Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evgeny Pinchuk | 3553 | 56.33% | 1 | 2.50% |
Felix Kuhling | 1051 | 16.66% | 8 | 20.00% |
Harish Kasiviswanathan | 778 | 12.33% | 8 | 20.00% |
Amber Lin | 465 | 7.37% | 1 | 2.50% |
Eric Huang | 110 | 1.74% | 1 | 2.50% |
Yong Zhao | 84 | 1.33% | 2 | 5.00% |
Alexey Skidanov | 67 | 1.06% | 2 | 5.00% |
Ben Goz | 42 | 0.67% | 3 | 7.50% |
Flora Cui | 30 | 0.48% | 1 | 2.50% |
Oded Gabbay | 26 | 0.41% | 3 | 7.50% |
Shaoyun Liu | 26 | 0.41% | 2 | 5.00% |
Oak Zeng | 25 | 0.40% | 1 | 2.50% |
Philip Cox | 19 | 0.30% | 1 | 2.50% |
Edward O'Callaghan | 17 | 0.27% | 1 | 2.50% |
Kent Russell | 8 | 0.13% | 3 | 7.50% |
Xihan Zhang | 6 | 0.10% | 1 | 2.50% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 2.50% |
Total | 6308 | 40 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/errno.h> #include <linux/acpi.h> #include <linux/hash.h> #include <linux/cpufreq.h> #include <linux/log2.h> #include <linux/dmi.h> #include <linux/atomic.h> #include "kfd_priv.h" #include "kfd_crat.h" #include "kfd_topology.h" #include "kfd_device_queue_manager.h" #include "kfd_iommu.h" /* topology_device_list - Master list of all topology devices */ static struct list_head topology_device_list; static struct kfd_system_properties sys_props; static DECLARE_RWSEM(topology_lock); static atomic_t topology_crat_proximity_domain; struct kfd_topology_device *kfd_topology_device_by_proximity_domain( uint32_t proximity_domain) { struct kfd_topology_device *top_dev; struct kfd_topology_device *device = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->proximity_domain == proximity_domain) { device = top_dev; break; } up_read(&topology_lock); return device; } struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) { struct kfd_topology_device *top_dev = NULL; struct kfd_topology_device *ret = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu_id == gpu_id) { ret = top_dev; break; } up_read(&topology_lock); return ret; } struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) { struct kfd_topology_device *top_dev; top_dev = kfd_topology_device_by_id(gpu_id); if (!top_dev) return NULL; return top_dev->gpu; } struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) { struct kfd_topology_device *top_dev; struct kfd_dev *device = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu->pdev == pdev) { device = top_dev->gpu; break; } up_read(&topology_lock); return device; } /* Called with write topology_lock acquired */ static void kfd_release_topology_device(struct kfd_topology_device *dev) { struct kfd_mem_properties *mem; struct kfd_cache_properties *cache; struct kfd_iolink_properties *iolink; struct kfd_perf_properties *perf; list_del(&dev->list); while (dev->mem_props.next != &dev->mem_props) { mem = container_of(dev->mem_props.next, struct kfd_mem_properties, list); list_del(&mem->list); kfree(mem); } while (dev->cache_props.next != &dev->cache_props) { cache = container_of(dev->cache_props.next, struct kfd_cache_properties, list); list_del(&cache->list); kfree(cache); } while (dev->io_link_props.next != &dev->io_link_props) { iolink = container_of(dev->io_link_props.next, struct kfd_iolink_properties, list); list_del(&iolink->list); kfree(iolink); } while (dev->perf_props.next != &dev->perf_props) { perf = container_of(dev->perf_props.next, struct kfd_perf_properties, list); list_del(&perf->list); kfree(perf); } kfree(dev); } void kfd_release_topology_device_list(struct list_head *device_list) { struct kfd_topology_device *dev; while (!list_empty(device_list)) { dev = list_first_entry(device_list, struct kfd_topology_device, list); kfd_release_topology_device(dev); } } static void kfd_release_live_view(void) { kfd_release_topology_device_list(&topology_device_list); memset(&sys_props, 0, sizeof(sys_props)); } struct kfd_topology_device *kfd_create_topology_device( struct list_head *device_list) { struct kfd_topology_device *dev; dev = kfd_alloc_struct(dev); if (!dev) { pr_err("No memory to allocate a topology device"); return NULL; } INIT_LIST_HEAD(&dev->mem_props); INIT_LIST_HEAD(&dev->cache_props); INIT_LIST_HEAD(&dev->io_link_props); INIT_LIST_HEAD(&dev->perf_props); list_add_tail(&dev->list, device_list); return dev; } #define sysfs_show_gen_prop(buffer, fmt, ...) \ snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__) #define sysfs_show_32bit_prop(buffer, name, value) \ sysfs_show_gen_prop(buffer, "%s %u\n", name, value) #define sysfs_show_64bit_prop(buffer, name, value) \ sysfs_show_gen_prop(buffer, "%s %llu\n", name, value) #define sysfs_show_32bit_val(buffer, value) \ sysfs_show_gen_prop(buffer, "%u\n", value) #define sysfs_show_str_val(buffer, value) \ sysfs_show_gen_prop(buffer, "%s\n", value) static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; /* Making sure that the buffer is an empty string */ buffer[0] = 0; if (attr == &sys_props.attr_genid) { ret = sysfs_show_32bit_val(buffer, sys_props.generation_count); } else if (attr == &sys_props.attr_props) { sysfs_show_64bit_prop(buffer, "platform_oem", sys_props.platform_oem); sysfs_show_64bit_prop(buffer, "platform_id", sys_props.platform_id); ret = sysfs_show_64bit_prop(buffer, "platform_rev", sys_props.platform_rev); } else { ret = -EINVAL; } return ret; } static void kfd_topology_kobj_release(struct kobject *kobj) { kfree(kobj); } static const struct sysfs_ops sysprops_ops = { .show = sysprops_show, }; static struct kobj_type sysprops_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &sysprops_ops, }; static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; struct kfd_iolink_properties *iolink; /* Making sure that the buffer is an empty string */ buffer[0] = 0; iolink = container_of(attr, struct kfd_iolink_properties, attr); sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type); sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj); sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min); sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from); sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to); sysfs_show_32bit_prop(buffer, "weight", iolink->weight); sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency); sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency); sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth); sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth); sysfs_show_32bit_prop(buffer, "recommended_transfer_size", iolink->rec_transfer_size); ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags); return ret; } static const struct sysfs_ops iolink_ops = { .show = iolink_show, }; static struct kobj_type iolink_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &iolink_ops, }; static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; struct kfd_mem_properties *mem; /* Making sure that the buffer is an empty string */ buffer[0] = 0; mem = container_of(attr, struct kfd_mem_properties, attr); sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type); sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes); sysfs_show_32bit_prop(buffer, "flags", mem->flags); sysfs_show_32bit_prop(buffer, "width", mem->width); ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max); return ret; } static const struct sysfs_ops mem_ops = { .show = mem_show, }; static struct kobj_type mem_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &mem_ops, }; static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; uint32_t i, j; struct kfd_cache_properties *cache; /* Making sure that the buffer is an empty string */ buffer[0] = 0; cache = container_of(attr, struct kfd_cache_properties, attr); sysfs_show_32bit_prop(buffer, "processor_id_low", cache->processor_id_low); sysfs_show_32bit_prop(buffer, "level", cache->cache_level); sysfs_show_32bit_prop(buffer, "size", cache->cache_size); sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size); sysfs_show_32bit_prop(buffer, "cache_lines_per_tag", cache->cachelines_per_tag); sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc); sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency); sysfs_show_32bit_prop(buffer, "type", cache->cache_type); snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer); for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++) for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) { /* Check each bit */ if (cache->sibling_map[i] & (1 << j)) ret = snprintf(buffer, PAGE_SIZE, "%s%d%s", buffer, 1, ","); else ret = snprintf(buffer, PAGE_SIZE, "%s%d%s", buffer, 0, ","); } /* Replace the last "," with end of line */ *(buffer + strlen(buffer) - 1) = 0xA; return ret; } static const struct sysfs_ops cache_ops = { .show = kfd_cache_show, }; static struct kobj_type cache_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &cache_ops, }; /****** Sysfs of Performance Counters ******/ struct kfd_perf_attr { struct kobj_attribute attr; uint32_t data; }; static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, char *buf) { struct kfd_perf_attr *attr; buf[0] = 0; attr = container_of(attrs, struct kfd_perf_attr, attr); if (!attr->data) /* invalid data for PMC */ return 0; else return sysfs_show_32bit_val(buf, attr->data); } #define KFD_PERF_DESC(_name, _data) \ { \ .attr = __ATTR(_name, 0444, perf_show, NULL), \ .data = _data, \ } static struct kfd_perf_attr perf_attr_iommu[] = { KFD_PERF_DESC(max_concurrent, 0), KFD_PERF_DESC(num_counters, 0), KFD_PERF_DESC(counter_ids, 0), }; /****************************************/ static ssize_t node_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct kfd_topology_device *dev; char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE]; uint32_t i; uint32_t log_max_watch_addr; /* Making sure that the buffer is an empty string */ buffer[0] = 0; if (strcmp(attr->name, "gpu_id") == 0) { dev = container_of(attr, struct kfd_topology_device, attr_gpuid); return sysfs_show_32bit_val(buffer, dev->gpu_id); } if (strcmp(attr->name, "name") == 0) { dev = container_of(attr, struct kfd_topology_device, attr_name); for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) { public_name[i] = (char)dev->node_props.marketing_name[i]; if (dev->node_props.marketing_name[i] == 0) break; } public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0; return sysfs_show_str_val(buffer, public_name); } dev = container_of(attr, struct kfd_topology_device, attr_props); sysfs_show_32bit_prop(buffer, "cpu_cores_count", dev->node_props.cpu_cores_count); sysfs_show_32bit_prop(buffer, "simd_count", dev->node_props.simd_count); sysfs_show_32bit_prop(buffer, "mem_banks_count", dev->node_props.mem_banks_count); sysfs_show_32bit_prop(buffer, "caches_count", dev->node_props.caches_count); sysfs_show_32bit_prop(buffer, "io_links_count", dev->node_props.io_links_count); sysfs_show_32bit_prop(buffer, "cpu_core_id_base", dev->node_props.cpu_core_id_base); sysfs_show_32bit_prop(buffer, "simd_id_base", dev->node_props.simd_id_base); sysfs_show_32bit_prop(buffer, "max_waves_per_simd", dev->node_props.max_waves_per_simd); sysfs_show_32bit_prop(buffer, "lds_size_in_kb", dev->node_props.lds_size_in_kb); sysfs_show_32bit_prop(buffer, "gds_size_in_kb", dev->node_props.gds_size_in_kb); sysfs_show_32bit_prop(buffer, "wave_front_size", dev->node_props.wave_front_size); sysfs_show_32bit_prop(buffer, "array_count", dev->node_props.array_count); sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine", dev->node_props.simd_arrays_per_engine); sysfs_show_32bit_prop(buffer, "cu_per_simd_array", dev->node_props.cu_per_simd_array); sysfs_show_32bit_prop(buffer, "simd_per_cu", dev->node_props.simd_per_cu); sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu", dev->node_props.max_slots_scratch_cu); sysfs_show_32bit_prop(buffer, "vendor_id", dev->node_props.vendor_id); sysfs_show_32bit_prop(buffer, "device_id", dev->node_props.device_id); sysfs_show_32bit_prop(buffer, "location_id", dev->node_props.location_id); sysfs_show_32bit_prop(buffer, "drm_render_minor", dev->node_props.drm_render_minor); sysfs_show_64bit_prop(buffer, "hive_id", dev->node_props.hive_id); if (dev->gpu) { log_max_watch_addr = __ilog2_u32(dev->gpu->device_info->num_of_watch_points); if (log_max_watch_addr) { dev->node_props.capability |= HSA_CAP_WATCH_POINTS_SUPPORTED; dev->node_props.capability |= ((log_max_watch_addr << HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); } if (dev->gpu->device_info->asic_family == CHIP_TONGA) dev->node_props.capability |= HSA_CAP_AQL_QUEUE_DOUBLE_MAP; sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute", dev->node_props.max_engine_clk_fcompute); sysfs_show_64bit_prop(buffer, "local_mem_size", (unsigned long long int) 0); sysfs_show_32bit_prop(buffer, "fw_version", dev->gpu->mec_fw_version); sysfs_show_32bit_prop(buffer, "capability", dev->node_props.capability); sysfs_show_32bit_prop(buffer, "sdma_fw_version", dev->gpu->sdma_fw_version); } return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute", cpufreq_quick_get_max(0)/1000); } static const struct sysfs_ops node_ops = { .show = node_show, }; static struct kobj_type node_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &node_ops, }; static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) { sysfs_remove_file(kobj, attr); kobject_del(kobj); kobject_put(kobj); } static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) { struct kfd_iolink_properties *iolink; struct kfd_cache_properties *cache; struct kfd_mem_properties *mem; struct kfd_perf_properties *perf; if (dev->kobj_iolink) { list_for_each_entry(iolink, &dev->io_link_props, list) if (iolink->kobj) { kfd_remove_sysfs_file(iolink->kobj, &iolink->attr); iolink->kobj = NULL; } kobject_del(dev->kobj_iolink); kobject_put(dev->kobj_iolink); dev->kobj_iolink = NULL; } if (dev->kobj_cache) { list_for_each_entry(cache, &dev->cache_props, list) if (cache->kobj) { kfd_remove_sysfs_file(cache->kobj, &cache->attr); cache->kobj = NULL; } kobject_del(dev->kobj_cache); kobject_put(dev->kobj_cache); dev->kobj_cache = NULL; } if (dev->kobj_mem) { list_for_each_entry(mem, &dev->mem_props, list) if (mem->kobj) { kfd_remove_sysfs_file(mem->kobj, &mem->attr); mem->kobj = NULL; } kobject_del(dev->kobj_mem); kobject_put(dev->kobj_mem); dev->kobj_mem = NULL; } if (dev->kobj_perf) { list_for_each_entry(perf, &dev->perf_props, list) { kfree(perf->attr_group); perf->attr_group = NULL; } kobject_del(dev->kobj_perf); kobject_put(dev->kobj_perf); dev->kobj_perf = NULL; } if (dev->kobj_node) { sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); sysfs_remove_file(dev->kobj_node, &dev->attr_name); sysfs_remove_file(dev->kobj_node, &dev->attr_props); kobject_del(dev->kobj_node); kobject_put(dev->kobj_node); dev->kobj_node = NULL; } } static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, uint32_t id) { struct kfd_iolink_properties *iolink; struct kfd_cache_properties *cache; struct kfd_mem_properties *mem; struct kfd_perf_properties *perf; int ret; uint32_t i, num_attrs; struct attribute **attrs; if (WARN_ON(dev->kobj_node)) return -EEXIST; /* * Creating the sysfs folders */ dev->kobj_node = kfd_alloc_struct(dev->kobj_node); if (!dev->kobj_node) return -ENOMEM; ret = kobject_init_and_add(dev->kobj_node, &node_type, sys_props.kobj_nodes, "%d", id); if (ret < 0) return ret; dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); if (!dev->kobj_mem) return -ENOMEM; dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); if (!dev->kobj_cache) return -ENOMEM; dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); if (!dev->kobj_iolink) return -ENOMEM; dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); if (!dev->kobj_perf) return -ENOMEM; /* * Creating sysfs files for node properties */ dev->attr_gpuid.name = "gpu_id"; dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_gpuid); dev->attr_name.name = "name"; dev->attr_name.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_name); dev->attr_props.name = "properties"; dev->attr_props.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_props); ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); if (ret < 0) return ret; ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); if (ret < 0) return ret; ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); if (ret < 0) return ret; i = 0; list_for_each_entry(mem, &dev->mem_props, list) { mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!mem->kobj) return -ENOMEM; ret = kobject_init_and_add(mem->kobj, &mem_type, dev->kobj_mem, "%d", i); if (ret < 0) return ret; mem->attr.name = "properties"; mem->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&mem->attr); ret = sysfs_create_file(mem->kobj, &mem->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(cache, &dev->cache_props, list) { cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!cache->kobj) return -ENOMEM; ret = kobject_init_and_add(cache->kobj, &cache_type, dev->kobj_cache, "%d", i); if (ret < 0) return ret; cache->attr.name = "properties"; cache->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&cache->attr); ret = sysfs_create_file(cache->kobj, &cache->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(iolink, &dev->io_link_props, list) { iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!iolink->kobj) return -ENOMEM; ret = kobject_init_and_add(iolink->kobj, &iolink_type, dev->kobj_iolink, "%d", i); if (ret < 0) return ret; iolink->attr.name = "properties"; iolink->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&iolink->attr); ret = sysfs_create_file(iolink->kobj, &iolink->attr); if (ret < 0) return ret; i++; } /* All hardware blocks have the same number of attributes. */ num_attrs = ARRAY_SIZE(perf_attr_iommu); list_for_each_entry(perf, &dev->perf_props, list) { perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) * num_attrs + sizeof(struct attribute_group), GFP_KERNEL); if (!perf->attr_group) return -ENOMEM; attrs = (struct attribute **)(perf->attr_group + 1); if (!strcmp(perf->block_name, "iommu")) { /* Information of IOMMU's num_counters and counter_ids is shown * under /sys/bus/event_source/devices/amd_iommu. We don't * duplicate here. */ perf_attr_iommu[0].data = perf->max_concurrent; for (i = 0; i < num_attrs; i++) attrs[i] = &perf_attr_iommu[i].attr.attr; } perf->attr_group->name = perf->block_name; perf->attr_group->attrs = attrs; ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); if (ret < 0) return ret; } return 0; } /* Called with write topology lock acquired */ static int kfd_build_sysfs_node_tree(void) { struct kfd_topology_device *dev; int ret; uint32_t i = 0; list_for_each_entry(dev, &topology_device_list, list) { ret = kfd_build_sysfs_node_entry(dev, i); if (ret < 0) return ret; i++; } return 0; } /* Called with write topology lock acquired */ static void kfd_remove_sysfs_node_tree(void) { struct kfd_topology_device *dev; list_for_each_entry(dev, &topology_device_list, list) kfd_remove_sysfs_node_entry(dev); } static int kfd_topology_update_sysfs(void) { int ret; pr_info("Creating topology SYSFS entries\n"); if (!sys_props.kobj_topology) { sys_props.kobj_topology = kfd_alloc_struct(sys_props.kobj_topology); if (!sys_props.kobj_topology) return -ENOMEM; ret = kobject_init_and_add(sys_props.kobj_topology, &sysprops_type, &kfd_device->kobj, "topology"); if (ret < 0) return ret; sys_props.kobj_nodes = kobject_create_and_add("nodes", sys_props.kobj_topology); if (!sys_props.kobj_nodes) return -ENOMEM; sys_props.attr_genid.name = "generation_id"; sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&sys_props.attr_genid); ret = sysfs_create_file(sys_props.kobj_topology, &sys_props.attr_genid); if (ret < 0) return ret; sys_props.attr_props.name = "system_properties"; sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&sys_props.attr_props); ret = sysfs_create_file(sys_props.kobj_topology, &sys_props.attr_props); if (ret < 0) return ret; } kfd_remove_sysfs_node_tree(); return kfd_build_sysfs_node_tree(); } static void kfd_topology_release_sysfs(void) { kfd_remove_sysfs_node_tree(); if (sys_props.kobj_topology) { sysfs_remove_file(sys_props.kobj_topology, &sys_props.attr_genid); sysfs_remove_file(sys_props.kobj_topology, &sys_props.attr_props); if (sys_props.kobj_nodes) { kobject_del(sys_props.kobj_nodes); kobject_put(sys_props.kobj_nodes); sys_props.kobj_nodes = NULL; } kobject_del(sys_props.kobj_topology); kobject_put(sys_props.kobj_topology); sys_props.kobj_topology = NULL; } } /* Called with write topology_lock acquired */ static void kfd_topology_update_device_list(struct list_head *temp_list, struct list_head *master_list) { while (!list_empty(temp_list)) { list_move_tail(temp_list->next, master_list); sys_props.num_devices++; } } static void kfd_debug_print_topology(void) { struct kfd_topology_device *dev; down_read(&topology_lock); dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); if (dev) { if (dev->node_props.cpu_cores_count && dev->node_props.simd_count) { pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", dev->node_props.device_id, dev->node_props.vendor_id); } else if (dev->node_props.cpu_cores_count) pr_info("Topology: Add CPU node\n"); else if (dev->node_props.simd_count) pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", dev->node_props.device_id, dev->node_props.vendor_id); } up_read(&topology_lock); } /* Helper function for intializing platform_xx members of * kfd_system_properties. Uses OEM info from the last CPU/APU node. */ static void kfd_update_system_properties(void) { struct kfd_topology_device *dev; down_read(&topology_lock); dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); if (dev) { sys_props.platform_id = (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK; sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); sys_props.platform_rev = dev->oem_revision; } up_read(&topology_lock); } static void find_system_memory(const struct dmi_header *dm, void *private) { struct kfd_mem_properties *mem; u16 mem_width, mem_clock; struct kfd_topology_device *kdev = (struct kfd_topology_device *)private; const u8 *dmi_data = (const u8 *)(dm + 1); if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); list_for_each_entry(mem, &kdev->mem_props, list) { if (mem_width != 0xFFFF && mem_width != 0) mem->width = mem_width; if (mem_clock != 0) mem->mem_clk_max = mem_clock; } } } /* * Performance counters information is not part of CRAT but we would like to * put them in the sysfs under topology directory for Thunk to get the data. * This function is called before updating the sysfs. */ static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev) { /* These are the only counters supported so far */ return kfd_iommu_add_perf_counters(kdev); } /* kfd_add_non_crat_information - Add information that is not currently * defined in CRAT but is necessary for KFD topology * @dev - topology device to which addition info is added */ static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) { /* Check if CPU only node. */ if (!kdev->gpu) { /* Add system memory information */ dmi_walk(find_system_memory, kdev); } /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ } /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices. * Ignore CRAT for all other devices. AMD APU is identified if both CPU * and GPU cores are present. * @device_list - topology device list created by parsing ACPI CRAT table. * @return - TRUE if invalid, FALSE is valid. */ static bool kfd_is_acpi_crat_invalid(struct list_head *device_list) { struct kfd_topology_device *dev; list_for_each_entry(dev, device_list, list) { if (dev->node_props.cpu_cores_count && dev->node_props.simd_count) return false; } pr_info("Ignoring ACPI CRAT on non-APU system\n"); return true; } int kfd_topology_init(void) { void *crat_image = NULL; size_t image_size = 0; int ret; struct list_head temp_topology_device_list; int cpu_only_node = 0; struct kfd_topology_device *kdev; int proximity_domain; /* topology_device_list - Master list of all topology devices * temp_topology_device_list - temporary list created while parsing CRAT * or VCRAT. Once parsing is complete the contents of list is moved to * topology_device_list */ /* Initialize the head for the both the lists */ INIT_LIST_HEAD(&topology_device_list); INIT_LIST_HEAD(&temp_topology_device_list); init_rwsem(&topology_lock); memset(&sys_props, 0, sizeof(sys_props)); /* Proximity domains in ACPI CRAT tables start counting at * 0. The same should be true for virtual CRAT tables created * at this stage. GPUs added later in kfd_topology_add_device * use a counter. */ proximity_domain = 0; /* * Get the CRAT image from the ACPI. If ACPI doesn't have one * or if ACPI CRAT is invalid create a virtual CRAT. * NOTE: The current implementation expects all AMD APUs to have * CRAT. If no CRAT is available, it is assumed to be a CPU */ ret = kfd_create_crat_image_acpi(&crat_image, &image_size); if (!ret) { ret = kfd_parse_crat_table(crat_image, &temp_topology_device_list, proximity_domain); if (ret || kfd_is_acpi_crat_invalid(&temp_topology_device_list)) { kfd_release_topology_device_list( &temp_topology_device_list); kfd_destroy_crat_image(crat_image); crat_image = NULL; } } if (!crat_image) { ret = kfd_create_crat_image_virtual(&crat_image, &image_size, COMPUTE_UNIT_CPU, NULL, proximity_domain); cpu_only_node = 1; if (ret) { pr_err("Error creating VCRAT table for CPU\n"); return ret; } ret = kfd_parse_crat_table(crat_image, &temp_topology_device_list, proximity_domain); if (ret) { pr_err("Error parsing VCRAT table for CPU\n"); goto err; } } kdev = list_first_entry(&temp_topology_device_list, struct kfd_topology_device, list); kfd_add_perf_to_topology(kdev); down_write(&topology_lock); kfd_topology_update_device_list(&temp_topology_device_list, &topology_device_list); atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1); ret = kfd_topology_update_sysfs(); up_write(&topology_lock); if (!ret) { sys_props.generation_count++; kfd_update_system_properties(); kfd_debug_print_topology(); pr_info("Finished initializing topology\n"); } else pr_err("Failed to update topology in sysfs ret=%d\n", ret); /* For nodes with GPU, this information gets added * when GPU is detected (kfd_topology_add_device). */ if (cpu_only_node) { /* Add additional information to CPU only node created above */ down_write(&topology_lock); kdev = list_first_entry(&topology_device_list, struct kfd_topology_device, list); up_write(&topology_lock); kfd_add_non_crat_information(kdev); } err: kfd_destroy_crat_image(crat_image); return ret; } void kfd_topology_shutdown(void) { down_write(&topology_lock); kfd_topology_release_sysfs(); kfd_release_live_view(); up_write(&topology_lock); } static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) { uint32_t hashout; uint32_t buf[7]; uint64_t local_mem_size; int i; struct kfd_local_mem_info local_mem_info; if (!gpu) return 0; gpu->kfd2kgd->get_local_mem_info(gpu->kgd, &local_mem_info); local_mem_size = local_mem_info.local_mem_size_private + local_mem_info.local_mem_size_public; buf[0] = gpu->pdev->devfn; buf[1] = gpu->pdev->subsystem_vendor; buf[2] = gpu->pdev->subsystem_device; buf[3] = gpu->pdev->device; buf[4] = gpu->pdev->bus->number; buf[5] = lower_32_bits(local_mem_size); buf[6] = upper_32_bits(local_mem_size); for (i = 0, hashout = 0; i < 7; i++) hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH); return hashout; } /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If * the GPU device is not already present in the topology device * list then return NULL. This means a new topology device has to * be created for this GPU. * TODO: Rather than assiging @gpu to first topology device withtout * gpu attached, it will better to have more stringent check. */ static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu) { struct kfd_topology_device *dev; struct kfd_topology_device *out_dev = NULL; down_write(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) if (!dev->gpu && (dev->node_props.simd_count > 0)) { dev->gpu = gpu; out_dev = dev; break; } up_write(&topology_lock); return out_dev; } static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) { /* * TODO: Generate an event for thunk about the arrival/removal * of the GPU */ } /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, * patch this after CRAT parsing. */ static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) { struct kfd_mem_properties *mem; struct kfd_local_mem_info local_mem_info; if (!dev) return; /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with * single bank of VRAM local memory. * for dGPUs - VCRAT reports only one bank of Local Memory * for APUs - If CRAT from ACPI reports more than one bank, then * all the banks will report the same mem_clk_max information */ dev->gpu->kfd2kgd->get_local_mem_info(dev->gpu->kgd, &local_mem_info); list_for_each_entry(mem, &dev->mem_props, list) mem->mem_clk_max = local_mem_info.mem_clk_max; } static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) { struct kfd_iolink_properties *link, *cpu_link; struct kfd_topology_device *cpu_dev; uint32_t cap; uint32_t cpu_flag = CRAT_IOLINK_FLAGS_ENABLED; uint32_t flag = CRAT_IOLINK_FLAGS_ENABLED; if (!dev || !dev->gpu) return; pcie_capability_read_dword(dev->gpu->pdev, PCI_EXP_DEVCAP2, &cap); if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | PCI_EXP_DEVCAP2_ATOMIC_COMP64))) cpu_flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; if (!dev->gpu->pci_atomic_requested || dev->gpu->device_info->asic_family == CHIP_HAWAII) flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; /* GPU only creates direct links so apply flags setting to all */ list_for_each_entry(link, &dev->io_link_props, list) { link->flags = flag; cpu_dev = kfd_topology_device_by_proximity_domain( link->node_to); if (cpu_dev) { list_for_each_entry(cpu_link, &cpu_dev->io_link_props, list) if (cpu_link->node_to == link->node_from) cpu_link->flags = cpu_flag; } } } int kfd_topology_add_device(struct kfd_dev *gpu) { uint32_t gpu_id; struct kfd_topology_device *dev; struct kfd_cu_info cu_info; int res = 0; struct list_head temp_topology_device_list; void *crat_image = NULL; size_t image_size = 0; int proximity_domain; INIT_LIST_HEAD(&temp_topology_device_list); gpu_id = kfd_generate_gpu_id(gpu); pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); proximity_domain = atomic_inc_return(&topology_crat_proximity_domain); /* Check to see if this gpu device exists in the topology_device_list. * If so, assign the gpu to that device, * else create a Virtual CRAT for this gpu device and then parse that * CRAT to create a new topology device. Once created assign the gpu to * that topology device */ dev = kfd_assign_gpu(gpu); if (!dev) { res = kfd_create_crat_image_virtual(&crat_image, &image_size, COMPUTE_UNIT_GPU, gpu, proximity_domain); if (res) { pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n", gpu_id); return res; } res = kfd_parse_crat_table(crat_image, &temp_topology_device_list, proximity_domain); if (res) { pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n", gpu_id); goto err; } down_write(&topology_lock); kfd_topology_update_device_list(&temp_topology_device_list, &topology_device_list); /* Update the SYSFS tree, since we added another topology * device */ res = kfd_topology_update_sysfs(); up_write(&topology_lock); if (!res) sys_props.generation_count++; else pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n", gpu_id, res); dev = kfd_assign_gpu(gpu); if (WARN_ON(!dev)) { res = -ENODEV; goto err; } } dev->gpu_id = gpu_id; gpu->id = gpu_id; /* TODO: Move the following lines to function * kfd_add_non_crat_information */ /* Fill-in additional information that is not available in CRAT but * needed for the topology */ dev->gpu->kfd2kgd->get_cu_info(dev->gpu->kgd, &cu_info); dev->node_props.simd_arrays_per_engine = cu_info.num_shader_arrays_per_engine; dev->node_props.vendor_id = gpu->pdev->vendor; dev->node_props.device_id = gpu->pdev->device; dev->node_props.location_id = PCI_DEVID(gpu->pdev->bus->number, gpu->pdev->devfn); dev->node_props.max_engine_clk_fcompute = dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(dev->gpu->kgd); dev->node_props.max_engine_clk_ccompute = cpufreq_quick_get_max(0) / 1000; dev->node_props.drm_render_minor = gpu->shared_resources.drm_render_minor; dev->node_props.hive_id = gpu->hive_id; kfd_fill_mem_clk_max_info(dev); kfd_fill_iolink_non_crat_info(dev); switch (dev->gpu->device_info->asic_family) { case CHIP_KAVERI: case CHIP_HAWAII: case CHIP_TONGA: dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); break; case CHIP_CARRIZO: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: pr_debug("Adding doorbell packet type capability\n"); dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); break; case CHIP_VEGA10: case CHIP_VEGA20: case CHIP_RAVEN: dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); break; default: WARN(1, "Unexpected ASIC family %u", dev->gpu->device_info->asic_family); } /* Fix errors in CZ CRAT. * simd_count: Carrizo CRAT reports wrong simd_count, probably * because it doesn't consider masked out CUs * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd * capability flag: Carrizo CRAT doesn't report IOMMU flags */ if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) { dev->node_props.simd_count = cu_info.simd_per_cu * cu_info.cu_active_number; dev->node_props.max_waves_per_simd = 10; dev->node_props.capability |= HSA_CAP_ATS_PRESENT; } kfd_debug_print_topology(); if (!res) kfd_notify_gpu_change(gpu_id, 1); err: kfd_destroy_crat_image(crat_image); return res; } int kfd_topology_remove_device(struct kfd_dev *gpu) { struct kfd_topology_device *dev, *tmp; uint32_t gpu_id; int res = -ENODEV; down_write(&topology_lock); list_for_each_entry_safe(dev, tmp, &topology_device_list, list) if (dev->gpu == gpu) { gpu_id = dev->gpu_id; kfd_remove_sysfs_node_entry(dev); kfd_release_topology_device(dev); sys_props.num_devices--; res = 0; if (kfd_topology_update_sysfs() < 0) kfd_topology_release_sysfs(); break; } up_write(&topology_lock); if (!res) kfd_notify_gpu_change(gpu_id, 0); return res; } /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD * topology. If GPU device is found @idx, then valid kfd_dev pointer is * returned through @kdev * Return - 0: On success (@kdev will be NULL for non GPU nodes) * -1: If end of list */ int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev) { struct kfd_topology_device *top_dev; uint8_t device_idx = 0; *kdev = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) { if (device_idx == idx) { *kdev = top_dev->gpu; up_read(&topology_lock); return 0; } device_idx++; } up_read(&topology_lock); return -1; } static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) { const struct cpuinfo_x86 *cpuinfo; int first_cpu_of_numa_node; if (!cpumask || cpumask == cpu_none_mask) return -1; first_cpu_of_numa_node = cpumask_first(cpumask); if (first_cpu_of_numa_node >= nr_cpu_ids) return -1; cpuinfo = &cpu_data(first_cpu_of_numa_node); return cpuinfo->apicid; } /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor * of the given NUMA node (numa_node_id) * Return -1 on failure */ int kfd_numa_node_to_apic_id(int numa_node_id) { if (numa_node_id == -1) { pr_warn("Invalid NUMA Node. Use online CPU mask\n"); return kfd_cpumask_to_apic_id(cpu_online_mask); } return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); } #if defined(CONFIG_DEBUG_FS) int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) { struct kfd_topology_device *dev; unsigned int i = 0; int r = 0; down_read(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) { if (!dev->gpu) { i++; continue; } seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); r = dqm_debugfs_hqds(m, dev->gpu->dqm); if (r) break; } up_read(&topology_lock); return r; } int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) { struct kfd_topology_device *dev; unsigned int i = 0; int r = 0; down_read(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) { if (!dev->gpu) { i++; continue; } seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets); if (r) break; } up_read(&topology_lock); return r; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1