Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 8944 | 86.68% | 12 | 60.00% |
Maruthi Srinivas Bayyavarapu | 991 | 9.60% | 1 | 5.00% |
Emily Deng | 139 | 1.35% | 1 | 5.00% |
Harry Wentland | 117 | 1.13% | 1 | 5.00% |
horchen | 86 | 0.83% | 1 | 5.00% |
Roman Kapl | 36 | 0.35% | 1 | 5.00% |
Huang Rui | 3 | 0.03% | 1 | 5.00% |
Pixel Ding | 2 | 0.02% | 1 | 5.00% |
Jammy Zhou | 1 | 0.01% | 1 | 5.00% |
Total | 10319 | 20 |
/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include <drm/drmP.h> #include <drm/amdgpu_drm.h> #include "amdgpu.h" #include "amdgpu_atombios.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_i2c.h" #include "amdgpu_display.h" #include "atom.h" #include "atom-bits.h" #include "atombios_encoders.h" #include "bif/bif_4_1_d.h" static void amdgpu_atombios_lookup_i2c_gpio_quirks(struct amdgpu_device *adev, ATOM_GPIO_I2C_ASSIGMENT *gpio, u8 index) { } static struct amdgpu_i2c_bus_rec amdgpu_atombios_get_bus_rec_for_i2c_gpio(ATOM_GPIO_I2C_ASSIGMENT *gpio) { struct amdgpu_i2c_bus_rec i2c; memset(&i2c, 0, sizeof(struct amdgpu_i2c_bus_rec)); i2c.mask_clk_reg = le16_to_cpu(gpio->usClkMaskRegisterIndex); i2c.mask_data_reg = le16_to_cpu(gpio->usDataMaskRegisterIndex); i2c.en_clk_reg = le16_to_cpu(gpio->usClkEnRegisterIndex); i2c.en_data_reg = le16_to_cpu(gpio->usDataEnRegisterIndex); i2c.y_clk_reg = le16_to_cpu(gpio->usClkY_RegisterIndex); i2c.y_data_reg = le16_to_cpu(gpio->usDataY_RegisterIndex); i2c.a_clk_reg = le16_to_cpu(gpio->usClkA_RegisterIndex); i2c.a_data_reg = le16_to_cpu(gpio->usDataA_RegisterIndex); i2c.mask_clk_mask = (1 << gpio->ucClkMaskShift); i2c.mask_data_mask = (1 << gpio->ucDataMaskShift); i2c.en_clk_mask = (1 << gpio->ucClkEnShift); i2c.en_data_mask = (1 << gpio->ucDataEnShift); i2c.y_clk_mask = (1 << gpio->ucClkY_Shift); i2c.y_data_mask = (1 << gpio->ucDataY_Shift); i2c.a_clk_mask = (1 << gpio->ucClkA_Shift); i2c.a_data_mask = (1 << gpio->ucDataA_Shift); if (gpio->sucI2cId.sbfAccess.bfHW_Capable) i2c.hw_capable = true; else i2c.hw_capable = false; if (gpio->sucI2cId.ucAccess == 0xa0) i2c.mm_i2c = true; else i2c.mm_i2c = false; i2c.i2c_id = gpio->sucI2cId.ucAccess; if (i2c.mask_clk_reg) i2c.valid = true; else i2c.valid = false; return i2c; } struct amdgpu_i2c_bus_rec amdgpu_atombios_lookup_i2c_gpio(struct amdgpu_device *adev, uint8_t id) { struct atom_context *ctx = adev->mode_info.atom_context; ATOM_GPIO_I2C_ASSIGMENT *gpio; struct amdgpu_i2c_bus_rec i2c; int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info); struct _ATOM_GPIO_I2C_INFO *i2c_info; uint16_t data_offset, size; int i, num_indices; memset(&i2c, 0, sizeof(struct amdgpu_i2c_bus_rec)); i2c.valid = false; if (amdgpu_atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); gpio = &i2c_info->asGPIO_Info[0]; for (i = 0; i < num_indices; i++) { amdgpu_atombios_lookup_i2c_gpio_quirks(adev, gpio, i); if (gpio->sucI2cId.ucAccess == id) { i2c = amdgpu_atombios_get_bus_rec_for_i2c_gpio(gpio); break; } gpio = (ATOM_GPIO_I2C_ASSIGMENT *) ((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT)); } } return i2c; } void amdgpu_atombios_i2c_init(struct amdgpu_device *adev) { struct atom_context *ctx = adev->mode_info.atom_context; ATOM_GPIO_I2C_ASSIGMENT *gpio; struct amdgpu_i2c_bus_rec i2c; int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info); struct _ATOM_GPIO_I2C_INFO *i2c_info; uint16_t data_offset, size; int i, num_indices; char stmp[32]; if (amdgpu_atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); gpio = &i2c_info->asGPIO_Info[0]; for (i = 0; i < num_indices; i++) { amdgpu_atombios_lookup_i2c_gpio_quirks(adev, gpio, i); i2c = amdgpu_atombios_get_bus_rec_for_i2c_gpio(gpio); if (i2c.valid) { sprintf(stmp, "0x%x", i2c.i2c_id); adev->i2c_bus[i] = amdgpu_i2c_create(adev->ddev, &i2c, stmp); } gpio = (ATOM_GPIO_I2C_ASSIGMENT *) ((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT)); } } } struct amdgpu_gpio_rec amdgpu_atombios_lookup_gpio(struct amdgpu_device *adev, u8 id) { struct atom_context *ctx = adev->mode_info.atom_context; struct amdgpu_gpio_rec gpio; int index = GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT); struct _ATOM_GPIO_PIN_LUT *gpio_info; ATOM_GPIO_PIN_ASSIGNMENT *pin; u16 data_offset, size; int i, num_indices; memset(&gpio, 0, sizeof(struct amdgpu_gpio_rec)); gpio.valid = false; if (amdgpu_atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { gpio_info = (struct _ATOM_GPIO_PIN_LUT *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_PIN_ASSIGNMENT); pin = gpio_info->asGPIO_Pin; for (i = 0; i < num_indices; i++) { if (id == pin->ucGPIO_ID) { gpio.id = pin->ucGPIO_ID; gpio.reg = le16_to_cpu(pin->usGpioPin_AIndex); gpio.shift = pin->ucGpioPinBitShift; gpio.mask = (1 << pin->ucGpioPinBitShift); gpio.valid = true; break; } pin = (ATOM_GPIO_PIN_ASSIGNMENT *) ((u8 *)pin + sizeof(ATOM_GPIO_PIN_ASSIGNMENT)); } } return gpio; } static struct amdgpu_hpd amdgpu_atombios_get_hpd_info_from_gpio(struct amdgpu_device *adev, struct amdgpu_gpio_rec *gpio) { struct amdgpu_hpd hpd; u32 reg; memset(&hpd, 0, sizeof(struct amdgpu_hpd)); reg = amdgpu_display_hpd_get_gpio_reg(adev); hpd.gpio = *gpio; if (gpio->reg == reg) { switch(gpio->mask) { case (1 << 0): hpd.hpd = AMDGPU_HPD_1; break; case (1 << 8): hpd.hpd = AMDGPU_HPD_2; break; case (1 << 16): hpd.hpd = AMDGPU_HPD_3; break; case (1 << 24): hpd.hpd = AMDGPU_HPD_4; break; case (1 << 26): hpd.hpd = AMDGPU_HPD_5; break; case (1 << 28): hpd.hpd = AMDGPU_HPD_6; break; default: hpd.hpd = AMDGPU_HPD_NONE; break; } } else hpd.hpd = AMDGPU_HPD_NONE; return hpd; } static const int object_connector_convert[] = { DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_VGA, DRM_MODE_CONNECTOR_Composite, DRM_MODE_CONNECTOR_SVIDEO, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_HDMIA, DRM_MODE_CONNECTOR_HDMIB, DRM_MODE_CONNECTOR_LVDS, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_DisplayPort, DRM_MODE_CONNECTOR_eDP, DRM_MODE_CONNECTOR_Unknown }; bool amdgpu_atombios_has_dce_engine_info(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, Object_Header); u16 size, data_offset; u8 frev, crev; ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj; ATOM_OBJECT_HEADER *obj_header; if (!amdgpu_atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) return false; if (crev < 2) return false; obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset); path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usDisplayPathTableOffset)); if (path_obj->ucNumOfDispPath) return true; else return false; } bool amdgpu_atombios_get_connector_info_from_object_table(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, Object_Header); u16 size, data_offset; u8 frev, crev; ATOM_CONNECTOR_OBJECT_TABLE *con_obj; ATOM_ENCODER_OBJECT_TABLE *enc_obj; ATOM_OBJECT_TABLE *router_obj; ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj; ATOM_OBJECT_HEADER *obj_header; int i, j, k, path_size, device_support; int connector_type; u16 conn_id, connector_object_id; struct amdgpu_i2c_bus_rec ddc_bus; struct amdgpu_router router; struct amdgpu_gpio_rec gpio; struct amdgpu_hpd hpd; if (!amdgpu_atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) return false; if (crev < 2) return false; obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset); path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usDisplayPathTableOffset)); con_obj = (ATOM_CONNECTOR_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usConnectorObjectTableOffset)); enc_obj = (ATOM_ENCODER_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usEncoderObjectTableOffset)); router_obj = (ATOM_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usRouterObjectTableOffset)); device_support = le16_to_cpu(obj_header->usDeviceSupport); path_size = 0; for (i = 0; i < path_obj->ucNumOfDispPath; i++) { uint8_t *addr = (uint8_t *) path_obj->asDispPath; ATOM_DISPLAY_OBJECT_PATH *path; addr += path_size; path = (ATOM_DISPLAY_OBJECT_PATH *) addr; path_size += le16_to_cpu(path->usSize); if (device_support & le16_to_cpu(path->usDeviceTag)) { uint8_t con_obj_id, con_obj_num, con_obj_type; con_obj_id = (le16_to_cpu(path->usConnObjectId) & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; con_obj_num = (le16_to_cpu(path->usConnObjectId) & ENUM_ID_MASK) >> ENUM_ID_SHIFT; con_obj_type = (le16_to_cpu(path->usConnObjectId) & OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT; /* Skip TV/CV support */ if ((le16_to_cpu(path->usDeviceTag) == ATOM_DEVICE_TV1_SUPPORT) || (le16_to_cpu(path->usDeviceTag) == ATOM_DEVICE_CV_SUPPORT)) continue; if (con_obj_id >= ARRAY_SIZE(object_connector_convert)) { DRM_ERROR("invalid con_obj_id %d for device tag 0x%04x\n", con_obj_id, le16_to_cpu(path->usDeviceTag)); continue; } connector_type = object_connector_convert[con_obj_id]; connector_object_id = con_obj_id; if (connector_type == DRM_MODE_CONNECTOR_Unknown) continue; router.ddc_valid = false; router.cd_valid = false; for (j = 0; j < ((le16_to_cpu(path->usSize) - 8) / 2); j++) { uint8_t grph_obj_id, grph_obj_num, grph_obj_type; grph_obj_id = (le16_to_cpu(path->usGraphicObjIds[j]) & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; grph_obj_num = (le16_to_cpu(path->usGraphicObjIds[j]) & ENUM_ID_MASK) >> ENUM_ID_SHIFT; grph_obj_type = (le16_to_cpu(path->usGraphicObjIds[j]) & OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT; if (grph_obj_type == GRAPH_OBJECT_TYPE_ENCODER) { for (k = 0; k < enc_obj->ucNumberOfObjects; k++) { u16 encoder_obj = le16_to_cpu(enc_obj->asObjects[k].usObjectID); if (le16_to_cpu(path->usGraphicObjIds[j]) == encoder_obj) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(enc_obj->asObjects[k].usRecordOffset)); ATOM_ENCODER_CAP_RECORD *cap_record; u16 caps = 0; while (record->ucRecordSize > 0 && record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_ENCODER_CAP_RECORD_TYPE: cap_record =(ATOM_ENCODER_CAP_RECORD *) record; caps = le16_to_cpu(cap_record->usEncoderCap); break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record->ucRecordSize); } amdgpu_display_add_encoder(adev, encoder_obj, le16_to_cpu(path->usDeviceTag), caps); } } } else if (grph_obj_type == GRAPH_OBJECT_TYPE_ROUTER) { for (k = 0; k < router_obj->ucNumberOfObjects; k++) { u16 router_obj_id = le16_to_cpu(router_obj->asObjects[k].usObjectID); if (le16_to_cpu(path->usGraphicObjIds[j]) == router_obj_id) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(router_obj->asObjects[k].usRecordOffset)); ATOM_I2C_RECORD *i2c_record; ATOM_I2C_ID_CONFIG_ACCESS *i2c_config; ATOM_ROUTER_DDC_PATH_SELECT_RECORD *ddc_path; ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *cd_path; ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *router_src_dst_table = (ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *) (ctx->bios + data_offset + le16_to_cpu(router_obj->asObjects[k].usSrcDstTableOffset)); u8 *num_dst_objs = (u8 *) ((u8 *)router_src_dst_table + 1 + (router_src_dst_table->ucNumberOfSrc * 2)); u16 *dst_objs = (u16 *)(num_dst_objs + 1); int enum_id; router.router_id = router_obj_id; for (enum_id = 0; enum_id < (*num_dst_objs); enum_id++) { if (le16_to_cpu(path->usConnObjectId) == le16_to_cpu(dst_objs[enum_id])) break; } while (record->ucRecordSize > 0 && record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_I2C_RECORD_TYPE: i2c_record = (ATOM_I2C_RECORD *) record; i2c_config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_record->sucI2cId; router.i2c_info = amdgpu_atombios_lookup_i2c_gpio(adev, i2c_config-> ucAccess); router.i2c_addr = i2c_record->ucI2CAddr >> 1; break; case ATOM_ROUTER_DDC_PATH_SELECT_RECORD_TYPE: ddc_path = (ATOM_ROUTER_DDC_PATH_SELECT_RECORD *) record; router.ddc_valid = true; router.ddc_mux_type = ddc_path->ucMuxType; router.ddc_mux_control_pin = ddc_path->ucMuxControlPin; router.ddc_mux_state = ddc_path->ucMuxState[enum_id]; break; case ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD_TYPE: cd_path = (ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *) record; router.cd_valid = true; router.cd_mux_type = cd_path->ucMuxType; router.cd_mux_control_pin = cd_path->ucMuxControlPin; router.cd_mux_state = cd_path->ucMuxState[enum_id]; break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record->ucRecordSize); } } } } } /* look up gpio for ddc, hpd */ ddc_bus.valid = false; hpd.hpd = AMDGPU_HPD_NONE; if ((le16_to_cpu(path->usDeviceTag) & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) == 0) { for (j = 0; j < con_obj->ucNumberOfObjects; j++) { if (le16_to_cpu(path->usConnObjectId) == le16_to_cpu(con_obj->asObjects[j]. usObjectID)) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(con_obj-> asObjects[j]. usRecordOffset)); ATOM_I2C_RECORD *i2c_record; ATOM_HPD_INT_RECORD *hpd_record; ATOM_I2C_ID_CONFIG_ACCESS *i2c_config; while (record->ucRecordSize > 0 && record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_I2C_RECORD_TYPE: i2c_record = (ATOM_I2C_RECORD *) record; i2c_config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_record->sucI2cId; ddc_bus = amdgpu_atombios_lookup_i2c_gpio(adev, i2c_config-> ucAccess); break; case ATOM_HPD_INT_RECORD_TYPE: hpd_record = (ATOM_HPD_INT_RECORD *) record; gpio = amdgpu_atombios_lookup_gpio(adev, hpd_record->ucHPDIntGPIOID); hpd = amdgpu_atombios_get_hpd_info_from_gpio(adev, &gpio); hpd.plugged_state = hpd_record->ucPlugged_PinState; break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record-> ucRecordSize); } break; } } } /* needed for aux chan transactions */ ddc_bus.hpd = hpd.hpd; conn_id = le16_to_cpu(path->usConnObjectId); amdgpu_display_add_connector(adev, conn_id, le16_to_cpu(path->usDeviceTag), connector_type, &ddc_bus, connector_object_id, &hpd, &router); } } amdgpu_link_encoder_connector(adev->ddev); return true; } union firmware_info { ATOM_FIRMWARE_INFO info; ATOM_FIRMWARE_INFO_V1_2 info_12; ATOM_FIRMWARE_INFO_V1_3 info_13; ATOM_FIRMWARE_INFO_V1_4 info_14; ATOM_FIRMWARE_INFO_V2_1 info_21; ATOM_FIRMWARE_INFO_V2_2 info_22; }; int amdgpu_atombios_get_clock_info(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); uint8_t frev, crev; uint16_t data_offset; int ret = -EINVAL; if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { int i; struct amdgpu_pll *ppll = &adev->clock.ppll[0]; struct amdgpu_pll *spll = &adev->clock.spll; struct amdgpu_pll *mpll = &adev->clock.mpll; union firmware_info *firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); /* pixel clocks */ ppll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); ppll->reference_div = 0; ppll->pll_out_min = le32_to_cpu(firmware_info->info_12.ulMinPixelClockPLL_Output); ppll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxPixelClockPLL_Output); ppll->lcd_pll_out_min = le16_to_cpu(firmware_info->info_14.usLcdMinPixelClockPLL_Output) * 100; if (ppll->lcd_pll_out_min == 0) ppll->lcd_pll_out_min = ppll->pll_out_min; ppll->lcd_pll_out_max = le16_to_cpu(firmware_info->info_14.usLcdMaxPixelClockPLL_Output) * 100; if (ppll->lcd_pll_out_max == 0) ppll->lcd_pll_out_max = ppll->pll_out_max; if (ppll->pll_out_min == 0) ppll->pll_out_min = 64800; ppll->pll_in_min = le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Input); ppll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxPixelClockPLL_Input); ppll->min_post_div = 2; ppll->max_post_div = 0x7f; ppll->min_frac_feedback_div = 0; ppll->max_frac_feedback_div = 9; ppll->min_ref_div = 2; ppll->max_ref_div = 0x3ff; ppll->min_feedback_div = 4; ppll->max_feedback_div = 0xfff; ppll->best_vco = 0; for (i = 1; i < AMDGPU_MAX_PPLL; i++) adev->clock.ppll[i] = *ppll; /* system clock */ spll->reference_freq = le16_to_cpu(firmware_info->info_21.usCoreReferenceClock); spll->reference_div = 0; spll->pll_out_min = le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Output); spll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxEngineClockPLL_Output); /* ??? */ if (spll->pll_out_min == 0) spll->pll_out_min = 64800; spll->pll_in_min = le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Input); spll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxEngineClockPLL_Input); spll->min_post_div = 1; spll->max_post_div = 1; spll->min_ref_div = 2; spll->max_ref_div = 0xff; spll->min_feedback_div = 4; spll->max_feedback_div = 0xff; spll->best_vco = 0; /* memory clock */ mpll->reference_freq = le16_to_cpu(firmware_info->info_21.usMemoryReferenceClock); mpll->reference_div = 0; mpll->pll_out_min = le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Output); mpll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxMemoryClockPLL_Output); /* ??? */ if (mpll->pll_out_min == 0) mpll->pll_out_min = 64800; mpll->pll_in_min = le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Input); mpll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxMemoryClockPLL_Input); adev->clock.default_sclk = le32_to_cpu(firmware_info->info.ulDefaultEngineClock); adev->clock.default_mclk = le32_to_cpu(firmware_info->info.ulDefaultMemoryClock); mpll->min_post_div = 1; mpll->max_post_div = 1; mpll->min_ref_div = 2; mpll->max_ref_div = 0xff; mpll->min_feedback_div = 4; mpll->max_feedback_div = 0xff; mpll->best_vco = 0; /* disp clock */ adev->clock.default_dispclk = le32_to_cpu(firmware_info->info_21.ulDefaultDispEngineClkFreq); /* set a reasonable default for DP */ if (adev->clock.default_dispclk < 53900) { DRM_DEBUG("Changing default dispclk from %dMhz to 600Mhz\n", adev->clock.default_dispclk / 100); adev->clock.default_dispclk = 60000; } else if (adev->clock.default_dispclk <= 60000) { DRM_DEBUG("Changing default dispclk from %dMhz to 625Mhz\n", adev->clock.default_dispclk / 100); adev->clock.default_dispclk = 62500; } adev->clock.dp_extclk = le16_to_cpu(firmware_info->info_21.usUniphyDPModeExtClkFreq); adev->clock.current_dispclk = adev->clock.default_dispclk; adev->clock.max_pixel_clock = le16_to_cpu(firmware_info->info.usMaxPixelClock); if (adev->clock.max_pixel_clock == 0) adev->clock.max_pixel_clock = 40000; /* not technically a clock, but... */ adev->mode_info.firmware_flags = le16_to_cpu(firmware_info->info.usFirmwareCapability.susAccess); ret = 0; } adev->pm.current_sclk = adev->clock.default_sclk; adev->pm.current_mclk = adev->clock.default_mclk; return ret; } union gfx_info { ATOM_GFX_INFO_V2_1 info; }; int amdgpu_atombios_get_gfx_info(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, GFX_Info); uint8_t frev, crev; uint16_t data_offset; int ret = -EINVAL; if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { union gfx_info *gfx_info = (union gfx_info *) (mode_info->atom_context->bios + data_offset); adev->gfx.config.max_shader_engines = gfx_info->info.max_shader_engines; adev->gfx.config.max_tile_pipes = gfx_info->info.max_tile_pipes; adev->gfx.config.max_cu_per_sh = gfx_info->info.max_cu_per_sh; adev->gfx.config.max_sh_per_se = gfx_info->info.max_sh_per_se; adev->gfx.config.max_backends_per_se = gfx_info->info.max_backends_per_se; adev->gfx.config.max_texture_channel_caches = gfx_info->info.max_texture_channel_caches; ret = 0; } return ret; } union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_9 info_9; }; /* * Return vram width from integrated system info table, if available, * or 0 if not. */ int amdgpu_atombios_get_vram_width(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); u16 data_offset, size; union igp_info *igp_info; u8 frev, crev; /* get any igp specific overrides */ if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { igp_info = (union igp_info *) (mode_info->atom_context->bios + data_offset); switch (crev) { case 8: case 9: return igp_info->info_8.ucUMAChannelNumber * 64; default: return 0; } } return 0; } static void amdgpu_atombios_get_igp_ss_overrides(struct amdgpu_device *adev, struct amdgpu_atom_ss *ss, int id) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); u16 data_offset, size; union igp_info *igp_info; u8 frev, crev; u16 percentage = 0, rate = 0; /* get any igp specific overrides */ if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { igp_info = (union igp_info *) (mode_info->atom_context->bios + data_offset); switch (crev) { case 6: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_6.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_6.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_6.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_6.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_6.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_6.usLvdsSSpreadRateIn10Hz); break; } break; case 7: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_7.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_7.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_7.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_7.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_7.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_7.usLvdsSSpreadRateIn10Hz); break; } break; case 8: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_8.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_8.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_8.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_8.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_8.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_8.usLvdsSSpreadRateIn10Hz); break; } break; case 9: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_9.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_9.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_9.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_9.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_9.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_9.usLvdsSSpreadRateIn10Hz); break; } break; default: DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); break; } if (percentage) ss->percentage = percentage; if (rate) ss->rate = rate; } } union asic_ss_info { struct _ATOM_ASIC_INTERNAL_SS_INFO info; struct _ATOM_ASIC_INTERNAL_SS_INFO_V2 info_2; struct _ATOM_ASIC_INTERNAL_SS_INFO_V3 info_3; }; union asic_ss_assignment { struct _ATOM_ASIC_SS_ASSIGNMENT v1; struct _ATOM_ASIC_SS_ASSIGNMENT_V2 v2; struct _ATOM_ASIC_SS_ASSIGNMENT_V3 v3; }; bool amdgpu_atombios_get_asic_ss_info(struct amdgpu_device *adev, struct amdgpu_atom_ss *ss, int id, u32 clock) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info); uint16_t data_offset, size; union asic_ss_info *ss_info; union asic_ss_assignment *ss_assign; uint8_t frev, crev; int i, num_indices; if (id == ASIC_INTERNAL_MEMORY_SS) { if (!(adev->mode_info.firmware_flags & ATOM_BIOS_INFO_MEMORY_CLOCK_SS_SUPPORT)) return false; } if (id == ASIC_INTERNAL_ENGINE_SS) { if (!(adev->mode_info.firmware_flags & ATOM_BIOS_INFO_ENGINE_CLOCK_SS_SUPPORT)) return false; } memset(ss, 0, sizeof(struct amdgpu_atom_ss)); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { ss_info = (union asic_ss_info *)(mode_info->atom_context->bios + data_offset); switch (frev) { case 1: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT); ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info.asSpreadSpectrum[0]); for (i = 0; i < num_indices; i++) { if ((ss_assign->v1.ucClockIndication == id) && (clock <= le32_to_cpu(ss_assign->v1.ulTargetClockRange))) { ss->percentage = le16_to_cpu(ss_assign->v1.usSpreadSpectrumPercentage); ss->type = ss_assign->v1.ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_assign->v1.usSpreadRateInKhz); ss->percentage_divider = 100; return true; } ss_assign = (union asic_ss_assignment *) ((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT)); } break; case 2: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2); ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_2.asSpreadSpectrum[0]); for (i = 0; i < num_indices; i++) { if ((ss_assign->v2.ucClockIndication == id) && (clock <= le32_to_cpu(ss_assign->v2.ulTargetClockRange))) { ss->percentage = le16_to_cpu(ss_assign->v2.usSpreadSpectrumPercentage); ss->type = ss_assign->v2.ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_assign->v2.usSpreadRateIn10Hz); ss->percentage_divider = 100; if ((crev == 2) && ((id == ASIC_INTERNAL_ENGINE_SS) || (id == ASIC_INTERNAL_MEMORY_SS))) ss->rate /= 100; return true; } ss_assign = (union asic_ss_assignment *) ((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2)); } break; case 3: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3); ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_3.asSpreadSpectrum[0]); for (i = 0; i < num_indices; i++) { if ((ss_assign->v3.ucClockIndication == id) && (clock <= le32_to_cpu(ss_assign->v3.ulTargetClockRange))) { ss->percentage = le16_to_cpu(ss_assign->v3.usSpreadSpectrumPercentage); ss->type = ss_assign->v3.ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_assign->v3.usSpreadRateIn10Hz); if (ss_assign->v3.ucSpreadSpectrumMode & SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK) ss->percentage_divider = 1000; else ss->percentage_divider = 100; if ((id == ASIC_INTERNAL_ENGINE_SS) || (id == ASIC_INTERNAL_MEMORY_SS)) ss->rate /= 100; if (adev->flags & AMD_IS_APU) amdgpu_atombios_get_igp_ss_overrides(adev, ss, id); return true; } ss_assign = (union asic_ss_assignment *) ((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3)); } break; default: DRM_ERROR("Unsupported ASIC_InternalSS_Info table: %d %d\n", frev, crev); break; } } return false; } union get_clock_dividers { struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS v1; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V2 v2; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V3 v3; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 v4; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V5 v5; struct _COMPUTE_GPU_CLOCK_INPUT_PARAMETERS_V1_6 v6_in; struct _COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 v6_out; }; int amdgpu_atombios_get_clock_dividers(struct amdgpu_device *adev, u8 clock_type, u32 clock, bool strobe_mode, struct atom_clock_dividers *dividers) { union get_clock_dividers args; int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL); u8 frev, crev; memset(&args, 0, sizeof(args)); memset(dividers, 0, sizeof(struct atom_clock_dividers)); if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 2: case 3: case 5: /* r6xx, r7xx, evergreen, ni, si. * TODO: add support for asic_type <= CHIP_RV770*/ if (clock_type == COMPUTE_ENGINE_PLL_PARAM) { args.v3.ulClockParams = cpu_to_le32((clock_type << 24) | clock); amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_div = args.v3.ucPostDiv; dividers->enable_post_div = (args.v3.ucCntlFlag & ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false; dividers->enable_dithen = (args.v3.ucCntlFlag & ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true; dividers->whole_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDiv); dividers->frac_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDivFrac); dividers->ref_div = args.v3.ucRefDiv; dividers->vco_mode = (args.v3.ucCntlFlag & ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0; } else { /* for SI we use ComputeMemoryClockParam for memory plls */ if (adev->asic_type >= CHIP_TAHITI) return -EINVAL; args.v5.ulClockParams = cpu_to_le32((clock_type << 24) | clock); if (strobe_mode) args.v5.ucInputFlag = ATOM_PLL_INPUT_FLAG_PLL_STROBE_MODE_EN; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_div = args.v5.ucPostDiv; dividers->enable_post_div = (args.v5.ucCntlFlag & ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false; dividers->enable_dithen = (args.v5.ucCntlFlag & ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true; dividers->whole_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDiv); dividers->frac_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDivFrac); dividers->ref_div = args.v5.ucRefDiv; dividers->vco_mode = (args.v5.ucCntlFlag & ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0; } break; case 4: /* fusion */ args.v4.ulClock = cpu_to_le32(clock); /* 10 khz */ amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_divider = dividers->post_div = args.v4.ucPostDiv; dividers->real_clock = le32_to_cpu(args.v4.ulClock); break; case 6: /* CI */ /* COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, COMPUTE_GPUCLK_INPUT_FLAG_SCLK */ args.v6_in.ulClock.ulComputeClockFlag = clock_type; args.v6_in.ulClock.ulClockFreq = cpu_to_le32(clock); /* 10 khz */ amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); dividers->whole_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDiv); dividers->frac_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDivFrac); dividers->ref_div = args.v6_out.ucPllRefDiv; dividers->post_div = args.v6_out.ucPllPostDiv; dividers->flags = args.v6_out.ucPllCntlFlag; dividers->real_clock = le32_to_cpu(args.v6_out.ulClock.ulClock); dividers->post_divider = args.v6_out.ulClock.ucPostDiv; break; default: return -EINVAL; } return 0; } int amdgpu_atombios_get_memory_pll_dividers(struct amdgpu_device *adev, u32 clock, bool strobe_mode, struct atom_mpll_param *mpll_param) { COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 args; int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam); u8 frev, crev; memset(&args, 0, sizeof(args)); memset(mpll_param, 0, sizeof(struct atom_mpll_param)); if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (frev) { case 2: switch (crev) { case 1: /* SI */ args.ulClock = cpu_to_le32(clock); /* 10 khz */ args.ucInputFlag = 0; if (strobe_mode) args.ucInputFlag |= MPLL_INPUT_FLAG_STROBE_MODE_EN; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); mpll_param->clkfrac = le16_to_cpu(args.ulFbDiv.usFbDivFrac); mpll_param->clkf = le16_to_cpu(args.ulFbDiv.usFbDiv); mpll_param->post_div = args.ucPostDiv; mpll_param->dll_speed = args.ucDllSpeed; mpll_param->bwcntl = args.ucBWCntl; mpll_param->vco_mode = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_VCO_MODE_MASK); mpll_param->yclk_sel = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0; mpll_param->qdr = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0; mpll_param->half_rate = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0; break; default: return -EINVAL; } break; default: return -EINVAL; } return 0; } void amdgpu_atombios_set_engine_dram_timings(struct amdgpu_device *adev, u32 eng_clock, u32 mem_clock) { SET_ENGINE_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings); u32 tmp; memset(&args, 0, sizeof(args)); tmp = eng_clock & SET_CLOCK_FREQ_MASK; tmp |= (COMPUTE_ENGINE_PLL_PARAM << 24); args.ulTargetEngineClock = cpu_to_le32(tmp); if (mem_clock) args.sReserved.ulClock = cpu_to_le32(mem_clock & SET_CLOCK_FREQ_MASK); amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_get_default_voltages(struct amdgpu_device *adev, u16 *vddc, u16 *vddci, u16 *mvdd) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); u8 frev, crev; u16 data_offset; union firmware_info *firmware_info; *vddc = 0; *vddci = 0; *mvdd = 0; if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); *vddc = le16_to_cpu(firmware_info->info_14.usBootUpVDDCVoltage); if ((frev == 2) && (crev >= 2)) { *vddci = le16_to_cpu(firmware_info->info_22.usBootUpVDDCIVoltage); *mvdd = le16_to_cpu(firmware_info->info_22.usBootUpMVDDCVoltage); } } } union set_voltage { struct _SET_VOLTAGE_PS_ALLOCATION alloc; struct _SET_VOLTAGE_PARAMETERS v1; struct _SET_VOLTAGE_PARAMETERS_V2 v2; struct _SET_VOLTAGE_PARAMETERS_V1_3 v3; }; int amdgpu_atombios_get_max_vddc(struct amdgpu_device *adev, u8 voltage_type, u16 voltage_id, u16 *voltage) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev; if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 1: return -EINVAL; case 2: args.v2.ucVoltageType = SET_VOLTAGE_GET_MAX_VOLTAGE; args.v2.ucVoltageMode = 0; args.v2.usVoltageLevel = 0; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); *voltage = le16_to_cpu(args.v2.usVoltageLevel); break; case 3: args.v3.ucVoltageType = voltage_type; args.v3.ucVoltageMode = ATOM_GET_VOLTAGE_LEVEL; args.v3.usVoltageLevel = cpu_to_le16(voltage_id); amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); *voltage = le16_to_cpu(args.v3.usVoltageLevel); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } int amdgpu_atombios_get_leakage_vddc_based_on_leakage_idx(struct amdgpu_device *adev, u16 *voltage, u16 leakage_idx) { return amdgpu_atombios_get_max_vddc(adev, VOLTAGE_TYPE_VDDC, leakage_idx, voltage); } int amdgpu_atombios_get_leakage_id_from_vbios(struct amdgpu_device *adev, u16 *leakage_id) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev; if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 3: case 4: args.v3.ucVoltageType = 0; args.v3.ucVoltageMode = ATOM_GET_LEAKAGE_ID; args.v3.usVoltageLevel = 0; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); *leakage_id = le16_to_cpu(args.v3.usVoltageLevel); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } int amdgpu_atombios_get_leakage_vddc_based_on_leakage_params(struct amdgpu_device *adev, u16 *vddc, u16 *vddci, u16 virtual_voltage_id, u16 vbios_voltage_id) { int index = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo); u8 frev, crev; u16 data_offset, size; int i, j; ATOM_ASIC_PROFILING_INFO_V2_1 *profile; u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf; *vddc = 0; *vddci = 0; if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) return -EINVAL; profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *) (adev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: return -EINVAL; case 2: switch (crev) { case 1: if (size < sizeof(ATOM_ASIC_PROFILING_INFO_V2_1)) return -EINVAL; leakage_bin = (u16 *) (adev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usLeakageBinArrayOffset)); vddc_id_buf = (u16 *) (adev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDC_IdArrayOffset)); vddc_buf = (u16 *) (adev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDC_LevelArrayOffset)); vddci_id_buf = (u16 *) (adev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDCI_IdArrayOffset)); vddci_buf = (u16 *) (adev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDCI_LevelArrayOffset)); if (profile->ucElbVDDC_Num > 0) { for (i = 0; i < profile->ucElbVDDC_Num; i++) { if (vddc_id_buf[i] == virtual_voltage_id) { for (j = 0; j < profile->ucLeakageBinNum; j++) { if (vbios_voltage_id <= leakage_bin[j]) { *vddc = vddc_buf[j * profile->ucElbVDDC_Num + i]; break; } } break; } } } if (profile->ucElbVDDCI_Num > 0) { for (i = 0; i < profile->ucElbVDDCI_Num; i++) { if (vddci_id_buf[i] == virtual_voltage_id) { for (j = 0; j < profile->ucLeakageBinNum; j++) { if (vbios_voltage_id <= leakage_bin[j]) { *vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i]; break; } } break; } } } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } union get_voltage_info { struct _GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 in; struct _GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 evv_out; }; int amdgpu_atombios_get_voltage_evv(struct amdgpu_device *adev, u16 virtual_voltage_id, u16 *voltage) { int index = GetIndexIntoMasterTable(COMMAND, GetVoltageInfo); u32 entry_id; u32 count = adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; union get_voltage_info args; for (entry_id = 0; entry_id < count; entry_id++) { if (adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[entry_id].v == virtual_voltage_id) break; } if (entry_id >= count) return -EINVAL; args.in.ucVoltageType = VOLTAGE_TYPE_VDDC; args.in.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; args.in.usVoltageLevel = cpu_to_le16(virtual_voltage_id); args.in.ulSCLKFreq = cpu_to_le32(adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[entry_id].clk); amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); *voltage = le16_to_cpu(args.evv_out.usVoltageLevel); return 0; } union voltage_object_info { struct _ATOM_VOLTAGE_OBJECT_INFO v1; struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2; struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3; }; union voltage_object { struct _ATOM_VOLTAGE_OBJECT v1; struct _ATOM_VOLTAGE_OBJECT_V2 v2; union _ATOM_VOLTAGE_OBJECT_V3 v3; }; static ATOM_VOLTAGE_OBJECT_V3 *amdgpu_atombios_lookup_voltage_object_v3(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *v3, u8 voltage_type, u8 voltage_mode) { u32 size = le16_to_cpu(v3->sHeader.usStructureSize); u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]); u8 *start = (u8*)v3; while (offset < size) { ATOM_VOLTAGE_OBJECT_V3 *vo = (ATOM_VOLTAGE_OBJECT_V3 *)(start + offset); if ((vo->asGpioVoltageObj.sHeader.ucVoltageType == voltage_type) && (vo->asGpioVoltageObj.sHeader.ucVoltageMode == voltage_mode)) return vo; offset += le16_to_cpu(vo->asGpioVoltageObj.sHeader.usSize); } return NULL; } int amdgpu_atombios_get_svi2_info(struct amdgpu_device *adev, u8 voltage_type, u8 *svd_gpio_id, u8 *svc_gpio_id) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (adev->mode_info.atom_context->bios + data_offset); switch (frev) { case 3: switch (crev) { case 1: voltage_object = (union voltage_object *) amdgpu_atombios_lookup_voltage_object_v3(&voltage_info->v3, voltage_type, VOLTAGE_OBJ_SVID2); if (voltage_object) { *svd_gpio_id = voltage_object->v3.asSVID2Obj.ucSVDGpioId; *svc_gpio_id = voltage_object->v3.asSVID2Obj.ucSVCGpioId; } else { return -EINVAL; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return 0; } bool amdgpu_atombios_is_voltage_gpio(struct amdgpu_device *adev, u8 voltage_type, u8 voltage_mode) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (adev->mode_info.atom_context->bios + data_offset); switch (frev) { case 3: switch (crev) { case 1: if (amdgpu_atombios_lookup_voltage_object_v3(&voltage_info->v3, voltage_type, voltage_mode)) return true; break; default: DRM_ERROR("unknown voltage object table\n"); return false; } break; default: DRM_ERROR("unknown voltage object table\n"); return false; } } return false; } int amdgpu_atombios_get_voltage_table(struct amdgpu_device *adev, u8 voltage_type, u8 voltage_mode, struct atom_voltage_table *voltage_table) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; int i; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (adev->mode_info.atom_context->bios + data_offset); switch (frev) { case 3: switch (crev) { case 1: voltage_object = (union voltage_object *) amdgpu_atombios_lookup_voltage_object_v3(&voltage_info->v3, voltage_type, voltage_mode); if (voltage_object) { ATOM_GPIO_VOLTAGE_OBJECT_V3 *gpio = &voltage_object->v3.asGpioVoltageObj; VOLTAGE_LUT_ENTRY_V2 *lut; if (gpio->ucGpioEntryNum > MAX_VOLTAGE_ENTRIES) return -EINVAL; lut = &gpio->asVolGpioLut[0]; for (i = 0; i < gpio->ucGpioEntryNum; i++) { voltage_table->entries[i].value = le16_to_cpu(lut->usVoltageValue); voltage_table->entries[i].smio_low = le32_to_cpu(lut->ulVoltageId); lut = (VOLTAGE_LUT_ENTRY_V2 *) ((u8 *)lut + sizeof(VOLTAGE_LUT_ENTRY_V2)); } voltage_table->mask_low = le32_to_cpu(gpio->ulGpioMaskVal); voltage_table->count = gpio->ucGpioEntryNum; voltage_table->phase_delay = gpio->ucPhaseDelay; return 0; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return -EINVAL; } union vram_info { struct _ATOM_VRAM_INFO_V3 v1_3; struct _ATOM_VRAM_INFO_V4 v1_4; struct _ATOM_VRAM_INFO_HEADER_V2_1 v2_1; }; #define MEM_ID_MASK 0xff000000 #define MEM_ID_SHIFT 24 #define CLOCK_RANGE_MASK 0x00ffffff #define CLOCK_RANGE_SHIFT 0 #define LOW_NIBBLE_MASK 0xf #define DATA_EQU_PREV 0 #define DATA_FROM_TABLE 4 int amdgpu_atombios_init_mc_reg_table(struct amdgpu_device *adev, u8 module_index, struct atom_mc_reg_table *reg_table) { int index = GetIndexIntoMasterTable(DATA, VRAM_Info); u8 frev, crev, num_entries, t_mem_id, num_ranges = 0; u32 i = 0, j; u16 data_offset, size; union vram_info *vram_info; memset(reg_table, 0, sizeof(struct atom_mc_reg_table)); if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { vram_info = (union vram_info *) (adev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: DRM_ERROR("old table version %d, %d\n", frev, crev); return -EINVAL; case 2: switch (crev) { case 1: if (module_index < vram_info->v2_1.ucNumOfVRAMModule) { ATOM_INIT_REG_BLOCK *reg_block = (ATOM_INIT_REG_BLOCK *) ((u8 *)vram_info + le16_to_cpu(vram_info->v2_1.usMemClkPatchTblOffset)); ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) ((u8 *)reg_block + (2 * sizeof(u16)) + le16_to_cpu(reg_block->usRegIndexTblSize)); ATOM_INIT_REG_INDEX_FORMAT *format = ®_block->asRegIndexBuf[0]; num_entries = (u8)((le16_to_cpu(reg_block->usRegIndexTblSize)) / sizeof(ATOM_INIT_REG_INDEX_FORMAT)) - 1; if (num_entries > VBIOS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; while (i < num_entries) { if (format->ucPreRegDataLength & ACCESS_PLACEHOLDER) break; reg_table->mc_reg_address[i].s1 = (u16)(le16_to_cpu(format->usRegIndex)); reg_table->mc_reg_address[i].pre_reg_data = (u8)(format->ucPreRegDataLength); i++; format = (ATOM_INIT_REG_INDEX_FORMAT *) ((u8 *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT)); } reg_table->last = i; while ((le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK) && (num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES)) { t_mem_id = (u8)((le32_to_cpu(*(u32 *)reg_data) & MEM_ID_MASK) >> MEM_ID_SHIFT); if (module_index == t_mem_id) { reg_table->mc_reg_table_entry[num_ranges].mclk_max = (u32)((le32_to_cpu(*(u32 *)reg_data) & CLOCK_RANGE_MASK) >> CLOCK_RANGE_SHIFT); for (i = 0, j = 1; i < reg_table->last; i++) { if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_FROM_TABLE) { reg_table->mc_reg_table_entry[num_ranges].mc_data[i] = (u32)le32_to_cpu(*((u32 *)reg_data + j)); j++; } else if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_EQU_PREV) { reg_table->mc_reg_table_entry[num_ranges].mc_data[i] = reg_table->mc_reg_table_entry[num_ranges].mc_data[i - 1]; } } num_ranges++; } reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) ((u8 *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)); } if (le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK) return -EINVAL; reg_table->num_entries = num_ranges; } else return -EINVAL; break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } return -EINVAL; } bool amdgpu_atombios_has_gpu_virtualization_table(struct amdgpu_device *adev) { int index = GetIndexIntoMasterTable(DATA, GPUVirtualizationInfo); u8 frev, crev; u16 data_offset, size; if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) return true; return false; } void amdgpu_atombios_scratch_regs_lock(struct amdgpu_device *adev, bool lock) { uint32_t bios_6_scratch; bios_6_scratch = RREG32(adev->bios_scratch_reg_offset + 6); if (lock) { bios_6_scratch |= ATOM_S6_CRITICAL_STATE; bios_6_scratch &= ~ATOM_S6_ACC_MODE; } else { bios_6_scratch &= ~ATOM_S6_CRITICAL_STATE; bios_6_scratch |= ATOM_S6_ACC_MODE; } WREG32(adev->bios_scratch_reg_offset + 6, bios_6_scratch); } static void amdgpu_atombios_scratch_regs_init(struct amdgpu_device *adev) { uint32_t bios_2_scratch, bios_6_scratch; adev->bios_scratch_reg_offset = mmBIOS_SCRATCH_0; bios_2_scratch = RREG32(adev->bios_scratch_reg_offset + 2); bios_6_scratch = RREG32(adev->bios_scratch_reg_offset + 6); /* let the bios control the backlight */ bios_2_scratch &= ~ATOM_S2_VRI_BRIGHT_ENABLE; /* tell the bios not to handle mode switching */ bios_6_scratch |= ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH; /* clear the vbios dpms state */ bios_2_scratch &= ~ATOM_S2_DEVICE_DPMS_STATE; WREG32(adev->bios_scratch_reg_offset + 2, bios_2_scratch); WREG32(adev->bios_scratch_reg_offset + 6, bios_6_scratch); } void amdgpu_atombios_scratch_regs_engine_hung(struct amdgpu_device *adev, bool hung) { u32 tmp = RREG32(adev->bios_scratch_reg_offset + 3); if (hung) tmp |= ATOM_S3_ASIC_GUI_ENGINE_HUNG; else tmp &= ~ATOM_S3_ASIC_GUI_ENGINE_HUNG; WREG32(adev->bios_scratch_reg_offset + 3, tmp); } bool amdgpu_atombios_scratch_need_asic_init(struct amdgpu_device *adev) { u32 tmp = RREG32(adev->bios_scratch_reg_offset + 7); if (tmp & ATOM_S7_ASIC_INIT_COMPLETE_MASK) return false; else return true; } /* Atom needs data in little endian format so swap as appropriate when copying * data to or from atom. Note that atom operates on dw units. * * Use to_le=true when sending data to atom and provide at least * ALIGN(num_bytes,4) bytes in the dst buffer. * * Use to_le=false when receiving data from atom and provide ALIGN(num_bytes,4) * byes in the src buffer. */ void amdgpu_atombios_copy_swap(u8 *dst, u8 *src, u8 num_bytes, bool to_le) { #ifdef __BIG_ENDIAN u32 src_tmp[5], dst_tmp[5]; int i; u8 align_num_bytes = ALIGN(num_bytes, 4); if (to_le) { memcpy(src_tmp, src, num_bytes); for (i = 0; i < align_num_bytes / 4; i++) dst_tmp[i] = cpu_to_le32(src_tmp[i]); memcpy(dst, dst_tmp, align_num_bytes); } else { memcpy(src_tmp, src, align_num_bytes); for (i = 0; i < align_num_bytes / 4; i++) dst_tmp[i] = le32_to_cpu(src_tmp[i]); memcpy(dst, dst_tmp, num_bytes); } #else memcpy(dst, src, num_bytes); #endif } static int amdgpu_atombios_allocate_fb_scratch(struct amdgpu_device *adev) { struct atom_context *ctx = adev->mode_info.atom_context; int index = GetIndexIntoMasterTable(DATA, VRAM_UsageByFirmware); uint16_t data_offset; int usage_bytes = 0; struct _ATOM_VRAM_USAGE_BY_FIRMWARE *firmware_usage; u64 start_addr; u64 size; if (amdgpu_atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset)) { firmware_usage = (struct _ATOM_VRAM_USAGE_BY_FIRMWARE *)(ctx->bios + data_offset); DRM_DEBUG("atom firmware requested %08x %dkb\n", le32_to_cpu(firmware_usage->asFirmwareVramReserveInfo[0].ulStartAddrUsedByFirmware), le16_to_cpu(firmware_usage->asFirmwareVramReserveInfo[0].usFirmwareUseInKb)); start_addr = firmware_usage->asFirmwareVramReserveInfo[0].ulStartAddrUsedByFirmware; size = firmware_usage->asFirmwareVramReserveInfo[0].usFirmwareUseInKb; if ((uint32_t)(start_addr & ATOM_VRAM_OPERATION_FLAGS_MASK) == (uint32_t)(ATOM_VRAM_BLOCK_SRIOV_MSG_SHARE_RESERVATION << ATOM_VRAM_OPERATION_FLAGS_SHIFT)) { /* Firmware request VRAM reservation for SR-IOV */ adev->fw_vram_usage.start_offset = (start_addr & (~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10; adev->fw_vram_usage.size = size << 10; /* Use the default scratch size */ usage_bytes = 0; } else { usage_bytes = le16_to_cpu(firmware_usage->asFirmwareVramReserveInfo[0].usFirmwareUseInKb) * 1024; } } ctx->scratch_size_bytes = 0; if (usage_bytes == 0) usage_bytes = 20 * 1024; /* allocate some scratch memory */ ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL); if (!ctx->scratch) return -ENOMEM; ctx->scratch_size_bytes = usage_bytes; return 0; } /* ATOM accessor methods */ /* * ATOM is an interpreted byte code stored in tables in the vbios. The * driver registers callbacks to access registers and the interpreter * in the driver parses the tables and executes then to program specific * actions (set display modes, asic init, etc.). See amdgpu_atombios.c, * atombios.h, and atom.c */ /** * cail_pll_read - read PLL register * * @info: atom card_info pointer * @reg: PLL register offset * * Provides a PLL register accessor for the atom interpreter (r4xx+). * Returns the value of the PLL register. */ static uint32_t cail_pll_read(struct card_info *info, uint32_t reg) { return 0; } /** * cail_pll_write - write PLL register * * @info: atom card_info pointer * @reg: PLL register offset * @val: value to write to the pll register * * Provides a PLL register accessor for the atom interpreter (r4xx+). */ static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val) { } /** * cail_mc_read - read MC (Memory Controller) register * * @info: atom card_info pointer * @reg: MC register offset * * Provides an MC register accessor for the atom interpreter (r4xx+). * Returns the value of the MC register. */ static uint32_t cail_mc_read(struct card_info *info, uint32_t reg) { return 0; } /** * cail_mc_write - write MC (Memory Controller) register * * @info: atom card_info pointer * @reg: MC register offset * @val: value to write to the pll register * * Provides a MC register accessor for the atom interpreter (r4xx+). */ static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val) { } /** * cail_reg_write - write MMIO register * * @info: atom card_info pointer * @reg: MMIO register offset * @val: value to write to the pll register * * Provides a MMIO register accessor for the atom interpreter (r4xx+). */ static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct amdgpu_device *adev = info->dev->dev_private; WREG32(reg, val); } /** * cail_reg_read - read MMIO register * * @info: atom card_info pointer * @reg: MMIO register offset * * Provides an MMIO register accessor for the atom interpreter (r4xx+). * Returns the value of the MMIO register. */ static uint32_t cail_reg_read(struct card_info *info, uint32_t reg) { struct amdgpu_device *adev = info->dev->dev_private; uint32_t r; r = RREG32(reg); return r; } /** * cail_ioreg_write - write IO register * * @info: atom card_info pointer * @reg: IO register offset * @val: value to write to the pll register * * Provides a IO register accessor for the atom interpreter (r4xx+). */ static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct amdgpu_device *adev = info->dev->dev_private; WREG32_IO(reg, val); } /** * cail_ioreg_read - read IO register * * @info: atom card_info pointer * @reg: IO register offset * * Provides an IO register accessor for the atom interpreter (r4xx+). * Returns the value of the IO register. */ static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg) { struct amdgpu_device *adev = info->dev->dev_private; uint32_t r; r = RREG32_IO(reg); return r; } static ssize_t amdgpu_atombios_get_vbios_version(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; struct atom_context *ctx = adev->mode_info.atom_context; return snprintf(buf, PAGE_SIZE, "%s\n", ctx->vbios_version); } static DEVICE_ATTR(vbios_version, 0444, amdgpu_atombios_get_vbios_version, NULL); /** * amdgpu_atombios_fini - free the driver info and callbacks for atombios * * @adev: amdgpu_device pointer * * Frees the driver info and register access callbacks for the ATOM * interpreter (r4xx+). * Called at driver shutdown. */ void amdgpu_atombios_fini(struct amdgpu_device *adev) { if (adev->mode_info.atom_context) { kfree(adev->mode_info.atom_context->scratch); kfree(adev->mode_info.atom_context->iio); } kfree(adev->mode_info.atom_context); adev->mode_info.atom_context = NULL; kfree(adev->mode_info.atom_card_info); adev->mode_info.atom_card_info = NULL; device_remove_file(adev->dev, &dev_attr_vbios_version); } /** * amdgpu_atombios_init - init the driver info and callbacks for atombios * * @adev: amdgpu_device pointer * * Initializes the driver info and register access callbacks for the * ATOM interpreter (r4xx+). * Returns 0 on sucess, -ENOMEM on failure. * Called at driver startup. */ int amdgpu_atombios_init(struct amdgpu_device *adev) { struct card_info *atom_card_info = kzalloc(sizeof(struct card_info), GFP_KERNEL); int ret; if (!atom_card_info) return -ENOMEM; adev->mode_info.atom_card_info = atom_card_info; atom_card_info->dev = adev->ddev; atom_card_info->reg_read = cail_reg_read; atom_card_info->reg_write = cail_reg_write; /* needed for iio ops */ if (adev->rio_mem) { atom_card_info->ioreg_read = cail_ioreg_read; atom_card_info->ioreg_write = cail_ioreg_write; } else { DRM_DEBUG("PCI I/O BAR is not found. Using MMIO to access ATOM BIOS\n"); atom_card_info->ioreg_read = cail_reg_read; atom_card_info->ioreg_write = cail_reg_write; } atom_card_info->mc_read = cail_mc_read; atom_card_info->mc_write = cail_mc_write; atom_card_info->pll_read = cail_pll_read; atom_card_info->pll_write = cail_pll_write; adev->mode_info.atom_context = amdgpu_atom_parse(atom_card_info, adev->bios); if (!adev->mode_info.atom_context) { amdgpu_atombios_fini(adev); return -ENOMEM; } mutex_init(&adev->mode_info.atom_context->mutex); if (adev->is_atom_fw) { amdgpu_atomfirmware_scratch_regs_init(adev); amdgpu_atomfirmware_allocate_fb_scratch(adev); } else { amdgpu_atombios_scratch_regs_init(adev); amdgpu_atombios_allocate_fb_scratch(adev); } ret = device_create_file(adev->dev, &dev_attr_vbios_version); if (ret) { DRM_ERROR("Failed to create device file for VBIOS version\n"); return ret; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1