kgd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); WREG32(mmSRBM_GFX_CNTL, 0); mutex_unlock(&adev->srbm_mutex); } static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(kgd, mec, pipe, queue_id, 0); } static void release_queue(struct kgd_dev *kgd) { unlock_srbm(kgd); } static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases) { struct amdgpu_device *adev = get_amdgpu_device(kgd); lock_srbm(kgd, 0, 0, 0, vmid); WREG32(mmSH_MEM_CONFIG, sh_mem_config); WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base); WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit); WREG32(mmSH_MEM_BASES, sh_mem_bases); unlock_srbm(kgd); } static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid) { struct amdgpu_device *adev = get_amdgpu_device(kgd); /* * We have to assume that there is no outstanding mapping. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because * a mapping is in progress or because a mapping finished and the * SW cleared it. So the protocol is to always wait & clear. */ uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID0_PASID_MAPPING__VALID_MASK; WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping); while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid))) cpu_relax(); WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid); /* Mapping vmid to pasid also for IH block */ WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping); return 0; } static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t mec; uint32_t pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(kgd, mec, pipe, 0, 0); WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); unlock_srbm(kgd); return 0; } static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m) { uint32_t retval; retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET + m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; pr_debug("kfd: sdma base address: 0x%x\n", retval); return retval; } static inline struct cik_mqd *get_mqd(void *mqd) { return (struct cik_mqd *)mqd; } static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) { return (struct cik_sdma_rlc_registers *)mqd; } static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_mqd *m; uint32_t *mqd_hqd; uint32_t reg, wptr_val, data; bool valid_wptr = false; m = get_mqd(mqd); acquire_queue(kgd, pipe_id, queue_id); /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */ mqd_hqd = &m->cp_mqd_base_addr_lo; for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++) WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]); /* Copy userspace write pointer value to register. * Activate doorbell logic to monitor subsequent changes. */ data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data); /* read_user_ptr may take the mm->mmap_sem. * release srbm_mutex to avoid circular dependency between * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex. */ release_queue(kgd); valid_wptr = read_user_wptr(mm, wptr, wptr_val); acquire_queue(kgd, pipe_id, queue_id); if (valid_wptr) WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask); data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); WREG32(mmCP_HQD_ACTIVE, data); release_queue(kgd); return 0; } static int kgd_hqd_dump(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t i = 0, reg; #define HQD_N_REGS (35+4) #define DUMP_REG(addr) do { \ if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ break; \ (*dump)[i][0] = (addr) << 2; \ (*dump)[i++][1] = RREG32(addr); \ } while (0) *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; acquire_queue(kgd, pipe_id, queue_id); DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0); DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1); DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2); DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3); for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++) DUMP_REG(reg); release_queue(kgd); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, uint32_t __user *wptr, struct mm_struct *mm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_sdma_rlc_registers *m; unsigned long end_jiffies; uint32_t sdma_base_addr; uint32_t data; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); end_jiffies = msecs_to_jiffies(2000) + jiffies; while (true) { data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) return -ETIME; usleep_range(500, 1000); } if (m->sdma_engine_id) { data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL); data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL, RESUME_CTX, 0); WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data); } else { data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL); data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL, RESUME_CTX, 0); WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data); } data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL, ENABLE, 1); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr); if (read_user_wptr(mm, wptr, data)) WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data); else WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, m->sdma_rlc_rb_rptr); WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR, m->sdma_rlc_virtual_addr); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI, m->sdma_rlc_rb_base_hi); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, m->sdma_rlc_rb_rptr_addr_lo); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, m->sdma_rlc_rb_rptr_addr_hi); data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL, RB_ENABLE, 1); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data); return 0; } static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET + queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; uint32_t i = 0, reg; #undef HQD_N_REGS #define HQD_N_REGS (19+4) *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) DUMP_REG(sdma_offset + reg); for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK; reg++) DUMP_REG(sdma_offset + reg); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t act; bool retval = false; uint32_t low, high; acquire_queue(kgd, pipe_id, queue_id); act = RREG32(mmCP_HQD_ACTIVE); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == RREG32(mmCP_HQD_PQ_BASE) && high == RREG32(mmCP_HQD_PQ_BASE_HI)) retval = true; } release_queue(kgd); return retval; } static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) return true; return false; } static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t temp; enum hqd_dequeue_request_type type; unsigned long flags, end_jiffies; int retry; if (adev->in_gpu_reset) return -EIO; acquire_queue(kgd, pipe_id, queue_id); WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0); switch (reset_type) { case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: type = DRAIN_PIPE; break; case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: type = RESET_WAVES; break; default: type = DRAIN_PIPE; break; } /* Workaround: If IQ timer is active and the wait time is close to or * equal to 0, dequeueing is not safe. Wait until either the wait time * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is * cleared before continuing. Also, ensure wait times are set to at * least 0x3. */ local_irq_save(flags); preempt_disable(); retry = 5000; /* wait for 500 usecs at maximum */ while (true) { temp = RREG32(mmCP_HQD_IQ_TIMER); if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { pr_debug("HW is processing IQ\n"); goto loop; } if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) == 3) /* SEM-rearm is safe */ break; /* Wait time 3 is safe for CP, but our MMIO read/write * time is close to 1 microsecond, so check for 10 to * leave more buffer room */ if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) >= 10) break; pr_debug("IQ timer is active\n"); } else break; loop: if (!retry) { pr_err("CP HQD IQ timer status time out\n"); break; } ndelay(100); --retry; } retry = 1000; while (true) { temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) break; pr_debug("Dequeue request is pending\n"); if (!retry) { pr_err("CP HQD dequeue request time out\n"); break; } ndelay(100); --retry; } local_irq_restore(flags); preempt_enable(); WREG32(mmCP_HQD_DEQUEUE_REQUEST, type); end_jiffies = (utimeout * HZ / 1000) + jiffies; while (true) { temp = RREG32(mmCP_HQD_ACTIVE); if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) break; if (time_after(jiffies, end_jiffies)) { pr_err("cp queue preemption time out\n"); release_queue(kgd); return -ETIME; } usleep_range(500, 1000); } release_queue(kgd); return 0; } static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int utimeout) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; uint32_t temp; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp); while (true) { temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) return -ETIME; usleep_range(500, 1000); } WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) | SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR); return 0; } static int kgd_address_watch_disable(struct kgd_dev *kgd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); union TCP_WATCH_CNTL_BITS cntl; unsigned int i; cntl.u32All = 0; cntl.bitfields.valid = 0; cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK; cntl.bitfields.atc = 1; /* Turning off this address until we set all the registers */ for (i = 0; i < MAX_WATCH_ADDRESSES; i++) WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_CNTL], cntl.u32All); return 0; } static int kgd_address_watch_execute(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo) { struct amdgpu_device *adev = get_amdgpu_device(kgd); union TCP_WATCH_CNTL_BITS cntl; cntl.u32All = cntl_val; /* Turning off this watch point until we set all the registers */ cntl.bitfields.valid = 0; WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_CNTL], cntl.u32All); WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_ADDR_HI], addr_hi); WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_ADDR_LO], addr_lo); /* Enable the watch point */ cntl.bitfields.valid = 1; WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_CNTL], cntl.u32All); return 0; } static int kgd_wave_control_execute(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t data; mutex_lock(&adev->grbm_idx_mutex); WREG32(mmGRBM_GFX_INDEX, gfx_index_val); WREG32(mmSQ_CMD, sq_cmd); /* Restore the GRBM_GFX_INDEX register */ data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK | GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK | GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK; WREG32(mmGRBM_GFX_INDEX, data); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset) { return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset]; } static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid) { uint32_t reg; struct amdgpu_device *adev = (struct amdgpu_device *) kgd; reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK; } static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, uint8_t vmid) { uint32_t reg; struct amdgpu_device *adev = (struct amdgpu_device *) kgd; reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK; } static void set_scratch_backing_va(struct kgd_dev *kgd, uint64_t va, uint32_t vmid) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; lock_srbm(kgd, 0, 0, 0, vmid); WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va); unlock_srbm(kgd); } static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; const union amdgpu_firmware_header *hdr; switch (type) { case KGD_ENGINE_PFP: hdr = (const union amdgpu_firmware_header *) adev->gfx.pfp_fw->data; break; case KGD_ENGINE_ME: hdr = (const union amdgpu_firmware_header *) adev->gfx.me_fw->data; break; case KGD_ENGINE_CE: hdr = (const union amdgpu_firmware_header *) adev->gfx.ce_fw->data; break; case KGD_ENGINE_MEC1: hdr = (const union amdgpu_firmware_header *) adev->gfx.mec_fw->data; break; case KGD_ENGINE_MEC2: hdr = (const union amdgpu_firmware_header *) adev->gfx.mec2_fw->data; break; case KGD_ENGINE_RLC: hdr = (const union amdgpu_firmware_header *) adev->gfx.rlc_fw->data; break; case KGD_ENGINE_SDMA1: hdr = (const union amdgpu_firmware_header *) adev->sdma.instance[0].fw->data; break; case KGD_ENGINE_SDMA2: hdr = (const union amdgpu_firmware_header *) adev->sdma.instance[1].fw->data; break; default: return 0; } if (hdr == NULL) return 0; /* Only 12 bit in use*/ return hdr->common.ucode_version; } static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, uint64_t page_table_base) { struct amdgpu_device *adev = get_amdgpu_device(kgd); if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("trying to set page table base for wrong VMID\n"); return; } WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, lower_32_bits(page_table_base)); } static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; int vmid; unsigned int tmp; if (adev->in_gpu_reset) return -EIO; for (vmid = 0; vmid < 16; vmid++) { if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) continue; tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) && (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) { WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); RREG32(mmVM_INVALIDATE_RESPONSE); break; } } return 0; } static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("non kfd vmid\n"); return 0; } WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); RREG32(mmVM_INVALIDATE_RESPONSE); return 0; } /** * read_vmid_from_vmfault_reg - read vmid from register * * adev: amdgpu_device pointer * @vmid: vmid pointer * read vmid from register (CIK). */ static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1