Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 2396 | 73.90% | 5 | 12.50% |
Rex Zhu | 462 | 14.25% | 9 | 22.50% |
yanyang1 | 155 | 4.78% | 1 | 2.50% |
Leo Liu | 69 | 2.13% | 2 | 5.00% |
Christian König | 53 | 1.63% | 13 | 32.50% |
James Zhu | 34 | 1.05% | 1 | 2.50% |
Tom St Denis | 23 | 0.71% | 2 | 5.00% |
Arindam Nath | 14 | 0.43% | 1 | 2.50% |
Emily Deng | 14 | 0.43% | 1 | 2.50% |
Ken Wang | 13 | 0.40% | 1 | 2.50% |
Chunming Zhou | 5 | 0.15% | 1 | 2.50% |
Jammy Zhou | 2 | 0.06% | 1 | 2.50% |
Pixel Ding | 1 | 0.03% | 1 | 2.50% |
Piotr Redlewski | 1 | 0.03% | 1 | 2.50% |
Total | 3242 | 40 |
/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Christian König <christian.koenig@amd.com> */ #include <linux/firmware.h> #include <drm/drmP.h> #include "amdgpu.h" #include "amdgpu_uvd.h" #include "cikd.h" #include "uvd/uvd_4_2_d.h" #include "uvd/uvd_4_2_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" #include "bif/bif_4_1_d.h" #include "smu/smu_7_0_1_d.h" #include "smu/smu_7_0_1_sh_mask.h" static void uvd_v4_2_mc_resume(struct amdgpu_device *adev); static void uvd_v4_2_set_ring_funcs(struct amdgpu_device *adev); static void uvd_v4_2_set_irq_funcs(struct amdgpu_device *adev); static int uvd_v4_2_start(struct amdgpu_device *adev); static void uvd_v4_2_stop(struct amdgpu_device *adev); static int uvd_v4_2_set_clockgating_state(void *handle, enum amd_clockgating_state state); static void uvd_v4_2_set_dcm(struct amdgpu_device *adev, bool sw_mode); /** * uvd_v4_2_ring_get_rptr - get read pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware read pointer */ static uint64_t uvd_v4_2_ring_get_rptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; return RREG32(mmUVD_RBC_RB_RPTR); } /** * uvd_v4_2_ring_get_wptr - get write pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware write pointer */ static uint64_t uvd_v4_2_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; return RREG32(mmUVD_RBC_RB_WPTR); } /** * uvd_v4_2_ring_set_wptr - set write pointer * * @ring: amdgpu_ring pointer * * Commits the write pointer to the hardware */ static void uvd_v4_2_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; WREG32(mmUVD_RBC_RB_WPTR, lower_32_bits(ring->wptr)); } static int uvd_v4_2_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->uvd.num_uvd_inst = 1; uvd_v4_2_set_ring_funcs(adev); uvd_v4_2_set_irq_funcs(adev); return 0; } static int uvd_v4_2_sw_init(void *handle) { struct amdgpu_ring *ring; struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; /* UVD TRAP */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 124, &adev->uvd.inst->irq); if (r) return r; r = amdgpu_uvd_sw_init(adev); if (r) return r; r = amdgpu_uvd_resume(adev); if (r) return r; ring = &adev->uvd.inst->ring; sprintf(ring->name, "uvd"); r = amdgpu_ring_init(adev, ring, 512, &adev->uvd.inst->irq, 0); if (r) return r; r = amdgpu_uvd_entity_init(adev); return r; } static int uvd_v4_2_sw_fini(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_uvd_suspend(adev); if (r) return r; return amdgpu_uvd_sw_fini(adev); } static void uvd_v4_2_enable_mgcg(struct amdgpu_device *adev, bool enable); /** * uvd_v4_2_hw_init - start and test UVD block * * @adev: amdgpu_device pointer * * Initialize the hardware, boot up the VCPU and do some testing */ static int uvd_v4_2_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring = &adev->uvd.inst->ring; uint32_t tmp; int r; uvd_v4_2_enable_mgcg(adev, true); amdgpu_asic_set_uvd_clocks(adev, 10000, 10000); ring->ready = true; r = amdgpu_ring_test_ring(ring); if (r) { ring->ready = false; goto done; } r = amdgpu_ring_alloc(ring, 10); if (r) { DRM_ERROR("amdgpu: ring failed to lock UVD ring (%d).\n", r); goto done; } tmp = PACKET0(mmUVD_SEMA_WAIT_FAULT_TIMEOUT_CNTL, 0); amdgpu_ring_write(ring, tmp); amdgpu_ring_write(ring, 0xFFFFF); tmp = PACKET0(mmUVD_SEMA_WAIT_INCOMPLETE_TIMEOUT_CNTL, 0); amdgpu_ring_write(ring, tmp); amdgpu_ring_write(ring, 0xFFFFF); tmp = PACKET0(mmUVD_SEMA_SIGNAL_INCOMPLETE_TIMEOUT_CNTL, 0); amdgpu_ring_write(ring, tmp); amdgpu_ring_write(ring, 0xFFFFF); /* Clear timeout status bits */ amdgpu_ring_write(ring, PACKET0(mmUVD_SEMA_TIMEOUT_STATUS, 0)); amdgpu_ring_write(ring, 0x8); amdgpu_ring_write(ring, PACKET0(mmUVD_SEMA_CNTL, 0)); amdgpu_ring_write(ring, 3); amdgpu_ring_commit(ring); done: if (!r) DRM_INFO("UVD initialized successfully.\n"); return r; } /** * uvd_v4_2_hw_fini - stop the hardware block * * @adev: amdgpu_device pointer * * Stop the UVD block, mark ring as not ready any more */ static int uvd_v4_2_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring = &adev->uvd.inst->ring; if (RREG32(mmUVD_STATUS) != 0) uvd_v4_2_stop(adev); ring->ready = false; return 0; } static int uvd_v4_2_suspend(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = uvd_v4_2_hw_fini(adev); if (r) return r; return amdgpu_uvd_suspend(adev); } static int uvd_v4_2_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_uvd_resume(adev); if (r) return r; return uvd_v4_2_hw_init(adev); } /** * uvd_v4_2_start - start UVD block * * @adev: amdgpu_device pointer * * Setup and start the UVD block */ static int uvd_v4_2_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->uvd.inst->ring; uint32_t rb_bufsz; int i, j, r; u32 tmp; /* disable byte swapping */ u32 lmi_swap_cntl = 0; u32 mp_swap_cntl = 0; /* set uvd busy */ WREG32_P(mmUVD_STATUS, 1<<2, ~(1<<2)); uvd_v4_2_set_dcm(adev, true); WREG32(mmUVD_CGC_GATE, 0); /* take UVD block out of reset */ WREG32_P(mmSRBM_SOFT_RESET, 0, ~SRBM_SOFT_RESET__SOFT_RESET_UVD_MASK); mdelay(5); /* enable VCPU clock */ WREG32(mmUVD_VCPU_CNTL, 1 << 9); /* disable interupt */ WREG32_P(mmUVD_MASTINT_EN, 0, ~(1 << 1)); #ifdef __BIG_ENDIAN /* swap (8 in 32) RB and IB */ lmi_swap_cntl = 0xa; mp_swap_cntl = 0; #endif WREG32(mmUVD_LMI_SWAP_CNTL, lmi_swap_cntl); WREG32(mmUVD_MP_SWAP_CNTL, mp_swap_cntl); /* initialize UVD memory controller */ WREG32(mmUVD_LMI_CTRL, 0x203108); tmp = RREG32(mmUVD_MPC_CNTL); WREG32(mmUVD_MPC_CNTL, tmp | 0x10); WREG32(mmUVD_MPC_SET_MUXA0, 0x40c2040); WREG32(mmUVD_MPC_SET_MUXA1, 0x0); WREG32(mmUVD_MPC_SET_MUXB0, 0x40c2040); WREG32(mmUVD_MPC_SET_MUXB1, 0x0); WREG32(mmUVD_MPC_SET_ALU, 0); WREG32(mmUVD_MPC_SET_MUX, 0x88); uvd_v4_2_mc_resume(adev); tmp = RREG32_UVD_CTX(ixUVD_LMI_CACHE_CTRL); WREG32_UVD_CTX(ixUVD_LMI_CACHE_CTRL, tmp & (~0x10)); /* enable UMC */ WREG32_P(mmUVD_LMI_CTRL2, 0, ~(1 << 8)); WREG32_P(mmUVD_SOFT_RESET, 0, ~UVD_SOFT_RESET__LMI_SOFT_RESET_MASK); WREG32_P(mmUVD_SOFT_RESET, 0, ~UVD_SOFT_RESET__LMI_UMC_SOFT_RESET_MASK); WREG32_P(mmUVD_SOFT_RESET, 0, ~UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(10); for (i = 0; i < 10; ++i) { uint32_t status; for (j = 0; j < 100; ++j) { status = RREG32(mmUVD_STATUS); if (status & 2) break; mdelay(10); } r = 0; if (status & 2) break; DRM_ERROR("UVD not responding, trying to reset the VCPU!!!\n"); WREG32_P(mmUVD_SOFT_RESET, UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK, ~UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(10); WREG32_P(mmUVD_SOFT_RESET, 0, ~UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(10); r = -1; } if (r) { DRM_ERROR("UVD not responding, giving up!!!\n"); return r; } /* enable interupt */ WREG32_P(mmUVD_MASTINT_EN, 3<<1, ~(3 << 1)); WREG32_P(mmUVD_STATUS, 0, ~(1<<2)); /* force RBC into idle state */ WREG32(mmUVD_RBC_RB_CNTL, 0x11010101); /* Set the write pointer delay */ WREG32(mmUVD_RBC_RB_WPTR_CNTL, 0); /* programm the 4GB memory segment for rptr and ring buffer */ WREG32(mmUVD_LMI_EXT40_ADDR, upper_32_bits(ring->gpu_addr) | (0x7 << 16) | (0x1 << 31)); /* Initialize the ring buffer's read and write pointers */ WREG32(mmUVD_RBC_RB_RPTR, 0x0); ring->wptr = RREG32(mmUVD_RBC_RB_RPTR); WREG32(mmUVD_RBC_RB_WPTR, lower_32_bits(ring->wptr)); /* set the ring address */ WREG32(mmUVD_RBC_RB_BASE, ring->gpu_addr); /* Set ring buffer size */ rb_bufsz = order_base_2(ring->ring_size); rb_bufsz = (0x1 << 8) | rb_bufsz; WREG32_P(mmUVD_RBC_RB_CNTL, rb_bufsz, ~0x11f1f); return 0; } /** * uvd_v4_2_stop - stop UVD block * * @adev: amdgpu_device pointer * * stop the UVD block */ static void uvd_v4_2_stop(struct amdgpu_device *adev) { uint32_t i, j; uint32_t status; WREG32(mmUVD_RBC_RB_CNTL, 0x11010101); for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { status = RREG32(mmUVD_STATUS); if (status & 2) break; mdelay(1); } if (status & 2) break; } for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { status = RREG32(mmUVD_LMI_STATUS); if (status & 0xf) break; mdelay(1); } if (status & 0xf) break; } /* Stall UMC and register bus before resetting VCPU */ WREG32_P(mmUVD_LMI_CTRL2, 1 << 8, ~(1 << 8)); for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { status = RREG32(mmUVD_LMI_STATUS); if (status & 0x240) break; mdelay(1); } if (status & 0x240) break; } WREG32_P(0x3D49, 0, ~(1 << 2)); WREG32_P(mmUVD_VCPU_CNTL, 0, ~(1 << 9)); /* put LMI, VCPU, RBC etc... into reset */ WREG32(mmUVD_SOFT_RESET, UVD_SOFT_RESET__LMI_SOFT_RESET_MASK | UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK | UVD_SOFT_RESET__LMI_UMC_SOFT_RESET_MASK); WREG32(mmUVD_STATUS, 0); uvd_v4_2_set_dcm(adev, false); } /** * uvd_v4_2_ring_emit_fence - emit an fence & trap command * * @ring: amdgpu_ring pointer * @fence: fence to emit * * Write a fence and a trap command to the ring. */ static void uvd_v4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { WARN_ON(flags & AMDGPU_FENCE_FLAG_64BIT); amdgpu_ring_write(ring, PACKET0(mmUVD_CONTEXT_ID, 0)); amdgpu_ring_write(ring, seq); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA0, 0)); amdgpu_ring_write(ring, addr & 0xffffffff); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA1, 0)); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xff); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_CMD, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA0, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA1, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_CMD, 0)); amdgpu_ring_write(ring, 2); } /** * uvd_v4_2_ring_test_ring - register write test * * @ring: amdgpu_ring pointer * * Test if we can successfully write to the context register */ static int uvd_v4_2_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t tmp = 0; unsigned i; int r; WREG32(mmUVD_CONTEXT_ID, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r); return r; } amdgpu_ring_write(ring, PACKET0(mmUVD_CONTEXT_ID, 0)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(mmUVD_CONTEXT_ID); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < adev->usec_timeout) { DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", ring->idx, tmp); r = -EINVAL; } return r; } /** * uvd_v4_2_ring_emit_ib - execute indirect buffer * * @ring: amdgpu_ring pointer * @ib: indirect buffer to execute * * Write ring commands to execute the indirect buffer */ static void uvd_v4_2_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib, unsigned vmid, bool ctx_switch) { amdgpu_ring_write(ring, PACKET0(mmUVD_RBC_IB_BASE, 0)); amdgpu_ring_write(ring, ib->gpu_addr); amdgpu_ring_write(ring, PACKET0(mmUVD_RBC_IB_SIZE, 0)); amdgpu_ring_write(ring, ib->length_dw); } static void uvd_v4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { int i; WARN_ON(ring->wptr % 2 || count % 2); for (i = 0; i < count / 2; i++) { amdgpu_ring_write(ring, PACKET0(mmUVD_NO_OP, 0)); amdgpu_ring_write(ring, 0); } } /** * uvd_v4_2_mc_resume - memory controller programming * * @adev: amdgpu_device pointer * * Let the UVD memory controller know it's offsets */ static void uvd_v4_2_mc_resume(struct amdgpu_device *adev) { uint64_t addr; uint32_t size; /* programm the VCPU memory controller bits 0-27 */ addr = (adev->uvd.inst->gpu_addr + AMDGPU_UVD_FIRMWARE_OFFSET) >> 3; size = AMDGPU_UVD_FIRMWARE_SIZE(adev) >> 3; WREG32(mmUVD_VCPU_CACHE_OFFSET0, addr); WREG32(mmUVD_VCPU_CACHE_SIZE0, size); addr += size; size = AMDGPU_UVD_HEAP_SIZE >> 3; WREG32(mmUVD_VCPU_CACHE_OFFSET1, addr); WREG32(mmUVD_VCPU_CACHE_SIZE1, size); addr += size; size = (AMDGPU_UVD_STACK_SIZE + (AMDGPU_UVD_SESSION_SIZE * adev->uvd.max_handles)) >> 3; WREG32(mmUVD_VCPU_CACHE_OFFSET2, addr); WREG32(mmUVD_VCPU_CACHE_SIZE2, size); /* bits 28-31 */ addr = (adev->uvd.inst->gpu_addr >> 28) & 0xF; WREG32(mmUVD_LMI_ADDR_EXT, (addr << 12) | (addr << 0)); /* bits 32-39 */ addr = (adev->uvd.inst->gpu_addr >> 32) & 0xFF; WREG32(mmUVD_LMI_EXT40_ADDR, addr | (0x9 << 16) | (0x1 << 31)); WREG32(mmUVD_UDEC_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmUVD_UDEC_DB_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmUVD_UDEC_DBW_ADDR_CONFIG, adev->gfx.config.gb_addr_config); } static void uvd_v4_2_enable_mgcg(struct amdgpu_device *adev, bool enable) { u32 orig, data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_UVD_MGCG)) { data = RREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL); data |= 0xfff; WREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL, data); orig = data = RREG32(mmUVD_CGC_CTRL); data |= UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK; if (orig != data) WREG32(mmUVD_CGC_CTRL, data); } else { data = RREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL); data &= ~0xfff; WREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL, data); orig = data = RREG32(mmUVD_CGC_CTRL); data &= ~UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK; if (orig != data) WREG32(mmUVD_CGC_CTRL, data); } } static void uvd_v4_2_set_dcm(struct amdgpu_device *adev, bool sw_mode) { u32 tmp, tmp2; WREG32_FIELD(UVD_CGC_GATE, REGS, 0); tmp = RREG32(mmUVD_CGC_CTRL); tmp &= ~(UVD_CGC_CTRL__CLK_OFF_DELAY_MASK | UVD_CGC_CTRL__CLK_GATE_DLY_TIMER_MASK); tmp |= UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK | (1 << UVD_CGC_CTRL__CLK_GATE_DLY_TIMER__SHIFT) | (4 << UVD_CGC_CTRL__CLK_OFF_DELAY__SHIFT); if (sw_mode) { tmp &= ~0x7ffff800; tmp2 = UVD_CGC_CTRL2__DYN_OCLK_RAMP_EN_MASK | UVD_CGC_CTRL2__DYN_RCLK_RAMP_EN_MASK | (7 << UVD_CGC_CTRL2__GATER_DIV_ID__SHIFT); } else { tmp |= 0x7ffff800; tmp2 = 0; } WREG32(mmUVD_CGC_CTRL, tmp); WREG32_UVD_CTX(ixUVD_CGC_CTRL2, tmp2); } static bool uvd_v4_2_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return !(RREG32(mmSRBM_STATUS) & SRBM_STATUS__UVD_BUSY_MASK); } static int uvd_v4_2_wait_for_idle(void *handle) { unsigned i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { if (!(RREG32(mmSRBM_STATUS) & SRBM_STATUS__UVD_BUSY_MASK)) return 0; } return -ETIMEDOUT; } static int uvd_v4_2_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; uvd_v4_2_stop(adev); WREG32_P(mmSRBM_SOFT_RESET, SRBM_SOFT_RESET__SOFT_RESET_UVD_MASK, ~SRBM_SOFT_RESET__SOFT_RESET_UVD_MASK); mdelay(5); return uvd_v4_2_start(adev); } static int uvd_v4_2_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { // TODO return 0; } static int uvd_v4_2_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_DEBUG("IH: UVD TRAP\n"); amdgpu_fence_process(&adev->uvd.inst->ring); return 0; } static int uvd_v4_2_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int uvd_v4_2_set_powergating_state(void *handle, enum amd_powergating_state state) { /* This doesn't actually powergate the UVD block. * That's done in the dpm code via the SMC. This * just re-inits the block as necessary. The actual * gating still happens in the dpm code. We should * revisit this when there is a cleaner line between * the smc and the hw blocks */ struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (state == AMD_PG_STATE_GATE) { uvd_v4_2_stop(adev); if (adev->pg_flags & AMD_PG_SUPPORT_UVD && !adev->pm.dpm_enabled) { if (!(RREG32_SMC(ixCURRENT_PG_STATUS) & CURRENT_PG_STATUS__UVD_PG_STATUS_MASK)) { WREG32(mmUVD_PGFSM_CONFIG, (UVD_PGFSM_CONFIG__UVD_PGFSM_FSM_ADDR_MASK | UVD_PGFSM_CONFIG__UVD_PGFSM_POWER_DOWN_MASK | UVD_PGFSM_CONFIG__UVD_PGFSM_P1_SELECT_MASK)); mdelay(20); } } return 0; } else { if (adev->pg_flags & AMD_PG_SUPPORT_UVD && !adev->pm.dpm_enabled) { if (RREG32_SMC(ixCURRENT_PG_STATUS) & CURRENT_PG_STATUS__UVD_PG_STATUS_MASK) { WREG32(mmUVD_PGFSM_CONFIG, (UVD_PGFSM_CONFIG__UVD_PGFSM_FSM_ADDR_MASK | UVD_PGFSM_CONFIG__UVD_PGFSM_POWER_UP_MASK | UVD_PGFSM_CONFIG__UVD_PGFSM_P1_SELECT_MASK)); mdelay(30); } } return uvd_v4_2_start(adev); } } static const struct amd_ip_funcs uvd_v4_2_ip_funcs = { .name = "uvd_v4_2", .early_init = uvd_v4_2_early_init, .late_init = NULL, .sw_init = uvd_v4_2_sw_init, .sw_fini = uvd_v4_2_sw_fini, .hw_init = uvd_v4_2_hw_init, .hw_fini = uvd_v4_2_hw_fini, .suspend = uvd_v4_2_suspend, .resume = uvd_v4_2_resume, .is_idle = uvd_v4_2_is_idle, .wait_for_idle = uvd_v4_2_wait_for_idle, .soft_reset = uvd_v4_2_soft_reset, .set_clockgating_state = uvd_v4_2_set_clockgating_state, .set_powergating_state = uvd_v4_2_set_powergating_state, }; static const struct amdgpu_ring_funcs uvd_v4_2_ring_funcs = { .type = AMDGPU_RING_TYPE_UVD, .align_mask = 0xf, .support_64bit_ptrs = false, .get_rptr = uvd_v4_2_ring_get_rptr, .get_wptr = uvd_v4_2_ring_get_wptr, .set_wptr = uvd_v4_2_ring_set_wptr, .parse_cs = amdgpu_uvd_ring_parse_cs, .emit_frame_size = 14, /* uvd_v4_2_ring_emit_fence x1 no user fence */ .emit_ib_size = 4, /* uvd_v4_2_ring_emit_ib */ .emit_ib = uvd_v4_2_ring_emit_ib, .emit_fence = uvd_v4_2_ring_emit_fence, .test_ring = uvd_v4_2_ring_test_ring, .test_ib = amdgpu_uvd_ring_test_ib, .insert_nop = uvd_v4_2_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .begin_use = amdgpu_uvd_ring_begin_use, .end_use = amdgpu_uvd_ring_end_use, }; static void uvd_v4_2_set_ring_funcs(struct amdgpu_device *adev) { adev->uvd.inst->ring.funcs = &uvd_v4_2_ring_funcs; } static const struct amdgpu_irq_src_funcs uvd_v4_2_irq_funcs = { .set = uvd_v4_2_set_interrupt_state, .process = uvd_v4_2_process_interrupt, }; static void uvd_v4_2_set_irq_funcs(struct amdgpu_device *adev) { adev->uvd.inst->irq.num_types = 1; adev->uvd.inst->irq.funcs = &uvd_v4_2_irq_funcs; } const struct amdgpu_ip_block_version uvd_v4_2_ip_block = { .type = AMD_IP_BLOCK_TYPE_UVD, .major = 4, .minor = 2, .rev = 0, .funcs = &uvd_v4_2_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1