Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 2746 | 32.06% | 19 | 13.29% |
Leo (Sunpeng) Li | 959 | 11.20% | 10 | 6.99% |
Andrew Jiang | 643 | 7.51% | 6 | 4.20% |
Bhawanpreet Lakha | 536 | 6.26% | 11 | 7.69% |
SivapiriyanKumarasamy | 466 | 5.44% | 8 | 5.59% |
Samson Tam | 425 | 4.96% | 3 | 2.10% |
Anthony Koo | 254 | 2.97% | 6 | 4.20% |
Leon Elazar | 254 | 2.97% | 4 | 2.80% |
Hersen Wu | 252 | 2.94% | 3 | 2.10% |
Eric Yang | 240 | 2.80% | 5 | 3.50% |
Dmytro Laktyushkin | 212 | 2.48% | 9 | 6.29% |
Andrey Grodzovsky | 190 | 2.22% | 6 | 4.20% |
Eryk Brol | 177 | 2.07% | 1 | 0.70% |
Tony Cheng | 165 | 1.93% | 3 | 2.10% |
Mikita Lipski | 160 | 1.87% | 2 | 1.40% |
Sylvia Tsai | 126 | 1.47% | 1 | 0.70% |
Eric Cook | 126 | 1.47% | 1 | 0.70% |
Jerry (Fangzhi) Zuo | 113 | 1.32% | 3 | 2.10% |
Vitaly Prosyak | 103 | 1.20% | 1 | 0.70% |
Yongqiang Sun | 99 | 1.16% | 12 | 8.39% |
Krunoslav Kovac | 49 | 0.57% | 4 | 2.80% |
ShihChen Chen | 49 | 0.57% | 1 | 0.70% |
Dave Airlie | 48 | 0.56% | 3 | 2.10% |
Yue Hin Lau | 32 | 0.37% | 3 | 2.10% |
Geling Li | 22 | 0.26% | 1 | 0.70% |
Duke Du | 22 | 0.26% | 1 | 0.70% |
Charlene Liu | 20 | 0.23% | 3 | 2.10% |
Amy Zhang | 15 | 0.18% | 2 | 1.40% |
Corbin McElhanney | 14 | 0.16% | 2 | 1.40% |
Jun Lei | 14 | 0.16% | 1 | 0.70% |
Aric Cyr | 10 | 0.12% | 1 | 0.70% |
David Francis | 6 | 0.07% | 1 | 0.70% |
Alvin lee | 6 | 0.07% | 1 | 0.70% |
Rex Zhu | 6 | 0.07% | 1 | 0.70% |
Su Sung Chung | 2 | 0.02% | 1 | 0.70% |
Reza Amini | 1 | 0.01% | 1 | 0.70% |
Yasir Al Shekerchi | 1 | 0.01% | 1 | 0.70% |
Nicholas Kazlauskas | 1 | 0.01% | 1 | 0.70% |
Total | 8564 | 143 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD */ #include "dm_services.h" #include "dc.h" #include "core_status.h" #include "core_types.h" #include "hw_sequencer.h" #include "dce/dce_hwseq.h" #include "resource.h" #include "clock_source.h" #include "dc_bios_types.h" #include "bios_parser_interface.h" #include "include/irq_service_interface.h" #include "transform.h" #include "dmcu.h" #include "dpp.h" #include "timing_generator.h" #include "abm.h" #include "virtual/virtual_link_encoder.h" #include "link_hwss.h" #include "link_encoder.h" #include "dc_link_ddc.h" #include "dm_helpers.h" #include "mem_input.h" #include "hubp.h" #include "dc_link_dp.h" #include "dce/dce_i2c.h" #define DC_LOGGER \ dc->ctx->logger const static char DC_BUILD_ID[] = "production-build"; /******************************************************************************* * Private functions ******************************************************************************/ static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new) { if (new > *original) *original = new; } static void destroy_links(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) { if (NULL != dc->links[i]) link_destroy(&dc->links[i]); } } static bool create_links( struct dc *dc, uint32_t num_virtual_links) { int i; int connectors_num; struct dc_bios *bios = dc->ctx->dc_bios; dc->link_count = 0; connectors_num = bios->funcs->get_connectors_number(bios); if (connectors_num > ENUM_ID_COUNT) { dm_error( "DC: Number of connectors %d exceeds maximum of %d!\n", connectors_num, ENUM_ID_COUNT); return false; } if (connectors_num == 0 && num_virtual_links == 0) { dm_error("DC: Number of connectors is zero!\n"); } dm_output_to_console( "DC: %s: connectors_num: physical:%d, virtual:%d\n", __func__, connectors_num, num_virtual_links); for (i = 0; i < connectors_num; i++) { struct link_init_data link_init_params = {0}; struct dc_link *link; link_init_params.ctx = dc->ctx; /* next BIOS object table connector */ link_init_params.connector_index = i; link_init_params.link_index = dc->link_count; link_init_params.dc = dc; link = link_create(&link_init_params); if (link) { dc->links[dc->link_count] = link; link->dc = dc; ++dc->link_count; } } for (i = 0; i < num_virtual_links; i++) { struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); struct encoder_init_data enc_init = {0}; if (link == NULL) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_index = dc->link_count; dc->links[dc->link_count] = link; dc->link_count++; link->ctx = dc->ctx; link->dc = dc; link->connector_signal = SIGNAL_TYPE_VIRTUAL; link->link_id.type = OBJECT_TYPE_CONNECTOR; link->link_id.id = CONNECTOR_ID_VIRTUAL; link->link_id.enum_id = ENUM_ID_1; link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL); if (!link->link_enc) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_status.dpcd_caps = &link->dpcd_caps; enc_init.ctx = dc->ctx; enc_init.channel = CHANNEL_ID_UNKNOWN; enc_init.hpd_source = HPD_SOURCEID_UNKNOWN; enc_init.transmitter = TRANSMITTER_UNKNOWN; enc_init.connector = link->link_id; enc_init.encoder.type = OBJECT_TYPE_ENCODER; enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL; enc_init.encoder.enum_id = ENUM_ID_1; virtual_link_encoder_construct(link->link_enc, &enc_init); } return true; failed_alloc: return false; } /** ***************************************************************************** * Function: dc_stream_adjust_vmin_vmax * * @brief * Looks up the pipe context of dc_stream_state and updates the * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh * Rate, which is a power-saving feature that targets reducing panel * refresh rate while the screen is static * * @param [in] dc: dc reference * @param [in] stream: Initial dc stream state * @param [in] adjust: Updated parameters for vertical_total_min and * vertical_total_max ***************************************************************************** */ bool dc_stream_adjust_vmin_vmax(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust) { int i = 0; bool ret = false; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.stream_enc) { pipe->stream->adjust = *adjust; dc->hwss.set_drr(&pipe, 1, adjust->v_total_min, adjust->v_total_max); ret = true; } } return ret; } bool dc_stream_get_crtc_position(struct dc *dc, struct dc_stream_state **streams, int num_streams, unsigned int *v_pos, unsigned int *nom_v_pos) { /* TODO: Support multiple streams */ const struct dc_stream_state *stream = streams[0]; int i = 0; bool ret = false; struct crtc_position position; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.stream_enc) { dc->hwss.get_position(&pipe, 1, &position); *v_pos = position.vertical_count; *nom_v_pos = position.nominal_vcount; ret = true; } } return ret; } /** * dc_stream_configure_crc: Configure CRC capture for the given stream. * @dc: DC Object * @stream: The stream to configure CRC on. * @enable: Enable CRC if true, disable otherwise. * @continuous: Capture CRC on every frame if true. Otherwise, only capture * once. * * By default, only CRC0 is configured, and the entire frame is used to * calculate the crc. */ bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream, bool enable, bool continuous) { int i; struct pipe_ctx *pipe; struct crc_params param; struct timing_generator *tg; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; /* Always capture the full frame */ param.windowa_x_start = 0; param.windowa_y_start = 0; param.windowa_x_end = pipe->stream->timing.h_addressable; param.windowa_y_end = pipe->stream->timing.v_addressable; param.windowb_x_start = 0; param.windowb_y_start = 0; param.windowb_x_end = pipe->stream->timing.h_addressable; param.windowb_y_end = pipe->stream->timing.v_addressable; /* Default to the union of both windows */ param.selection = UNION_WINDOW_A_B; param.continuous_mode = continuous; param.enable = enable; tg = pipe->stream_res.tg; /* Only call if supported */ if (tg->funcs->configure_crc) return tg->funcs->configure_crc(tg, ¶m); DC_LOG_WARNING("CRC capture not supported."); return false; } /** * dc_stream_get_crc: Get CRC values for the given stream. * @dc: DC object * @stream: The DC stream state of the stream to get CRCs from. * @r_cr, g_y, b_cb: CRC values for the three channels are stored here. * * dc_stream_configure_crc needs to be called beforehand to enable CRCs. * Return false if stream is not found, or if CRCs are not enabled. */ bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) { int i; struct pipe_ctx *pipe; struct timing_generator *tg; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; tg = pipe->stream_res.tg; if (tg->funcs->get_crc) return tg->funcs->get_crc(tg, r_cr, g_y, b_cb); DC_LOG_WARNING("CRC capture not supported."); return false; } void dc_stream_set_dither_option(struct dc_stream_state *stream, enum dc_dither_option option) { struct bit_depth_reduction_params params; struct dc_link *link = stream->status.link; struct pipe_ctx *pipes = NULL; int i; for (i = 0; i < MAX_PIPES; i++) { if (link->dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &link->dc->current_state->res_ctx.pipe_ctx[i]; break; } } if (!pipes) return; if (option > DITHER_OPTION_MAX) return; stream->dither_option = option; memset(¶ms, 0, sizeof(params)); resource_build_bit_depth_reduction_params(stream, ¶ms); stream->bit_depth_params = params; if (pipes->plane_res.xfm && pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) { pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth( pipes->plane_res.xfm, pipes->plane_res.scl_data.lb_params.depth, &stream->bit_depth_params); } pipes->stream_res.opp->funcs-> opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms); } bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream) { int i = 0; bool ret = false; struct pipe_ctx *pipes; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &dc->current_state->res_ctx.pipe_ctx[i]; dc->hwss.program_gamut_remap(pipes); ret = true; } } return ret; } bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream) { int i = 0; bool ret = false; struct pipe_ctx *pipes; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &dc->current_state->res_ctx.pipe_ctx[i]; dc->hwss.program_csc_matrix(pipes, stream->output_color_space, stream->csc_color_matrix.matrix); ret = true; } } return ret; } void dc_stream_set_static_screen_events(struct dc *dc, struct dc_stream_state **streams, int num_streams, const struct dc_static_screen_events *events) { int i = 0; int j = 0; struct pipe_ctx *pipes_affected[MAX_PIPES]; int num_pipes_affected = 0; for (i = 0; i < num_streams; i++) { struct dc_stream_state *stream = streams[i]; for (j = 0; j < MAX_PIPES; j++) { if (dc->current_state->res_ctx.pipe_ctx[j].stream == stream) { pipes_affected[num_pipes_affected++] = &dc->current_state->res_ctx.pipe_ctx[j]; } } } dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, events); } void dc_link_set_drive_settings(struct dc *dc, struct link_training_settings *lt_settings, const struct dc_link *link) { int i; for (i = 0; i < dc->link_count; i++) { if (dc->links[i] == link) break; } if (i >= dc->link_count) ASSERT_CRITICAL(false); dc_link_dp_set_drive_settings(dc->links[i], lt_settings); } void dc_link_perform_link_training(struct dc *dc, struct dc_link_settings *link_setting, bool skip_video_pattern) { int i; for (i = 0; i < dc->link_count; i++) dc_link_dp_perform_link_training( dc->links[i], link_setting, skip_video_pattern); } void dc_link_set_preferred_link_settings(struct dc *dc, struct dc_link_settings *link_setting, struct dc_link *link) { int i; struct pipe_ctx *pipe; struct dc_stream_state *link_stream; struct dc_link_settings store_settings = *link_setting; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->stream->sink && pipe->stream->sink->link) { if (pipe->stream->sink->link == link) break; } } /* Stream not found */ if (i == MAX_PIPES) return; link_stream = link->dc->current_state->res_ctx.pipe_ctx[i].stream; link->preferred_link_setting = store_settings; if (link_stream) decide_link_settings(link_stream, &store_settings); if ((store_settings.lane_count != LANE_COUNT_UNKNOWN) && (store_settings.link_rate != LINK_RATE_UNKNOWN)) dp_retrain_link_dp_test(link, &store_settings, false); } void dc_link_enable_hpd(const struct dc_link *link) { dc_link_dp_enable_hpd(link); } void dc_link_disable_hpd(const struct dc_link *link) { dc_link_dp_disable_hpd(link); } void dc_link_set_test_pattern(struct dc_link *link, enum dp_test_pattern test_pattern, const struct link_training_settings *p_link_settings, const unsigned char *p_custom_pattern, unsigned int cust_pattern_size) { if (link != NULL) dc_link_dp_set_test_pattern( link, test_pattern, p_link_settings, p_custom_pattern, cust_pattern_size); } static void destruct(struct dc *dc) { dc_release_state(dc->current_state); dc->current_state = NULL; destroy_links(dc); dc_destroy_resource_pool(dc); if (dc->ctx->gpio_service) dal_gpio_service_destroy(&dc->ctx->gpio_service); if (dc->ctx->i2caux) dal_i2caux_destroy(&dc->ctx->i2caux); if (dc->ctx->created_bios) dal_bios_parser_destroy(&dc->ctx->dc_bios); kfree(dc->ctx); dc->ctx = NULL; kfree(dc->bw_vbios); dc->bw_vbios = NULL; kfree(dc->bw_dceip); dc->bw_dceip = NULL; #ifdef CONFIG_DRM_AMD_DC_DCN1_0 kfree(dc->dcn_soc); dc->dcn_soc = NULL; kfree(dc->dcn_ip); dc->dcn_ip = NULL; #endif } static bool construct(struct dc *dc, const struct dc_init_data *init_params) { struct dc_context *dc_ctx; struct bw_calcs_dceip *dc_dceip; struct bw_calcs_vbios *dc_vbios; #ifdef CONFIG_DRM_AMD_DC_DCN1_0 struct dcn_soc_bounding_box *dcn_soc; struct dcn_ip_params *dcn_ip; #endif enum dce_version dc_version = DCE_VERSION_UNKNOWN; dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL); if (!dc_dceip) { dm_error("%s: failed to create dceip\n", __func__); goto fail; } dc->bw_dceip = dc_dceip; dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL); if (!dc_vbios) { dm_error("%s: failed to create vbios\n", __func__); goto fail; } dc->bw_vbios = dc_vbios; #ifdef CONFIG_DRM_AMD_DC_DCN1_0 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL); if (!dcn_soc) { dm_error("%s: failed to create dcn_soc\n", __func__); goto fail; } dc->dcn_soc = dcn_soc; dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL); if (!dcn_ip) { dm_error("%s: failed to create dcn_ip\n", __func__); goto fail; } dc->dcn_ip = dcn_ip; #endif dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL); if (!dc_ctx) { dm_error("%s: failed to create ctx\n", __func__); goto fail; } dc_ctx->cgs_device = init_params->cgs_device; dc_ctx->driver_context = init_params->driver; dc_ctx->dc = dc; dc_ctx->asic_id = init_params->asic_id; dc_ctx->dc_sink_id_count = 0; dc->ctx = dc_ctx; dc->current_state = dc_create_state(); if (!dc->current_state) { dm_error("%s: failed to create validate ctx\n", __func__); goto fail; } /* Create logger */ dc_ctx->dce_environment = init_params->dce_environment; dc_version = resource_parse_asic_id(init_params->asic_id); dc_ctx->dce_version = dc_version; /* Resource should construct all asic specific resources. * This should be the only place where we need to parse the asic id */ if (init_params->vbios_override) dc_ctx->dc_bios = init_params->vbios_override; else { /* Create BIOS parser */ struct bp_init_data bp_init_data; bp_init_data.ctx = dc_ctx; bp_init_data.bios = init_params->asic_id.atombios_base_address; dc_ctx->dc_bios = dal_bios_parser_create( &bp_init_data, dc_version); if (!dc_ctx->dc_bios) { ASSERT_CRITICAL(false); goto fail; } dc_ctx->created_bios = true; } /* Create I2C AUX */ dc_ctx->i2caux = dal_i2caux_create(dc_ctx); if (!dc_ctx->i2caux) { ASSERT_CRITICAL(false); goto fail; } /* Create GPIO service */ dc_ctx->gpio_service = dal_gpio_service_create( dc_version, dc_ctx->dce_environment, dc_ctx); if (!dc_ctx->gpio_service) { ASSERT_CRITICAL(false); goto fail; } dc->res_pool = dc_create_resource_pool( dc, init_params->num_virtual_links, dc_version, init_params->asic_id); if (!dc->res_pool) goto fail; dc_resource_state_construct(dc, dc->current_state); if (!create_links(dc, init_params->num_virtual_links)) goto fail; return true; fail: destruct(dc); return false; } static void disable_dangling_plane(struct dc *dc, struct dc_state *context) { int i, j; struct dc_state *dangling_context = dc_create_state(); struct dc_state *current_ctx; if (dangling_context == NULL) return; dc_resource_state_copy_construct(dc->current_state, dangling_context); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *old_stream = dc->current_state->res_ctx.pipe_ctx[i].stream; bool should_disable = true; for (j = 0; j < context->stream_count; j++) { if (old_stream == context->streams[j]) { should_disable = false; break; } } if (should_disable && old_stream) { dc_rem_all_planes_for_stream(dc, old_stream, dangling_context); dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context); } } current_ctx = dc->current_state; dc->current_state = dangling_context; dc_release_state(current_ctx); } /******************************************************************************* * Public functions ******************************************************************************/ struct dc *dc_create(const struct dc_init_data *init_params) { struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL); unsigned int full_pipe_count; if (NULL == dc) goto alloc_fail; if (false == construct(dc, init_params)) goto construct_fail; /*TODO: separate HW and SW initialization*/ dc->hwss.init_hw(dc); full_pipe_count = dc->res_pool->pipe_count; if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE) full_pipe_count--; dc->caps.max_streams = min( full_pipe_count, dc->res_pool->stream_enc_count); dc->caps.max_links = dc->link_count; dc->caps.max_audios = dc->res_pool->audio_count; dc->caps.linear_pitch_alignment = 64; /* Populate versioning information */ dc->versions.dc_ver = DC_VER; if (dc->res_pool->dmcu != NULL) dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version; dc->config = init_params->flags; dc->build_id = DC_BUILD_ID; DC_LOG_DC("Display Core initialized\n"); return dc; construct_fail: kfree(dc); alloc_fail: return NULL; } void dc_destroy(struct dc **dc) { destruct(*dc); kfree(*dc); *dc = NULL; } static void enable_timing_multisync( struct dc *dc, struct dc_state *ctx) { int i = 0, multisync_count = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled) continue; if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source) continue; multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i]; multisync_count++; } if (multisync_count > 0) { dc->hwss.enable_per_frame_crtc_position_reset( dc, multisync_count, multisync_pipes); } } static void program_timing_sync( struct dc *dc, struct dc_state *ctx) { int i, j; int group_index = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe) continue; unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i]; } for (i = 0; i < pipe_count; i++) { int group_size = 1; struct pipe_ctx *pipe_set[MAX_PIPES]; if (!unsynced_pipes[i]) continue; pipe_set[0] = unsynced_pipes[i]; unsynced_pipes[i] = NULL; /* Add tg to the set, search rest of the tg's for ones with * same timing, add all tgs with same timing to the group */ for (j = i + 1; j < pipe_count; j++) { if (!unsynced_pipes[j]) continue; if (resource_are_streams_timing_synchronizable( unsynced_pipes[j]->stream, pipe_set[0]->stream)) { pipe_set[group_size] = unsynced_pipes[j]; unsynced_pipes[j] = NULL; group_size++; } } /* set first unblanked pipe as master */ for (j = 0; j < group_size; j++) { struct pipe_ctx *temp; if (pipe_set[j]->stream_res.tg->funcs->is_blanked && !pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg)) { if (j == 0) break; temp = pipe_set[0]; pipe_set[0] = pipe_set[j]; pipe_set[j] = temp; break; } } /* remove any other unblanked pipes as they have already been synced */ for (j = j + 1; j < group_size; j++) { if (pipe_set[j]->stream_res.tg->funcs->is_blanked && !pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg)) { group_size--; pipe_set[j] = pipe_set[group_size]; j--; } } if (group_size > 1) { dc->hwss.enable_timing_synchronization( dc, group_index, group_size, pipe_set); group_index++; } } } static bool context_changed( struct dc *dc, struct dc_state *context) { uint8_t i; if (context->stream_count != dc->current_state->stream_count) return true; for (i = 0; i < dc->current_state->stream_count; i++) { if (dc->current_state->streams[i] != context->streams[i]) return true; } return false; } bool dc_enable_stereo( struct dc *dc, struct dc_state *context, struct dc_stream_state *streams[], uint8_t stream_count) { bool ret = true; int i, j; struct pipe_ctx *pipe; for (i = 0; i < MAX_PIPES; i++) { if (context != NULL) pipe = &context->res_ctx.pipe_ctx[i]; else pipe = &dc->current_state->res_ctx.pipe_ctx[i]; for (j = 0 ; pipe && j < stream_count; j++) { if (streams[j] && streams[j] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } return ret; } /* * Applies given context to HW and copy it into current context. * It's up to the user to release the src context afterwards. */ static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context) { struct dc_bios *dcb = dc->ctx->dc_bios; enum dc_status result = DC_ERROR_UNEXPECTED; struct pipe_ctx *pipe; int i, k, l; struct dc_stream_state *dc_streams[MAX_STREAMS] = {0}; disable_dangling_plane(dc, context); for (i = 0; i < context->stream_count; i++) dc_streams[i] = context->streams[i]; if (!dcb->funcs->is_accelerated_mode(dcb)) dc->hwss.enable_accelerated_mode(dc, context); dc->hwss.set_bandwidth(dc, context, false); /* re-program planes for existing stream, in case we need to * free up plane resource for later use */ for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->mode_changed) continue; dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); /* use new pipe config in new context */ } /* Program hardware */ dc->hwss.ready_shared_resources(dc, context); for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe); } result = dc->hwss.apply_ctx_to_hw(dc, context); if (result != DC_OK) return result; if (context->stream_count > 1) { enable_timing_multisync(dc, context); program_timing_sync(dc, context); } /* Program all planes within new context*/ for (i = 0; i < context->stream_count; i++) { const struct dc_sink *sink = context->streams[i]->sink; if (!context->streams[i]->mode_changed) continue; dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); /* * enable stereo * TODO rework dc_enable_stereo call to work with validation sets? */ for (k = 0; k < MAX_PIPES; k++) { pipe = &context->res_ctx.pipe_ctx[k]; for (l = 0 ; pipe && l < context->stream_count; l++) { if (context->streams[l] && context->streams[l] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } CONN_MSG_MODE(sink->link, "{%dx%d, %dx%d@%dKhz}", context->streams[i]->timing.h_addressable, context->streams[i]->timing.v_addressable, context->streams[i]->timing.h_total, context->streams[i]->timing.v_total, context->streams[i]->timing.pix_clk_khz); } dc_enable_stereo(dc, context, dc_streams, context->stream_count); /* pplib is notified if disp_num changed */ dc->hwss.set_bandwidth(dc, context, true); dc_release_state(dc->current_state); dc->current_state = context; dc_retain_state(dc->current_state); dc->hwss.optimize_shared_resources(dc); return result; } bool dc_commit_state(struct dc *dc, struct dc_state *context) { enum dc_status result = DC_ERROR_UNEXPECTED; int i; if (false == context_changed(dc, context)) return DC_OK; DC_LOG_DC("%s: %d streams\n", __func__, context->stream_count); for (i = 0; i < context->stream_count; i++) { struct dc_stream_state *stream = context->streams[i]; dc_stream_log(dc, stream); } result = dc_commit_state_no_check(dc, context); return (result == DC_OK); } bool dc_post_update_surfaces_to_stream(struct dc *dc) { int i; struct dc_state *context = dc->current_state; post_surface_trace(dc); for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].stream == NULL || context->res_ctx.pipe_ctx[i].plane_state == NULL) { context->res_ctx.pipe_ctx[i].pipe_idx = i; dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]); } dc->optimized_required = false; dc->hwss.set_bandwidth(dc, context, true); return true; } struct dc_state *dc_create_state(void) { struct dc_state *context = kzalloc(sizeof(struct dc_state), GFP_KERNEL); if (!context) return NULL; kref_init(&context->refcount); return context; } void dc_retain_state(struct dc_state *context) { kref_get(&context->refcount); } static void dc_state_free(struct kref *kref) { struct dc_state *context = container_of(kref, struct dc_state, refcount); dc_resource_state_destruct(context); kfree(context); } void dc_release_state(struct dc_state *context) { kref_put(&context->refcount, dc_state_free); } static bool is_surface_in_context( const struct dc_state *context, const struct dc_plane_state *plane_state) { int j; for (j = 0; j < MAX_PIPES; j++) { const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (plane_state == pipe_ctx->plane_state) { return true; } } return false; } static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; if (!u->plane_info) return UPDATE_TYPE_FAST; if (u->plane_info->color_space != u->surface->color_space) update_flags->bits.color_space_change = 1; if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) update_flags->bits.horizontal_mirror_change = 1; if (u->plane_info->rotation != u->surface->rotation) update_flags->bits.rotation_change = 1; if (u->plane_info->format != u->surface->format) update_flags->bits.pixel_format_change = 1; if (u->plane_info->stereo_format != u->surface->stereo_format) update_flags->bits.stereo_format_change = 1; if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) update_flags->bits.per_pixel_alpha_change = 1; if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) update_flags->bits.global_alpha_change = 1; if (u->plane_info->dcc.enable != u->surface->dcc.enable || u->plane_info->dcc.grph.independent_64b_blks != u->surface->dcc.grph.independent_64b_blks || u->plane_info->dcc.grph.meta_pitch != u->surface->dcc.grph.meta_pitch) update_flags->bits.dcc_change = 1; if (resource_pixel_format_to_bpp(u->plane_info->format) != resource_pixel_format_to_bpp(u->surface->format)) /* different bytes per element will require full bandwidth * and DML calculation */ update_flags->bits.bpp_change = 1; if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info, sizeof(union dc_tiling_info)) != 0) { update_flags->bits.swizzle_change = 1; /* todo: below are HW dependent, we should add a hook to * DCE/N resource and validated there. */ if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) /* swizzled mode requires RQ to be setup properly, * thus need to run DML to calculate RQ settings */ update_flags->bits.bandwidth_change = 1; } if (update_flags->bits.rotation_change || update_flags->bits.stereo_format_change || update_flags->bits.pixel_format_change || update_flags->bits.bpp_change || update_flags->bits.bandwidth_change || update_flags->bits.output_tf_change) return UPDATE_TYPE_FULL; return UPDATE_TYPE_MED; } static enum surface_update_type get_scaling_info_update_type( const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; if (!u->scaling_info) return UPDATE_TYPE_FAST; if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width || u->scaling_info->clip_rect.height != u->surface->clip_rect.height || u->scaling_info->dst_rect.width != u->surface->dst_rect.width || u->scaling_info->dst_rect.height != u->surface->dst_rect.height) { update_flags->bits.scaling_change = 1; if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width || u->scaling_info->dst_rect.height < u->surface->dst_rect.height) && (u->scaling_info->dst_rect.width < u->surface->src_rect.width || u->scaling_info->dst_rect.height < u->surface->src_rect.height)) /* Making dst rect smaller requires a bandwidth change */ update_flags->bits.bandwidth_change = 1; } if (u->scaling_info->src_rect.width != u->surface->src_rect.width || u->scaling_info->src_rect.height != u->surface->src_rect.height) { update_flags->bits.scaling_change = 1; if (u->scaling_info->src_rect.width > u->surface->src_rect.width && u->scaling_info->src_rect.height > u->surface->src_rect.height) /* Making src rect bigger requires a bandwidth change */ update_flags->bits.clock_change = 1; } if (u->scaling_info->src_rect.x != u->surface->src_rect.x || u->scaling_info->src_rect.y != u->surface->src_rect.y || u->scaling_info->clip_rect.x != u->surface->clip_rect.x || u->scaling_info->clip_rect.y != u->surface->clip_rect.y || u->scaling_info->dst_rect.x != u->surface->dst_rect.x || u->scaling_info->dst_rect.y != u->surface->dst_rect.y) update_flags->bits.position_change = 1; if (update_flags->bits.clock_change || update_flags->bits.bandwidth_change) return UPDATE_TYPE_FULL; if (update_flags->bits.scaling_change || update_flags->bits.position_change) return UPDATE_TYPE_MED; return UPDATE_TYPE_FAST; } static enum surface_update_type det_surface_update(const struct dc *dc, const struct dc_surface_update *u) { const struct dc_state *context = dc->current_state; enum surface_update_type type; enum surface_update_type overall_type = UPDATE_TYPE_FAST; union surface_update_flags *update_flags = &u->surface->update_flags; update_flags->raw = 0; // Reset all flags if (!is_surface_in_context(context, u->surface)) { update_flags->bits.new_plane = 1; return UPDATE_TYPE_FULL; } type = get_plane_info_update_type(u); elevate_update_type(&overall_type, type); type = get_scaling_info_update_type(u); elevate_update_type(&overall_type, type); if (u->in_transfer_func) update_flags->bits.in_transfer_func_change = 1; if (u->input_csc_color_matrix) update_flags->bits.input_csc_change = 1; if (u->coeff_reduction_factor) update_flags->bits.coeff_reduction_change = 1; if (u->gamma) { enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN; if (u->plane_info) format = u->plane_info->format; else if (u->surface) format = u->surface->format; if (dce_use_lut(format)) update_flags->bits.gamma_change = 1; } if (update_flags->bits.in_transfer_func_change) { type = UPDATE_TYPE_MED; elevate_update_type(&overall_type, type); } if (update_flags->bits.input_csc_change || update_flags->bits.coeff_reduction_change || update_flags->bits.gamma_change) { type = UPDATE_TYPE_FULL; elevate_update_type(&overall_type, type); } return overall_type; } static enum surface_update_type check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type overall_type = UPDATE_TYPE_FAST; if (stream_status == NULL || stream_status->plane_count != surface_count) return UPDATE_TYPE_FULL; /* some stream updates require passive update */ if (stream_update) { if ((stream_update->src.height != 0) && (stream_update->src.width != 0)) return UPDATE_TYPE_FULL; if ((stream_update->dst.height != 0) && (stream_update->dst.width != 0)) return UPDATE_TYPE_FULL; if (stream_update->out_transfer_func) return UPDATE_TYPE_FULL; if (stream_update->abm_level) return UPDATE_TYPE_FULL; if (stream_update->dpms_off) return UPDATE_TYPE_FULL; } for (i = 0 ; i < surface_count; i++) { enum surface_update_type type = det_surface_update(dc, &updates[i]); if (type == UPDATE_TYPE_FULL) return type; elevate_update_type(&overall_type, type); } return overall_type; } enum surface_update_type dc_check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type type; for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0; type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status); if (type == UPDATE_TYPE_FULL) for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0xFFFFFFFF; return type; } static struct dc_stream_status *stream_get_status( struct dc_state *ctx, struct dc_stream_state *stream) { uint8_t i; for (i = 0; i < ctx->stream_count; i++) { if (stream == ctx->streams[i]) { return &ctx->stream_status[i]; } } return NULL; } static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL; static void notify_display_count_to_smu( struct dc *dc, struct dc_state *context) { int i, display_count; struct pp_smu_funcs_rv *pp_smu = dc->res_pool->pp_smu; /* * if function pointer not set up, this message is * sent as part of pplib_apply_display_requirements. * So just return. */ if (!pp_smu || !pp_smu->set_display_count) return; display_count = 0; for (i = 0; i < context->stream_count; i++) { const struct dc_stream_state *stream = context->streams[i]; /* only notify active stream */ if (stream->dpms_off) continue; display_count++; } pp_smu->set_display_count(&pp_smu->pp_smu, display_count); } static void commit_planes_do_stream_update(struct dc *dc, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int j; // Stream updates for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->top_pipe && pipe_ctx->stream && pipe_ctx->stream == stream) { /* Fast update*/ // VRR program can be done as part of FAST UPDATE if (stream_update->adjust) dc->hwss.set_drr(&pipe_ctx, 1, stream_update->adjust->v_total_min, stream_update->adjust->v_total_max); if (stream_update->periodic_fn_vsync_delta && pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->program_vline_interrupt) pipe_ctx->stream_res.tg->funcs->program_vline_interrupt( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, pipe_ctx->stream->periodic_fn_vsync_delta); if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) || stream_update->vrr_infopacket || stream_update->vsc_infopacket) { resource_build_info_frame(pipe_ctx); dc->hwss.update_info_frame(pipe_ctx); } if (stream_update->gamut_remap) dc_stream_set_gamut_remap(dc, stream); if (stream_update->output_csc_transform) dc_stream_program_csc_matrix(dc, stream); /* Full fe update*/ if (update_type == UPDATE_TYPE_FAST) continue; if (stream_update->dpms_off) { if (*stream_update->dpms_off) { core_link_disable_stream(pipe_ctx, KEEP_ACQUIRED_RESOURCE); dc->hwss.pplib_apply_display_requirements( dc, dc->current_state); notify_display_count_to_smu(dc, dc->current_state); } else { dc->hwss.pplib_apply_display_requirements( dc, dc->current_state); notify_display_count_to_smu(dc, dc->current_state); core_link_enable_stream(dc->current_state, pipe_ctx); } } if (stream_update->abm_level && pipe_ctx->stream_res.abm) { if (pipe_ctx->stream_res.tg->funcs->is_blanked) { // if otg funcs defined check if blanked before programming if (!pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) pipe_ctx->stream_res.abm->funcs->set_abm_level( pipe_ctx->stream_res.abm, stream->abm_level); } else pipe_ctx->stream_res.abm->funcs->set_abm_level( pipe_ctx->stream_res.abm, stream->abm_level); } } } } static void commit_planes_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int i, j; struct pipe_ctx *top_pipe_to_program = NULL; if (update_type == UPDATE_TYPE_FULL) { dc->hwss.set_bandwidth(dc, context, false); context_clock_trace(dc, context); } // Stream updates if (stream_update) commit_planes_do_stream_update(dc, stream, stream_update, update_type, context); if (surface_count == 0) { /* * In case of turning off screen, no need to program front end a second time. * just return after program blank. */ dc->hwss.apply_ctx_for_surface(dc, stream, 0, context); return; } // Update Type FULL, Surface updates for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->top_pipe && pipe_ctx->stream && pipe_ctx->stream == stream) { struct dc_stream_status *stream_status = NULL; top_pipe_to_program = pipe_ctx; if (!pipe_ctx->plane_state) continue; /* Full fe update*/ if (update_type == UPDATE_TYPE_FAST) continue; stream_status = stream_get_status(context, pipe_ctx->stream); dc->hwss.apply_ctx_for_surface( dc, pipe_ctx->stream, stream_status->plane_count, context); } } if (update_type == UPDATE_TYPE_FULL) context_timing_trace(dc, &context->res_ctx); // Update Type FAST, Surface updates if (update_type == UPDATE_TYPE_FAST) { /* Lock the top pipe while updating plane addrs, since freesync requires * plane addr update event triggers to be synchronized. * top_pipe_to_program is expected to never be NULL */ dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true); /* Perform requested Updates */ for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (pipe_ctx->plane_state != plane_state) continue; if (srf_updates[i].flip_addr) dc->hwss.update_plane_addr(dc, pipe_ctx); } } dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); } } void dc_commit_updates_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, struct dc_plane_state **plane_states, struct dc_state *state) { const struct dc_stream_status *stream_status; enum surface_update_type update_type; struct dc_state *context; struct dc_context *dc_ctx = dc->ctx; int i, j; stream_status = dc_stream_get_status(stream); context = dc->current_state; update_type = dc_check_update_surfaces_for_stream( dc, srf_updates, surface_count, stream_update, stream_status); if (update_type >= update_surface_trace_level) update_surface_trace(dc, srf_updates, surface_count); if (update_type >= UPDATE_TYPE_FULL) { /* initialize scratch memory for building context */ context = dc_create_state(); if (context == NULL) { DC_ERROR("Failed to allocate new validate context!\n"); return; } dc_resource_state_copy_construct(state, context); } for (i = 0; i < surface_count; i++) { struct dc_plane_state *surface = srf_updates[i].surface; /* TODO: On flip we don't build the state, so it still has the * old address. Which is why we are updating the address here */ if (srf_updates[i].flip_addr) { surface->address = srf_updates[i].flip_addr->address; surface->flip_immediate = srf_updates[i].flip_addr->flip_immediate; } if (update_type >= UPDATE_TYPE_MED) { for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->plane_state != surface) continue; resource_build_scaling_params(pipe_ctx); } } } commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, context); /*update current_State*/ if (dc->current_state != context) { struct dc_state *old = dc->current_state; dc->current_state = context; dc_release_state(old); } /*let's use current_state to update watermark etc*/ if (update_type >= UPDATE_TYPE_FULL) dc_post_update_surfaces_to_stream(dc); return; } uint8_t dc_get_current_stream_count(struct dc *dc) { return dc->current_state->stream_count; } struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i) { if (i < dc->current_state->stream_count) return dc->current_state->streams[i]; return NULL; } enum dc_irq_source dc_interrupt_to_irq_source( struct dc *dc, uint32_t src_id, uint32_t ext_id) { return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id); } bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable) { if (dc == NULL) return false; return dal_irq_service_set(dc->res_pool->irqs, src, enable); } void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src) { dal_irq_service_ack(dc->res_pool->irqs, src); } void dc_set_power_state( struct dc *dc, enum dc_acpi_cm_power_state power_state) { struct kref refcount; switch (power_state) { case DC_ACPI_CM_POWER_STATE_D0: dc_resource_state_construct(dc, dc->current_state); dc->hwss.init_hw(dc); break; default: ASSERT(dc->current_state->stream_count == 0); /* Zero out the current context so that on resume we start with * clean state, and dc hw programming optimizations will not * cause any trouble. */ /* Preserve refcount */ refcount = dc->current_state->refcount; dc_resource_state_destruct(dc->current_state); memset(dc->current_state, 0, sizeof(*dc->current_state)); dc->current_state->refcount = refcount; break; } } void dc_resume(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) core_link_resume(dc->links[i]); } bool dc_submit_i2c( struct dc *dc, uint32_t link_index, struct i2c_command *cmd) { struct dc_link *link = dc->links[link_index]; struct ddc_service *ddc = link->ddc; return dce_i2c_submit_command( dc->res_pool, ddc->ddc_pin, cmd); } static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink) { if (dc_link->sink_count >= MAX_SINKS_PER_LINK) { BREAK_TO_DEBUGGER(); return false; } dc_sink_retain(sink); dc_link->remote_sinks[dc_link->sink_count] = sink; dc_link->sink_count++; return true; } struct dc_sink *dc_link_add_remote_sink( struct dc_link *link, const uint8_t *edid, int len, struct dc_sink_init_data *init_data) { struct dc_sink *dc_sink; enum dc_edid_status edid_status; if (len > DC_MAX_EDID_BUFFER_SIZE) { dm_error("Max EDID buffer size breached!\n"); return NULL; } if (!init_data) { BREAK_TO_DEBUGGER(); return NULL; } if (!init_data->link) { BREAK_TO_DEBUGGER(); return NULL; } dc_sink = dc_sink_create(init_data); if (!dc_sink) return NULL; memmove(dc_sink->dc_edid.raw_edid, edid, len); dc_sink->dc_edid.length = len; if (!link_add_remote_sink_helper( link, dc_sink)) goto fail_add_sink; edid_status = dm_helpers_parse_edid_caps( link->ctx, &dc_sink->dc_edid, &dc_sink->edid_caps); /* * Treat device as no EDID device if EDID * parsing fails */ if (edid_status != EDID_OK) { dc_sink->dc_edid.length = 0; dm_error("Bad EDID, status%d!\n", edid_status); } return dc_sink; fail_add_sink: dc_sink_release(dc_sink); return NULL; } void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink) { int i; if (!link->sink_count) { BREAK_TO_DEBUGGER(); return; } for (i = 0; i < link->sink_count; i++) { if (link->remote_sinks[i] == sink) { dc_sink_release(sink); link->remote_sinks[i] = NULL; /* shrink array to remove empty place */ while (i < link->sink_count - 1) { link->remote_sinks[i] = link->remote_sinks[i+1]; i++; } link->remote_sinks[i] = NULL; link->sink_count--; return; } } } void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info) { info->displayClock = (unsigned int)state->bw.dcn.clk.dispclk_khz; info->engineClock = (unsigned int)state->bw.dcn.clk.dcfclk_khz; info->memoryClock = (unsigned int)state->bw.dcn.clk.dramclk_khz; info->maxSupportedDppClock = (unsigned int)state->bw.dcn.clk.max_supported_dppclk_khz; info->dppClock = (unsigned int)state->bw.dcn.clk.dppclk_khz; info->socClock = (unsigned int)state->bw.dcn.clk.socclk_khz; info->dcfClockDeepSleep = (unsigned int)state->bw.dcn.clk.dcfclk_deep_sleep_khz; info->fClock = (unsigned int)state->bw.dcn.clk.fclk_khz; info->phyClock = (unsigned int)state->bw.dcn.clk.phyclk_khz; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1