Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 5464 | 51.99% | 15 | 15.00% |
Zeyu Fan | 1999 | 19.02% | 2 | 2.00% |
Charlene Liu | 555 | 5.28% | 8 | 8.00% |
Samson Tam | 517 | 4.92% | 2 | 2.00% |
Eric Yang | 250 | 2.38% | 4 | 4.00% |
Alex Deucher | 225 | 2.14% | 2 | 2.00% |
Hersen Wu | 194 | 1.85% | 6 | 6.00% |
Yongqiang Sun | 192 | 1.83% | 6 | 6.00% |
Andrew Jiang | 152 | 1.45% | 4 | 4.00% |
Bhawanpreet Lakha | 140 | 1.33% | 7 | 7.00% |
John Barberiz | 140 | 1.33% | 3 | 3.00% |
Anthony Koo | 133 | 1.27% | 6 | 6.00% |
Chiawen Huang | 79 | 0.75% | 1 | 1.00% |
Roman Li | 67 | 0.64% | 2 | 2.00% |
David Francis | 57 | 0.54% | 2 | 2.00% |
Martin Tsai | 54 | 0.51% | 2 | 2.00% |
Dmytro Laktyushkin | 51 | 0.49% | 5 | 5.00% |
Andrey Grodzovsky | 49 | 0.47% | 3 | 3.00% |
Wenjing Liu | 39 | 0.37% | 3 | 3.00% |
abdoulaye berthe | 30 | 0.29% | 1 | 1.00% |
Ken Chalmers | 29 | 0.28% | 1 | 1.00% |
Amy Zhang | 25 | 0.24% | 1 | 1.00% |
Nikola Cornij | 23 | 0.22% | 2 | 2.00% |
SivapiriyanKumarasamy | 13 | 0.12% | 1 | 1.00% |
Jerry (Fangzhi) Zuo | 11 | 0.10% | 2 | 2.00% |
Ding Wang | 8 | 0.08% | 1 | 1.00% |
Dave Airlie | 5 | 0.05% | 2 | 2.00% |
Sylvia Tsai | 2 | 0.02% | 1 | 1.00% |
Nicholas Kazlauskas | 2 | 0.02% | 1 | 1.00% |
Shaokun Zhang | 2 | 0.02% | 1 | 1.00% |
Yasir Al Shekerchi | 1 | 0.01% | 1 | 1.00% |
Tony Cheng | 1 | 0.01% | 1 | 1.00% |
Leo (Sunpeng) Li | 1 | 0.01% | 1 | 1.00% |
Total | 10510 | 100 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "atom.h" #include "dm_helpers.h" #include "dc.h" #include "grph_object_id.h" #include "gpio_service_interface.h" #include "core_status.h" #include "dc_link_dp.h" #include "dc_link_ddc.h" #include "link_hwss.h" #include "opp.h" #include "link_encoder.h" #include "hw_sequencer.h" #include "resource.h" #include "abm.h" #include "fixed31_32.h" #include "dpcd_defs.h" #include "dmcu.h" #include "dce/dce_11_0_d.h" #include "dce/dce_11_0_enum.h" #include "dce/dce_11_0_sh_mask.h" #define DC_LOGGER_INIT(logger) #define LINK_INFO(...) \ DC_LOG_HW_HOTPLUG( \ __VA_ARGS__) #define RETIMER_REDRIVER_INFO(...) \ DC_LOG_RETIMER_REDRIVER( \ __VA_ARGS__) /******************************************************************************* * Private structures ******************************************************************************/ enum { LINK_RATE_REF_FREQ_IN_MHZ = 27, PEAK_FACTOR_X1000 = 1006, /* * Some receivers fail to train on first try and are good * on subsequent tries. 2 retries should be plenty. If we * don't have a successful training then we don't expect to * ever get one. */ LINK_TRAINING_MAX_VERIFY_RETRY = 2 }; /******************************************************************************* * Private functions ******************************************************************************/ static void destruct(struct dc_link *link) { int i; if (link->ddc) dal_ddc_service_destroy(&link->ddc); if(link->link_enc) link->link_enc->funcs->destroy(&link->link_enc); if (link->local_sink) dc_sink_release(link->local_sink); for (i = 0; i < link->sink_count; ++i) dc_sink_release(link->remote_sinks[i]); } struct gpio *get_hpd_gpio(struct dc_bios *dcb, struct graphics_object_id link_id, struct gpio_service *gpio_service) { enum bp_result bp_result; struct graphics_object_hpd_info hpd_info; struct gpio_pin_info pin_info; if (dcb->funcs->get_hpd_info(dcb, link_id, &hpd_info) != BP_RESULT_OK) return NULL; bp_result = dcb->funcs->get_gpio_pin_info(dcb, hpd_info.hpd_int_gpio_uid, &pin_info); if (bp_result != BP_RESULT_OK) { ASSERT(bp_result == BP_RESULT_NORECORD); return NULL; } return dal_gpio_service_create_irq( gpio_service, pin_info.offset, pin_info.mask); } /* * Function: program_hpd_filter * * @brief * Programs HPD filter on associated HPD line * * @param [in] delay_on_connect_in_ms: Connect filter timeout * @param [in] delay_on_disconnect_in_ms: Disconnect filter timeout * * @return * true on success, false otherwise */ static bool program_hpd_filter( const struct dc_link *link) { bool result = false; struct gpio *hpd; int delay_on_connect_in_ms = 0; int delay_on_disconnect_in_ms = 0; if (link->is_hpd_filter_disabled) return false; /* Verify feature is supported */ switch (link->connector_signal) { case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: /* Program hpd filter */ delay_on_connect_in_ms = 500; delay_on_disconnect_in_ms = 100; break; case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_DISPLAY_PORT_MST: /* Program hpd filter to allow DP signal to settle */ /* 500: not able to detect MST <-> SST switch as HPD is low for * only 100ms on DELL U2413 * 0: some passive dongle still show aux mode instead of i2c * 20-50:not enough to hide bouncing HPD with passive dongle. * also see intermittent i2c read issues. */ delay_on_connect_in_ms = 80; delay_on_disconnect_in_ms = 0; break; case SIGNAL_TYPE_LVDS: case SIGNAL_TYPE_EDP: default: /* Don't program hpd filter */ return false; } /* Obtain HPD handle */ hpd = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (!hpd) return result; /* Setup HPD filtering */ if (dal_gpio_open(hpd, GPIO_MODE_INTERRUPT) == GPIO_RESULT_OK) { struct gpio_hpd_config config; config.delay_on_connect = delay_on_connect_in_ms; config.delay_on_disconnect = delay_on_disconnect_in_ms; dal_irq_setup_hpd_filter(hpd, &config); dal_gpio_close(hpd); result = true; } else { ASSERT_CRITICAL(false); } /* Release HPD handle */ dal_gpio_destroy_irq(&hpd); return result; } bool dc_link_detect_sink(struct dc_link *link, enum dc_connection_type *type) { uint32_t is_hpd_high = 0; struct gpio *hpd_pin; if (link->connector_signal == SIGNAL_TYPE_LVDS) { *type = dc_connection_single; return true; } /* todo: may need to lock gpio access */ hpd_pin = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (hpd_pin == NULL) goto hpd_gpio_failure; dal_gpio_open(hpd_pin, GPIO_MODE_INTERRUPT); dal_gpio_get_value(hpd_pin, &is_hpd_high); dal_gpio_close(hpd_pin); dal_gpio_destroy_irq(&hpd_pin); if (is_hpd_high) { *type = dc_connection_single; /* TODO: need to do the actual detection */ } else { *type = dc_connection_none; } return true; hpd_gpio_failure: return false; } static enum ddc_transaction_type get_ddc_transaction_type( enum signal_type sink_signal) { enum ddc_transaction_type transaction_type = DDC_TRANSACTION_TYPE_NONE; switch (sink_signal) { case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: case SIGNAL_TYPE_LVDS: case SIGNAL_TYPE_RGB: transaction_type = DDC_TRANSACTION_TYPE_I2C; break; case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_EDP: transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; break; case SIGNAL_TYPE_DISPLAY_PORT_MST: /* MST does not use I2COverAux, but there is the * SPECIAL use case for "immediate dwnstrm device * access" (EPR#370830). */ transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; break; default: break; } return transaction_type; } static enum signal_type get_basic_signal_type( struct graphics_object_id encoder, struct graphics_object_id downstream) { if (downstream.type == OBJECT_TYPE_CONNECTOR) { switch (downstream.id) { case CONNECTOR_ID_SINGLE_LINK_DVII: switch (encoder.id) { case ENCODER_ID_INTERNAL_DAC1: case ENCODER_ID_INTERNAL_KLDSCP_DAC1: case ENCODER_ID_INTERNAL_DAC2: case ENCODER_ID_INTERNAL_KLDSCP_DAC2: return SIGNAL_TYPE_RGB; default: return SIGNAL_TYPE_DVI_SINGLE_LINK; } break; case CONNECTOR_ID_DUAL_LINK_DVII: { switch (encoder.id) { case ENCODER_ID_INTERNAL_DAC1: case ENCODER_ID_INTERNAL_KLDSCP_DAC1: case ENCODER_ID_INTERNAL_DAC2: case ENCODER_ID_INTERNAL_KLDSCP_DAC2: return SIGNAL_TYPE_RGB; default: return SIGNAL_TYPE_DVI_DUAL_LINK; } } break; case CONNECTOR_ID_SINGLE_LINK_DVID: return SIGNAL_TYPE_DVI_SINGLE_LINK; case CONNECTOR_ID_DUAL_LINK_DVID: return SIGNAL_TYPE_DVI_DUAL_LINK; case CONNECTOR_ID_VGA: return SIGNAL_TYPE_RGB; case CONNECTOR_ID_HDMI_TYPE_A: return SIGNAL_TYPE_HDMI_TYPE_A; case CONNECTOR_ID_LVDS: return SIGNAL_TYPE_LVDS; case CONNECTOR_ID_DISPLAY_PORT: return SIGNAL_TYPE_DISPLAY_PORT; case CONNECTOR_ID_EDP: return SIGNAL_TYPE_EDP; default: return SIGNAL_TYPE_NONE; } } else if (downstream.type == OBJECT_TYPE_ENCODER) { switch (downstream.id) { case ENCODER_ID_EXTERNAL_NUTMEG: case ENCODER_ID_EXTERNAL_TRAVIS: return SIGNAL_TYPE_DISPLAY_PORT; default: return SIGNAL_TYPE_NONE; } } return SIGNAL_TYPE_NONE; } /* * @brief * Check whether there is a dongle on DP connector */ bool dc_link_is_dp_sink_present(struct dc_link *link) { enum gpio_result gpio_result; uint32_t clock_pin = 0; struct ddc *ddc; enum connector_id connector_id = dal_graphics_object_id_get_connector_id(link->link_id); bool present = ((connector_id == CONNECTOR_ID_DISPLAY_PORT) || (connector_id == CONNECTOR_ID_EDP)); ddc = dal_ddc_service_get_ddc_pin(link->ddc); if (!ddc) { BREAK_TO_DEBUGGER(); return present; } /* Open GPIO and set it to I2C mode */ /* Note: this GpioMode_Input will be converted * to GpioConfigType_I2cAuxDualMode in GPIO component, * which indicates we need additional delay */ if (GPIO_RESULT_OK != dal_ddc_open( ddc, GPIO_MODE_INPUT, GPIO_DDC_CONFIG_TYPE_MODE_I2C)) { dal_gpio_destroy_ddc(&ddc); return present; } /* Read GPIO: DP sink is present if both clock and data pins are zero */ /* [anaumov] in DAL2, there was no check for GPIO failure */ gpio_result = dal_gpio_get_value(ddc->pin_clock, &clock_pin); ASSERT(gpio_result == GPIO_RESULT_OK); present = (gpio_result == GPIO_RESULT_OK) && !clock_pin; dal_ddc_close(ddc); return present; } /* * @brief * Detect output sink type */ static enum signal_type link_detect_sink( struct dc_link *link, enum dc_detect_reason reason) { enum signal_type result = get_basic_signal_type( link->link_enc->id, link->link_id); /* Internal digital encoder will detect only dongles * that require digital signal */ /* Detection mechanism is different * for different native connectors. * LVDS connector supports only LVDS signal; * PCIE is a bus slot, the actual connector needs to be detected first; * eDP connector supports only eDP signal; * HDMI should check straps for audio */ /* PCIE detects the actual connector on add-on board */ if (link->link_id.id == CONNECTOR_ID_PCIE) { /* ZAZTODO implement PCIE add-on card detection */ } switch (link->link_id.id) { case CONNECTOR_ID_HDMI_TYPE_A: { /* check audio support: * if native HDMI is not supported, switch to DVI */ struct audio_support *aud_support = &link->dc->res_pool->audio_support; if (!aud_support->hdmi_audio_native) if (link->link_id.id == CONNECTOR_ID_HDMI_TYPE_A) result = SIGNAL_TYPE_DVI_SINGLE_LINK; } break; case CONNECTOR_ID_DISPLAY_PORT: { /* DP HPD short pulse. Passive DP dongle will not * have short pulse */ if (reason != DETECT_REASON_HPDRX) { /* Check whether DP signal detected: if not - * we assume signal is DVI; it could be corrected * to HDMI after dongle detection */ if (!dm_helpers_is_dp_sink_present(link)) result = SIGNAL_TYPE_DVI_SINGLE_LINK; } } break; default: break; } return result; } static enum signal_type decide_signal_from_strap_and_dongle_type( enum display_dongle_type dongle_type, struct audio_support *audio_support) { enum signal_type signal = SIGNAL_TYPE_NONE; switch (dongle_type) { case DISPLAY_DONGLE_DP_HDMI_DONGLE: if (audio_support->hdmi_audio_on_dongle) signal = SIGNAL_TYPE_HDMI_TYPE_A; else signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; case DISPLAY_DONGLE_DP_DVI_DONGLE: signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; case DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE: if (audio_support->hdmi_audio_native) signal = SIGNAL_TYPE_HDMI_TYPE_A; else signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; default: signal = SIGNAL_TYPE_NONE; break; } return signal; } static enum signal_type dp_passive_dongle_detection( struct ddc_service *ddc, struct display_sink_capability *sink_cap, struct audio_support *audio_support) { dal_ddc_service_i2c_query_dp_dual_mode_adaptor( ddc, sink_cap); return decide_signal_from_strap_and_dongle_type( sink_cap->dongle_type, audio_support); } static void link_disconnect_sink(struct dc_link *link) { if (link->local_sink) { dc_sink_release(link->local_sink); link->local_sink = NULL; } link->dpcd_sink_count = 0; } static void link_disconnect_remap(struct dc_sink *prev_sink, struct dc_link *link) { dc_sink_release(link->local_sink); link->local_sink = prev_sink; } static bool detect_dp( struct dc_link *link, struct display_sink_capability *sink_caps, bool *converter_disable_audio, struct audio_support *audio_support, enum dc_detect_reason reason) { bool boot = false; sink_caps->signal = link_detect_sink(link, reason); sink_caps->transaction_type = get_ddc_transaction_type(sink_caps->signal); if (sink_caps->transaction_type == DDC_TRANSACTION_TYPE_I2C_OVER_AUX) { sink_caps->signal = SIGNAL_TYPE_DISPLAY_PORT; if (!detect_dp_sink_caps(link)) return false; if (is_mst_supported(link)) { sink_caps->signal = SIGNAL_TYPE_DISPLAY_PORT_MST; link->type = dc_connection_mst_branch; dal_ddc_service_set_transaction_type( link->ddc, sink_caps->transaction_type); /* * This call will initiate MST topology discovery. Which * will detect MST ports and add new DRM connector DRM * framework. Then read EDID via remote i2c over aux. In * the end, will notify DRM detect result and save EDID * into DRM framework. * * .detect is called by .fill_modes. * .fill_modes is called by user mode ioctl * DRM_IOCTL_MODE_GETCONNECTOR. * * .get_modes is called by .fill_modes. * * call .get_modes, AMDGPU DM implementation will create * new dc_sink and add to dc_link. For long HPD plug * in/out, MST has its own handle. * * Therefore, just after dc_create, link->sink is not * created for MST until user mode app calls * DRM_IOCTL_MODE_GETCONNECTOR. * * Need check ->sink usages in case ->sink = NULL * TODO: s3 resume check */ if (reason == DETECT_REASON_BOOT) boot = true; dm_helpers_dp_update_branch_info( link->ctx, link); if (!dm_helpers_dp_mst_start_top_mgr( link->ctx, link, boot)) { /* MST not supported */ link->type = dc_connection_single; sink_caps->signal = SIGNAL_TYPE_DISPLAY_PORT; } } if (link->type != dc_connection_mst_branch && is_dp_active_dongle(link)) { /* DP active dongles */ link->type = dc_connection_active_dongle; if (!link->dpcd_caps.sink_count.bits.SINK_COUNT) { /* * active dongle unplug processing for short irq */ link_disconnect_sink(link); return true; } if (link->dpcd_caps.dongle_type != DISPLAY_DONGLE_DP_HDMI_CONVERTER) *converter_disable_audio = true; } } else { /* DP passive dongles */ sink_caps->signal = dp_passive_dongle_detection(link->ddc, sink_caps, audio_support); } return true; } static bool is_same_edid(struct dc_edid *old_edid, struct dc_edid *new_edid) { if (old_edid->length != new_edid->length) return false; if (new_edid->length == 0) return false; return (memcmp(old_edid->raw_edid, new_edid->raw_edid, new_edid->length) == 0); } bool dc_link_detect(struct dc_link *link, enum dc_detect_reason reason) { struct dc_sink_init_data sink_init_data = { 0 }; struct display_sink_capability sink_caps = { 0 }; uint8_t i; bool converter_disable_audio = false; struct audio_support *aud_support = &link->dc->res_pool->audio_support; bool same_edid = false; enum dc_edid_status edid_status; struct dc_context *dc_ctx = link->ctx; struct dc_sink *sink = NULL; struct dc_sink *prev_sink = NULL; struct dpcd_caps prev_dpcd_caps; bool same_dpcd = true; enum dc_connection_type new_connection_type = dc_connection_none; DC_LOGGER_INIT(link->ctx->logger); if (link->connector_signal == SIGNAL_TYPE_VIRTUAL) return false; if (false == dc_link_detect_sink(link, &new_connection_type)) { BREAK_TO_DEBUGGER(); return false; } if (link->connector_signal == SIGNAL_TYPE_EDP && link->local_sink) return true; if (link->connector_signal == SIGNAL_TYPE_LVDS && link->local_sink) return true; prev_sink = link->local_sink; if (prev_sink != NULL) { dc_sink_retain(prev_sink); memcpy(&prev_dpcd_caps, &link->dpcd_caps, sizeof(struct dpcd_caps)); } link_disconnect_sink(link); if (new_connection_type != dc_connection_none) { link->type = new_connection_type; /* From Disconnected-to-Connected. */ switch (link->connector_signal) { case SIGNAL_TYPE_HDMI_TYPE_A: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; if (aud_support->hdmi_audio_native) sink_caps.signal = SIGNAL_TYPE_HDMI_TYPE_A; else sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; } case SIGNAL_TYPE_DVI_SINGLE_LINK: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; } case SIGNAL_TYPE_DVI_DUAL_LINK: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_DVI_DUAL_LINK; break; } case SIGNAL_TYPE_LVDS: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_LVDS; break; } case SIGNAL_TYPE_EDP: { detect_edp_sink_caps(link); sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; sink_caps.signal = SIGNAL_TYPE_EDP; break; } case SIGNAL_TYPE_DISPLAY_PORT: { if (!detect_dp( link, &sink_caps, &converter_disable_audio, aud_support, reason)) { if (prev_sink != NULL) dc_sink_release(prev_sink); return false; } // Check if dpcp block is the same if (prev_sink != NULL) { if (memcmp(&link->dpcd_caps, &prev_dpcd_caps, sizeof(struct dpcd_caps))) same_dpcd = false; } /* Active dongle downstream unplug */ if (link->type == dc_connection_active_dongle && link->dpcd_caps.sink_count. bits.SINK_COUNT == 0) { if (prev_sink != NULL) dc_sink_release(prev_sink); return true; } if (link->type == dc_connection_mst_branch) { LINK_INFO("link=%d, mst branch is now Connected\n", link->link_index); /* Need to setup mst link_cap struct here * otherwise dc_link_detect() will leave mst link_cap * empty which leads to allocate_mst_payload() has "0" * pbn_per_slot value leading to exception on dc_fixpt_div() */ link->verified_link_cap = link->reported_link_cap; if (prev_sink != NULL) dc_sink_release(prev_sink); return false; } break; } default: DC_ERROR("Invalid connector type! signal:%d\n", link->connector_signal); if (prev_sink != NULL) dc_sink_release(prev_sink); return false; } /* switch() */ if (link->dpcd_caps.sink_count.bits.SINK_COUNT) link->dpcd_sink_count = link->dpcd_caps.sink_count. bits.SINK_COUNT; else link->dpcd_sink_count = 1; dal_ddc_service_set_transaction_type( link->ddc, sink_caps.transaction_type); link->aux_mode = dal_ddc_service_is_in_aux_transaction_mode( link->ddc); sink_init_data.link = link; sink_init_data.sink_signal = sink_caps.signal; sink = dc_sink_create(&sink_init_data); if (!sink) { DC_ERROR("Failed to create sink!\n"); if (prev_sink != NULL) dc_sink_release(prev_sink); return false; } sink->dongle_max_pix_clk = sink_caps.max_hdmi_pixel_clock; sink->converter_disable_audio = converter_disable_audio; link->local_sink = sink; edid_status = dm_helpers_read_local_edid( link->ctx, link, sink); switch (edid_status) { case EDID_BAD_CHECKSUM: DC_LOG_ERROR("EDID checksum invalid.\n"); break; case EDID_NO_RESPONSE: DC_LOG_ERROR("No EDID read.\n"); /* * Abort detection for non-DP connectors if we have * no EDID * * DP needs to report as connected if HDP is high * even if we have no EDID in order to go to * fail-safe mode */ if (dc_is_hdmi_signal(link->connector_signal) || dc_is_dvi_signal(link->connector_signal)) { if (prev_sink != NULL) dc_sink_release(prev_sink); return false; } default: break; } // Check if edid is the same if ((prev_sink != NULL) && ((edid_status == EDID_THE_SAME) || (edid_status == EDID_OK))) same_edid = is_same_edid(&prev_sink->dc_edid, &sink->dc_edid); if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT && sink_caps.transaction_type == DDC_TRANSACTION_TYPE_I2C_OVER_AUX && reason != DETECT_REASON_HPDRX) { /* * TODO debug why Dell 2413 doesn't like * two link trainings */ /* deal with non-mst cases */ for (i = 0; i < LINK_TRAINING_MAX_VERIFY_RETRY; i++) { int fail_count = 0; dp_verify_link_cap(link, &link->reported_link_cap, &fail_count); if (fail_count == 0) break; } } else { // If edid is the same, then discard new sink and revert back to original sink if (same_edid) { link_disconnect_remap(prev_sink, link); sink = prev_sink; prev_sink = NULL; } } /* HDMI-DVI Dongle */ if (sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A && !sink->edid_caps.edid_hdmi) sink->sink_signal = SIGNAL_TYPE_DVI_SINGLE_LINK; /* Connectivity log: detection */ for (i = 0; i < sink->dc_edid.length / EDID_BLOCK_SIZE; i++) { CONN_DATA_DETECT(link, &sink->dc_edid.raw_edid[i * EDID_BLOCK_SIZE], EDID_BLOCK_SIZE, "%s: [Block %d] ", sink->edid_caps.display_name, i); } DC_LOG_DETECTION_EDID_PARSER("%s: " "manufacturer_id = %X, " "product_id = %X, " "serial_number = %X, " "manufacture_week = %d, " "manufacture_year = %d, " "display_name = %s, " "speaker_flag = %d, " "audio_mode_count = %d\n", __func__, sink->edid_caps.manufacturer_id, sink->edid_caps.product_id, sink->edid_caps.serial_number, sink->edid_caps.manufacture_week, sink->edid_caps.manufacture_year, sink->edid_caps.display_name, sink->edid_caps.speaker_flags, sink->edid_caps.audio_mode_count); for (i = 0; i < sink->edid_caps.audio_mode_count; i++) { DC_LOG_DETECTION_EDID_PARSER("%s: mode number = %d, " "format_code = %d, " "channel_count = %d, " "sample_rate = %d, " "sample_size = %d\n", __func__, i, sink->edid_caps.audio_modes[i].format_code, sink->edid_caps.audio_modes[i].channel_count, sink->edid_caps.audio_modes[i].sample_rate, sink->edid_caps.audio_modes[i].sample_size); } } else { /* From Connected-to-Disconnected. */ if (link->type == dc_connection_mst_branch) { LINK_INFO("link=%d, mst branch is now Disconnected\n", link->link_index); dm_helpers_dp_mst_stop_top_mgr(link->ctx, link); link->mst_stream_alloc_table.stream_count = 0; memset(link->mst_stream_alloc_table.stream_allocations, 0, sizeof(link->mst_stream_alloc_table.stream_allocations)); } link->type = dc_connection_none; sink_caps.signal = SIGNAL_TYPE_NONE; } LINK_INFO("link=%d, dc_sink_in=%p is now %s prev_sink=%p dpcd same=%d edid same=%d\n", link->link_index, sink, (sink_caps.signal == SIGNAL_TYPE_NONE ? "Disconnected":"Connected"), prev_sink, same_dpcd, same_edid); if (prev_sink != NULL) dc_sink_release(prev_sink); return true; } bool dc_link_get_hpd_state(struct dc_link *dc_link) { struct gpio *hpd_pin; uint32_t state; hpd_pin = get_hpd_gpio(dc_link->ctx->dc_bios, dc_link->link_id, dc_link->ctx->gpio_service); if (hpd_pin == NULL) ASSERT(false); dal_gpio_open(hpd_pin, GPIO_MODE_INTERRUPT); dal_gpio_get_value(hpd_pin, &state); dal_gpio_close(hpd_pin); dal_gpio_destroy_irq(&hpd_pin); return state; } static enum hpd_source_id get_hpd_line( struct dc_link *link) { struct gpio *hpd; enum hpd_source_id hpd_id = HPD_SOURCEID_UNKNOWN; hpd = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (hpd) { switch (dal_irq_get_source(hpd)) { case DC_IRQ_SOURCE_HPD1: hpd_id = HPD_SOURCEID1; break; case DC_IRQ_SOURCE_HPD2: hpd_id = HPD_SOURCEID2; break; case DC_IRQ_SOURCE_HPD3: hpd_id = HPD_SOURCEID3; break; case DC_IRQ_SOURCE_HPD4: hpd_id = HPD_SOURCEID4; break; case DC_IRQ_SOURCE_HPD5: hpd_id = HPD_SOURCEID5; break; case DC_IRQ_SOURCE_HPD6: hpd_id = HPD_SOURCEID6; break; default: BREAK_TO_DEBUGGER(); break; } dal_gpio_destroy_irq(&hpd); } return hpd_id; } static enum channel_id get_ddc_line(struct dc_link *link) { struct ddc *ddc; enum channel_id channel = CHANNEL_ID_UNKNOWN; ddc = dal_ddc_service_get_ddc_pin(link->ddc); if (ddc) { switch (dal_ddc_get_line(ddc)) { case GPIO_DDC_LINE_DDC1: channel = CHANNEL_ID_DDC1; break; case GPIO_DDC_LINE_DDC2: channel = CHANNEL_ID_DDC2; break; case GPIO_DDC_LINE_DDC3: channel = CHANNEL_ID_DDC3; break; case GPIO_DDC_LINE_DDC4: channel = CHANNEL_ID_DDC4; break; case GPIO_DDC_LINE_DDC5: channel = CHANNEL_ID_DDC5; break; case GPIO_DDC_LINE_DDC6: channel = CHANNEL_ID_DDC6; break; case GPIO_DDC_LINE_DDC_VGA: channel = CHANNEL_ID_DDC_VGA; break; case GPIO_DDC_LINE_I2C_PAD: channel = CHANNEL_ID_I2C_PAD; break; default: BREAK_TO_DEBUGGER(); break; } } return channel; } static enum transmitter translate_encoder_to_transmitter( struct graphics_object_id encoder) { switch (encoder.id) { case ENCODER_ID_INTERNAL_UNIPHY: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_A; case ENUM_ID_2: return TRANSMITTER_UNIPHY_B; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_INTERNAL_UNIPHY1: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_C; case ENUM_ID_2: return TRANSMITTER_UNIPHY_D; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_INTERNAL_UNIPHY2: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_E; case ENUM_ID_2: return TRANSMITTER_UNIPHY_F; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_INTERNAL_UNIPHY3: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_G; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_EXTERNAL_NUTMEG: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_NUTMEG_CRT; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_EXTERNAL_TRAVIS: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_TRAVIS_CRT; case ENUM_ID_2: return TRANSMITTER_TRAVIS_LCD; default: return TRANSMITTER_UNKNOWN; } break; default: return TRANSMITTER_UNKNOWN; } } static bool construct( struct dc_link *link, const struct link_init_data *init_params) { uint8_t i; struct gpio *hpd_gpio = NULL; struct ddc_service_init_data ddc_service_init_data = { { 0 } }; struct dc_context *dc_ctx = init_params->ctx; struct encoder_init_data enc_init_data = { 0 }; struct integrated_info info = {{{ 0 }}}; struct dc_bios *bios = init_params->dc->ctx->dc_bios; const struct dc_vbios_funcs *bp_funcs = bios->funcs; DC_LOGGER_INIT(dc_ctx->logger); link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; link->irq_source_hpd_rx = DC_IRQ_SOURCE_INVALID; link->link_status.dpcd_caps = &link->dpcd_caps; link->dc = init_params->dc; link->ctx = dc_ctx; link->link_index = init_params->link_index; link->link_id = bios->funcs->get_connector_id(bios, init_params->connector_index); if (link->link_id.type != OBJECT_TYPE_CONNECTOR) { dm_error("%s: Invalid Connector ObjectID from Adapter Service for connector index:%d! type %d expected %d\n", __func__, init_params->connector_index, link->link_id.type, OBJECT_TYPE_CONNECTOR); goto create_fail; } if (link->dc->res_pool->funcs->link_init) link->dc->res_pool->funcs->link_init(link); hpd_gpio = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (hpd_gpio != NULL) link->irq_source_hpd = dal_irq_get_source(hpd_gpio); switch (link->link_id.id) { case CONNECTOR_ID_HDMI_TYPE_A: link->connector_signal = SIGNAL_TYPE_HDMI_TYPE_A; break; case CONNECTOR_ID_SINGLE_LINK_DVID: case CONNECTOR_ID_SINGLE_LINK_DVII: link->connector_signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; case CONNECTOR_ID_DUAL_LINK_DVID: case CONNECTOR_ID_DUAL_LINK_DVII: link->connector_signal = SIGNAL_TYPE_DVI_DUAL_LINK; break; case CONNECTOR_ID_DISPLAY_PORT: link->connector_signal = SIGNAL_TYPE_DISPLAY_PORT; if (hpd_gpio != NULL) link->irq_source_hpd_rx = dal_irq_get_rx_source(hpd_gpio); break; case CONNECTOR_ID_EDP: link->connector_signal = SIGNAL_TYPE_EDP; if (hpd_gpio != NULL) { link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; link->irq_source_hpd_rx = dal_irq_get_rx_source(hpd_gpio); } break; case CONNECTOR_ID_LVDS: link->connector_signal = SIGNAL_TYPE_LVDS; break; default: DC_LOG_WARNING("Unsupported Connector type:%d!\n", link->link_id.id); goto create_fail; } if (hpd_gpio != NULL) { dal_gpio_destroy_irq(&hpd_gpio); hpd_gpio = NULL; } /* TODO: #DAL3 Implement id to str function.*/ LINK_INFO("Connector[%d] description:" "signal %d\n", init_params->connector_index, link->connector_signal); ddc_service_init_data.ctx = link->ctx; ddc_service_init_data.id = link->link_id; ddc_service_init_data.link = link; link->ddc = dal_ddc_service_create(&ddc_service_init_data); if (link->ddc == NULL) { DC_ERROR("Failed to create ddc_service!\n"); goto ddc_create_fail; } link->ddc_hw_inst = dal_ddc_get_line( dal_ddc_service_get_ddc_pin(link->ddc)); enc_init_data.ctx = dc_ctx; bp_funcs->get_src_obj(dc_ctx->dc_bios, link->link_id, 0, &enc_init_data.encoder); enc_init_data.connector = link->link_id; enc_init_data.channel = get_ddc_line(link); enc_init_data.hpd_source = get_hpd_line(link); link->hpd_src = enc_init_data.hpd_source; enc_init_data.transmitter = translate_encoder_to_transmitter(enc_init_data.encoder); link->link_enc = link->dc->res_pool->funcs->link_enc_create( &enc_init_data); if( link->link_enc == NULL) { DC_ERROR("Failed to create link encoder!\n"); goto link_enc_create_fail; } link->link_enc_hw_inst = link->link_enc->transmitter; for (i = 0; i < 4; i++) { if (BP_RESULT_OK != bp_funcs->get_device_tag(dc_ctx->dc_bios, link->link_id, i, &link->device_tag)) { DC_ERROR("Failed to find device tag!\n"); goto device_tag_fail; } /* Look for device tag that matches connector signal, * CRT for rgb, LCD for other supported signal tyes */ if (!bp_funcs->is_device_id_supported(dc_ctx->dc_bios, link->device_tag.dev_id)) continue; if (link->device_tag.dev_id.device_type == DEVICE_TYPE_CRT && link->connector_signal != SIGNAL_TYPE_RGB) continue; if (link->device_tag.dev_id.device_type == DEVICE_TYPE_LCD && link->connector_signal == SIGNAL_TYPE_RGB) continue; break; } if (bios->integrated_info) info = *bios->integrated_info; /* Look for channel mapping corresponding to connector and device tag */ for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; i++) { struct external_display_path *path = &info.ext_disp_conn_info.path[i]; if (path->device_connector_id.enum_id == link->link_id.enum_id && path->device_connector_id.id == link->link_id.id && path->device_connector_id.type == link->link_id.type) { if (link->device_tag.acpi_device != 0 && path->device_acpi_enum == link->device_tag.acpi_device) { link->ddi_channel_mapping = path->channel_mapping; link->chip_caps = path->caps; } else if (path->device_tag == link->device_tag.dev_id.raw_device_tag) { link->ddi_channel_mapping = path->channel_mapping; link->chip_caps = path->caps; } break; } } /* * TODO check if GPIO programmed correctly * * If GPIO isn't programmed correctly HPD might not rise or drain * fast enough, leading to bounces. */ program_hpd_filter(link); return true; device_tag_fail: link->link_enc->funcs->destroy(&link->link_enc); link_enc_create_fail: dal_ddc_service_destroy(&link->ddc); ddc_create_fail: create_fail: if (hpd_gpio != NULL) { dal_gpio_destroy_irq(&hpd_gpio); } return false; } /******************************************************************************* * Public functions ******************************************************************************/ struct dc_link *link_create(const struct link_init_data *init_params) { struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); if (NULL == link) goto alloc_fail; if (false == construct(link, init_params)) goto construct_fail; return link; construct_fail: kfree(link); alloc_fail: return NULL; } void link_destroy(struct dc_link **link) { destruct(*link); kfree(*link); *link = NULL; } static void dpcd_configure_panel_mode( struct dc_link *link, enum dp_panel_mode panel_mode) { union dpcd_edp_config edp_config_set; bool panel_mode_edp = false; DC_LOGGER_INIT(link->ctx->logger); memset(&edp_config_set, '\0', sizeof(union dpcd_edp_config)); if (DP_PANEL_MODE_DEFAULT != panel_mode) { switch (panel_mode) { case DP_PANEL_MODE_EDP: case DP_PANEL_MODE_SPECIAL: panel_mode_edp = true; break; default: break; } /*set edp panel mode in receiver*/ core_link_read_dpcd( link, DP_EDP_CONFIGURATION_SET, &edp_config_set.raw, sizeof(edp_config_set.raw)); if (edp_config_set.bits.PANEL_MODE_EDP != panel_mode_edp) { enum ddc_result result = DDC_RESULT_UNKNOWN; edp_config_set.bits.PANEL_MODE_EDP = panel_mode_edp; result = core_link_write_dpcd( link, DP_EDP_CONFIGURATION_SET, &edp_config_set.raw, sizeof(edp_config_set.raw)); ASSERT(result == DDC_RESULT_SUCESSFULL); } } DC_LOG_DETECTION_DP_CAPS("Link: %d eDP panel mode supported: %d " "eDP panel mode enabled: %d \n", link->link_index, link->dpcd_caps.panel_mode_edp, panel_mode_edp); } static void enable_stream_features(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; union down_spread_ctrl old_downspread; union down_spread_ctrl new_downspread; core_link_read_dpcd(link, DP_DOWNSPREAD_CTRL, &old_downspread.raw, sizeof(old_downspread)); new_downspread.raw = old_downspread.raw; new_downspread.bits.IGNORE_MSA_TIMING_PARAM = (stream->ignore_msa_timing_param) ? 1 : 0; if (new_downspread.raw != old_downspread.raw) { core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL, &new_downspread.raw, sizeof(new_downspread)); } } static enum dc_status enable_link_dp( struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; enum dc_status status; bool skip_video_pattern; struct dc_link *link = stream->sink->link; struct dc_link_settings link_settings = {0}; enum dp_panel_mode panel_mode; enum dc_link_rate max_link_rate = LINK_RATE_HIGH2; /* get link settings for video mode timing */ decide_link_settings(stream, &link_settings); /* raise clock state for HBR3 if required. Confirmed with HW DCE/DPCS * logic for HBR3 still needs Nominal (0.8V) on VDDC rail */ if (link->link_enc->features.flags.bits.IS_HBR3_CAPABLE) max_link_rate = LINK_RATE_HIGH3; if (link_settings.link_rate == max_link_rate) { struct dc_clocks clocks = state->bw.dcn.clk; /* dce/dcn compat, do not update dispclk */ clocks.dispclk_khz = 0; /* 27mhz = 27000000hz= 27000khz */ clocks.phyclk_khz = link_settings.link_rate * 27000; state->dis_clk->funcs->update_clocks( state->dis_clk, &clocks, false); } dp_enable_link_phy( link, pipe_ctx->stream->signal, pipe_ctx->clock_source->id, &link_settings); if (stream->sink->edid_caps.panel_patch.dppowerup_delay > 0) { int delay_dp_power_up_in_ms = stream->sink->edid_caps.panel_patch.dppowerup_delay; msleep(delay_dp_power_up_in_ms); } panel_mode = dp_get_panel_mode(link); dpcd_configure_panel_mode(link, panel_mode); skip_video_pattern = true; if (link_settings.link_rate == LINK_RATE_LOW) skip_video_pattern = false; if (perform_link_training_with_retries( link, &link_settings, skip_video_pattern, LINK_TRAINING_ATTEMPTS)) { link->cur_link_settings = link_settings; status = DC_OK; } else status = DC_FAIL_DP_LINK_TRAINING; enable_stream_features(pipe_ctx); return status; } static enum dc_status enable_link_edp( struct dc_state *state, struct pipe_ctx *pipe_ctx) { enum dc_status status; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; /*in case it is not on*/ link->dc->hwss.edp_power_control(link, true); link->dc->hwss.edp_wait_for_hpd_ready(link, true); status = enable_link_dp(state, pipe_ctx); return status; } static enum dc_status enable_link_dp_mst( struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc_link *link = pipe_ctx->stream->sink->link; /* sink signal type after MST branch is MST. Multiple MST sinks * share one link. Link DP PHY is enable or training only once. */ if (link->cur_link_settings.lane_count != LANE_COUNT_UNKNOWN) return DC_OK; /* clear payload table */ dm_helpers_dp_mst_clear_payload_allocation_table(link->ctx, link); /* set the sink to MST mode before enabling the link */ dp_enable_mst_on_sink(link, true); return enable_link_dp(state, pipe_ctx); } static bool get_ext_hdmi_settings(struct pipe_ctx *pipe_ctx, enum engine_id eng_id, struct ext_hdmi_settings *settings) { bool result = false; int i = 0; struct integrated_info *integrated_info = pipe_ctx->stream->ctx->dc_bios->integrated_info; if (integrated_info == NULL) return false; /* * Get retimer settings from sbios for passing SI eye test for DCE11 * The setting values are varied based on board revision and port id * Therefore the setting values of each ports is passed by sbios. */ // Check if current bios contains ext Hdmi settings if (integrated_info->gpu_cap_info & 0x20) { switch (eng_id) { case ENGINE_ID_DIGA: settings->slv_addr = integrated_info->dp0_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp0_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp0_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp0_ext_hdmi_reg_settings, sizeof(integrated_info->dp0_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp0_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp0_ext_hdmi_6g_reg_settings)); result = true; break; case ENGINE_ID_DIGB: settings->slv_addr = integrated_info->dp1_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp1_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp1_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp1_ext_hdmi_reg_settings, sizeof(integrated_info->dp1_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp1_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp1_ext_hdmi_6g_reg_settings)); result = true; break; case ENGINE_ID_DIGC: settings->slv_addr = integrated_info->dp2_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp2_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp2_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp2_ext_hdmi_reg_settings, sizeof(integrated_info->dp2_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp2_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp2_ext_hdmi_6g_reg_settings)); result = true; break; case ENGINE_ID_DIGD: settings->slv_addr = integrated_info->dp3_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp3_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp3_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp3_ext_hdmi_reg_settings, sizeof(integrated_info->dp3_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp3_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp3_ext_hdmi_6g_reg_settings)); result = true; break; default: break; } if (result == true) { // Validate settings from bios integrated info table if (settings->slv_addr == 0) return false; if (settings->reg_num > 9) return false; if (settings->reg_num_6g > 3) return false; for (i = 0; i < settings->reg_num; i++) { if (settings->reg_settings[i].i2c_reg_index > 0x20) return false; } for (i = 0; i < settings->reg_num_6g; i++) { if (settings->reg_settings_6g[i].i2c_reg_index > 0x20) return false; } } } return result; } static bool i2c_write(struct pipe_ctx *pipe_ctx, uint8_t address, uint8_t *buffer, uint32_t length) { struct i2c_command cmd = {0}; struct i2c_payload payload = {0}; memset(&payload, 0, sizeof(payload)); memset(&cmd, 0, sizeof(cmd)); cmd.number_of_payloads = 1; cmd.engine = I2C_COMMAND_ENGINE_DEFAULT; cmd.speed = pipe_ctx->stream->ctx->dc->caps.i2c_speed_in_khz; payload.address = address; payload.data = buffer; payload.length = length; payload.write = true; cmd.payloads = &payload; if (dm_helpers_submit_i2c(pipe_ctx->stream->ctx, pipe_ctx->stream->sink->link, &cmd)) return true; return false; } static void write_i2c_retimer_setting( struct pipe_ctx *pipe_ctx, bool is_vga_mode, bool is_over_340mhz, struct ext_hdmi_settings *settings) { uint8_t slave_address = (settings->slv_addr >> 1); uint8_t buffer[2]; const uint8_t apply_rx_tx_change = 0x4; uint8_t offset = 0xA; uint8_t value = 0; int i = 0; bool i2c_success = false; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); memset(&buffer, 0, sizeof(buffer)); /* Start Ext-Hdmi programming*/ for (i = 0; i < settings->reg_num; i++) { /* Apply 3G settings */ if (settings->reg_settings[i].i2c_reg_index <= 0x20) { buffer[0] = settings->reg_settings[i].i2c_reg_index; buffer[1] = settings->reg_settings[i].i2c_reg_val; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Based on DP159 specs, APPLY_RX_TX_CHANGE bit in 0x0A * needs to be set to 1 on every 0xA-0xC write. */ if (settings->reg_settings[i].i2c_reg_index == 0xA || settings->reg_settings[i].i2c_reg_index == 0xB || settings->reg_settings[i].i2c_reg_index == 0xC) { /* Query current value from offset 0xA */ if (settings->reg_settings[i].i2c_reg_index == 0xA) value = settings->reg_settings[i].i2c_reg_val; else { i2c_success = dal_ddc_service_query_ddc_data( pipe_ctx->stream->sink->link->ddc, slave_address, &offset, 1, &value, 1); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } buffer[0] = offset; /* Set APPLY_RX_TX_CHANGE bit to 1 */ buffer[1] = value | apply_rx_tx_change; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } } } /* Apply 3G settings */ if (is_over_340mhz) { for (i = 0; i < settings->reg_num_6g; i++) { /* Apply 3G settings */ if (settings->reg_settings[i].i2c_reg_index <= 0x20) { buffer[0] = settings->reg_settings_6g[i].i2c_reg_index; buffer[1] = settings->reg_settings_6g[i].i2c_reg_val; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("above 340Mhz: retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Based on DP159 specs, APPLY_RX_TX_CHANGE bit in 0x0A * needs to be set to 1 on every 0xA-0xC write. */ if (settings->reg_settings_6g[i].i2c_reg_index == 0xA || settings->reg_settings_6g[i].i2c_reg_index == 0xB || settings->reg_settings_6g[i].i2c_reg_index == 0xC) { /* Query current value from offset 0xA */ if (settings->reg_settings_6g[i].i2c_reg_index == 0xA) value = settings->reg_settings_6g[i].i2c_reg_val; else { i2c_success = dal_ddc_service_query_ddc_data( pipe_ctx->stream->sink->link->ddc, slave_address, &offset, 1, &value, 1); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } buffer[0] = offset; /* Set APPLY_RX_TX_CHANGE bit to 1 */ buffer[1] = value | apply_rx_tx_change; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } } } } if (is_vga_mode) { /* Program additional settings if using 640x480 resolution */ /* Write offset 0xFF to 0x01 */ buffer[0] = 0xff; buffer[1] = 0x01; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x00 to 0x23 */ buffer[0] = 0x00; buffer[1] = 0x23; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0xff to 0x00 */ buffer[0] = 0xff; buffer[1] = 0x00; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } } static void write_i2c_default_retimer_setting( struct pipe_ctx *pipe_ctx, bool is_vga_mode, bool is_over_340mhz) { uint8_t slave_address = (0xBA >> 1); uint8_t buffer[2]; bool i2c_success = false; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); memset(&buffer, 0, sizeof(buffer)); /* Program Slave Address for tuning single integrity */ /* Write offset 0x0A to 0x13 */ buffer[0] = 0x0A; buffer[1] = 0x13; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer writes default setting to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x0A to 0x17 */ buffer[0] = 0x0A; buffer[1] = 0x17; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x0B to 0xDA or 0xD8 */ buffer[0] = 0x0B; buffer[1] = is_over_340mhz ? 0xDA : 0xD8; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x0A to 0x17 */ buffer[0] = 0x0A; buffer[1] = 0x17; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x0C to 0x1D or 0x91 */ buffer[0] = 0x0C; buffer[1] = is_over_340mhz ? 0x1D : 0x91; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x0A to 0x17 */ buffer[0] = 0x0A; buffer[1] = 0x17; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); if (is_vga_mode) { /* Program additional settings if using 640x480 resolution */ /* Write offset 0xFF to 0x01 */ buffer[0] = 0xff; buffer[1] = 0x01; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0x00 to 0x23 */ buffer[0] = 0x00; buffer[1] = 0x23; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); /* Write offset 0xff to 0x00 */ buffer[0] = 0xff; buffer[1] = 0x00; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write default setting to slave_addr = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d end here\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } } static void write_i2c_redriver_setting( struct pipe_ctx *pipe_ctx, bool is_over_340mhz) { uint8_t slave_address = (0xF0 >> 1); uint8_t buffer[16]; bool i2c_success = false; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); memset(&buffer, 0, sizeof(buffer)); // Program Slave Address for tuning single integrity buffer[3] = 0x4E; buffer[4] = 0x4E; buffer[5] = 0x4E; buffer[6] = is_over_340mhz ? 0x4E : 0x4A; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("redriver write 0 to all 16 reg offset expect following:\n\ \t slave_addr = 0x%x, offset[3] = 0x%x, offset[4] = 0x%x,\ offset[5] = 0x%x,offset[6] is_over_340mhz = 0x%x,\ i2c_success = %d\n", slave_address, buffer[3], buffer[4], buffer[5], buffer[6], i2c_success?1:0); if (!i2c_success) /* Write failure */ ASSERT(i2c_success); } static void enable_link_hdmi(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; enum dc_color_depth display_color_depth; enum engine_id eng_id; struct ext_hdmi_settings settings = {0}; bool is_over_340mhz = false; bool is_vga_mode = (stream->timing.h_addressable == 640) && (stream->timing.v_addressable == 480); if (stream->phy_pix_clk == 0) stream->phy_pix_clk = stream->timing.pix_clk_khz; if (stream->phy_pix_clk > 340000) is_over_340mhz = true; if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) { unsigned short masked_chip_caps = pipe_ctx->stream->sink->link->chip_caps & EXT_DISPLAY_PATH_CAPS__EXT_CHIP_MASK; if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_TISN65DP159RSBT) { /* DP159, Retimer settings */ eng_id = pipe_ctx->stream_res.stream_enc->id; if (get_ext_hdmi_settings(pipe_ctx, eng_id, &settings)) { write_i2c_retimer_setting(pipe_ctx, is_vga_mode, is_over_340mhz, &settings); } else { write_i2c_default_retimer_setting(pipe_ctx, is_vga_mode, is_over_340mhz); } } else if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_PI3EQX1204) { /* PI3EQX1204, Redriver settings */ write_i2c_redriver_setting(pipe_ctx, is_over_340mhz); } } if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) dal_ddc_service_write_scdc_data( stream->sink->link->ddc, stream->phy_pix_clk, stream->timing.flags.LTE_340MCSC_SCRAMBLE); memset(&stream->sink->link->cur_link_settings, 0, sizeof(struct dc_link_settings)); display_color_depth = stream->timing.display_color_depth; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) display_color_depth = COLOR_DEPTH_888; link->link_enc->funcs->enable_tmds_output( link->link_enc, pipe_ctx->clock_source->id, display_color_depth, pipe_ctx->stream->signal, stream->phy_pix_clk); if (pipe_ctx->stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) dal_ddc_service_read_scdc_data(link->ddc); } static void enable_link_lvds(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; if (stream->phy_pix_clk == 0) stream->phy_pix_clk = stream->timing.pix_clk_khz; memset(&stream->sink->link->cur_link_settings, 0, sizeof(struct dc_link_settings)); link->link_enc->funcs->enable_lvds_output( link->link_enc, pipe_ctx->clock_source->id, stream->phy_pix_clk); } /****************************enable_link***********************************/ static enum dc_status enable_link( struct dc_state *state, struct pipe_ctx *pipe_ctx) { enum dc_status status = DC_ERROR_UNEXPECTED; switch (pipe_ctx->stream->signal) { case SIGNAL_TYPE_DISPLAY_PORT: status = enable_link_dp(state, pipe_ctx); break; case SIGNAL_TYPE_EDP: status = enable_link_edp(state, pipe_ctx); break; case SIGNAL_TYPE_DISPLAY_PORT_MST: status = enable_link_dp_mst(state, pipe_ctx); msleep(200); break; case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: enable_link_hdmi(pipe_ctx); status = DC_OK; break; case SIGNAL_TYPE_LVDS: enable_link_lvds(pipe_ctx); status = DC_OK; break; case SIGNAL_TYPE_VIRTUAL: status = DC_OK; break; default: break; } return status; } static void disable_link(struct dc_link *link, enum signal_type signal) { /* * TODO: implement call for dp_set_hw_test_pattern * it is needed for compliance testing */ /* here we need to specify that encoder output settings * need to be calculated as for the set mode, * it will lead to querying dynamic link capabilities * which should be done before enable output */ if (dc_is_dp_signal(signal)) { /* SST DP, eDP */ if (dc_is_dp_sst_signal(signal)) dp_disable_link_phy(link, signal); else dp_disable_link_phy_mst(link, signal); } else link->link_enc->funcs->disable_output(link->link_enc, signal); } static bool dp_active_dongle_validate_timing( const struct dc_crtc_timing *timing, const struct dpcd_caps *dpcd_caps) { unsigned int required_pix_clk = timing->pix_clk_khz; const struct dc_dongle_caps *dongle_caps = &dpcd_caps->dongle_caps; switch (dpcd_caps->dongle_type) { case DISPLAY_DONGLE_DP_VGA_CONVERTER: case DISPLAY_DONGLE_DP_DVI_CONVERTER: case DISPLAY_DONGLE_DP_DVI_DONGLE: if (timing->pixel_encoding == PIXEL_ENCODING_RGB) return true; else return false; default: break; } if (dongle_caps->dongle_type != DISPLAY_DONGLE_DP_HDMI_CONVERTER || dongle_caps->extendedCapValid == false) return true; /* Check Pixel Encoding */ switch (timing->pixel_encoding) { case PIXEL_ENCODING_RGB: case PIXEL_ENCODING_YCBCR444: break; case PIXEL_ENCODING_YCBCR422: if (!dongle_caps->is_dp_hdmi_ycbcr422_pass_through) return false; break; case PIXEL_ENCODING_YCBCR420: if (!dongle_caps->is_dp_hdmi_ycbcr420_pass_through) return false; break; default: /* Invalid Pixel Encoding*/ return false; } /* Check Color Depth and Pixel Clock */ if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) required_pix_clk /= 2; else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) required_pix_clk = required_pix_clk * 2 / 3; switch (timing->display_color_depth) { case COLOR_DEPTH_666: case COLOR_DEPTH_888: /*888 and 666 should always be supported*/ break; case COLOR_DEPTH_101010: if (dongle_caps->dp_hdmi_max_bpc < 10) return false; required_pix_clk = required_pix_clk * 10 / 8; break; case COLOR_DEPTH_121212: if (dongle_caps->dp_hdmi_max_bpc < 12) return false; required_pix_clk = required_pix_clk * 12 / 8; break; case COLOR_DEPTH_141414: case COLOR_DEPTH_161616: default: /* These color depths are currently not supported */ return false; } if (required_pix_clk > dongle_caps->dp_hdmi_max_pixel_clk) return false; return true; } enum dc_status dc_link_validate_mode_timing( const struct dc_stream_state *stream, struct dc_link *link, const struct dc_crtc_timing *timing) { uint32_t max_pix_clk = stream->sink->dongle_max_pix_clk; struct dpcd_caps *dpcd_caps = &link->dpcd_caps; /* A hack to avoid failing any modes for EDID override feature on * topology change such as lower quality cable for DP or different dongle */ if (link->remote_sinks[0]) return DC_OK; /* Passive Dongle */ if (0 != max_pix_clk && timing->pix_clk_khz > max_pix_clk) return DC_EXCEED_DONGLE_CAP; /* Active Dongle*/ if (!dp_active_dongle_validate_timing(timing, dpcd_caps)) return DC_EXCEED_DONGLE_CAP; switch (stream->signal) { case SIGNAL_TYPE_EDP: case SIGNAL_TYPE_DISPLAY_PORT: if (!dp_validate_mode_timing( link, timing)) return DC_NO_DP_LINK_BANDWIDTH; break; default: break; } return DC_OK; } int dc_link_get_backlight_level(const struct dc_link *link) { struct abm *abm = link->ctx->dc->res_pool->abm; if (abm == NULL || abm->funcs->get_current_backlight_8_bit == NULL) return DC_ERROR_UNEXPECTED; return (int) abm->funcs->get_current_backlight_8_bit(abm); } bool dc_link_set_backlight_level(const struct dc_link *link, uint32_t level, uint32_t frame_ramp, const struct dc_stream_state *stream) { struct dc *core_dc = link->ctx->dc; struct abm *abm = core_dc->res_pool->abm; struct dmcu *dmcu = core_dc->res_pool->dmcu; unsigned int controller_id = 0; bool use_smooth_brightness = true; int i; DC_LOGGER_INIT(link->ctx->logger); if ((dmcu == NULL) || (abm == NULL) || (abm->funcs->set_backlight_level == NULL)) return false; if (stream) { if (stream->bl_pwm_level == EDP_BACKLIGHT_RAMP_DISABLE_LEVEL) frame_ramp = 0; ((struct dc_stream_state *)stream)->bl_pwm_level = level; } use_smooth_brightness = dmcu->funcs->is_dmcu_initialized(dmcu); DC_LOG_BACKLIGHT("New Backlight level: %d (0x%X)\n", level, level); if (dc_is_embedded_signal(link->connector_signal)) { if (stream != NULL) { for (i = 0; i < MAX_PIPES; i++) { if (core_dc->current_state->res_ctx. pipe_ctx[i].stream == stream) /* DMCU -1 for all controller id values, * therefore +1 here */ controller_id = core_dc->current_state-> res_ctx.pipe_ctx[i].stream_res.tg->inst + 1; } } abm->funcs->set_backlight_level( abm, level, frame_ramp, controller_id, use_smooth_brightness); } return true; } bool dc_link_set_abm_disable(const struct dc_link *link) { struct dc *core_dc = link->ctx->dc; struct abm *abm = core_dc->res_pool->abm; if ((abm == NULL) || (abm->funcs->set_backlight_level == NULL)) return false; abm->funcs->set_abm_immediate_disable(abm); return true; } bool dc_link_set_psr_enable(const struct dc_link *link, bool enable, bool wait) { struct dc *core_dc = link->ctx->dc; struct dmcu *dmcu = core_dc->res_pool->dmcu; if (dmcu != NULL && link->psr_enabled) dmcu->funcs->set_psr_enable(dmcu, enable, wait); return true; } const struct dc_link_status *dc_link_get_status(const struct dc_link *link) { return &link->link_status; } void core_link_resume(struct dc_link *link) { if (link->connector_signal != SIGNAL_TYPE_VIRTUAL) program_hpd_filter(link); } static struct fixed31_32 get_pbn_per_slot(struct dc_stream_state *stream) { struct dc_link_settings *link_settings = &stream->sink->link->cur_link_settings; uint32_t link_rate_in_mbps = link_settings->link_rate * LINK_RATE_REF_FREQ_IN_MHZ; struct fixed31_32 mbps = dc_fixpt_from_int( link_rate_in_mbps * link_settings->lane_count); return dc_fixpt_div_int(mbps, 54); } static int get_color_depth(enum dc_color_depth color_depth) { switch (color_depth) { case COLOR_DEPTH_666: return 6; case COLOR_DEPTH_888: return 8; case COLOR_DEPTH_101010: return 10; case COLOR_DEPTH_121212: return 12; case COLOR_DEPTH_141414: return 14; case COLOR_DEPTH_161616: return 16; default: return 0; } } static struct fixed31_32 get_pbn_from_timing(struct pipe_ctx *pipe_ctx) { uint32_t bpc; uint64_t kbps; struct fixed31_32 peak_kbps; uint32_t numerator; uint32_t denominator; bpc = get_color_depth(pipe_ctx->stream_res.pix_clk_params.color_depth); kbps = pipe_ctx->stream_res.pix_clk_params.requested_pix_clk * bpc * 3; /* * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on * common multiplier to render an integer PBN for all link rate/lane * counts combinations * calculate * peak_kbps *= (1006/1000) * peak_kbps *= (64/54) * peak_kbps *= 8 convert to bytes */ numerator = 64 * PEAK_FACTOR_X1000; denominator = 54 * 8 * 1000 * 1000; kbps *= numerator; peak_kbps = dc_fixpt_from_fraction(kbps, denominator); return peak_kbps; } static void update_mst_stream_alloc_table( struct dc_link *link, struct stream_encoder *stream_enc, const struct dp_mst_stream_allocation_table *proposed_table) { struct link_mst_stream_allocation work_table[MAX_CONTROLLER_NUM] = { { 0 } }; struct link_mst_stream_allocation *dc_alloc; int i; int j; /* if DRM proposed_table has more than one new payload */ ASSERT(proposed_table->stream_count - link->mst_stream_alloc_table.stream_count < 2); /* copy proposed_table to link, add stream encoder */ for (i = 0; i < proposed_table->stream_count; i++) { for (j = 0; j < link->mst_stream_alloc_table.stream_count; j++) { dc_alloc = &link->mst_stream_alloc_table.stream_allocations[j]; if (dc_alloc->vcp_id == proposed_table->stream_allocations[i].vcp_id) { work_table[i] = *dc_alloc; break; /* exit j loop */ } } /* new vcp_id */ if (j == link->mst_stream_alloc_table.stream_count) { work_table[i].vcp_id = proposed_table->stream_allocations[i].vcp_id; work_table[i].slot_count = proposed_table->stream_allocations[i].slot_count; work_table[i].stream_enc = stream_enc; } } /* update link->mst_stream_alloc_table with work_table */ link->mst_stream_alloc_table.stream_count = proposed_table->stream_count; for (i = 0; i < MAX_CONTROLLER_NUM; i++) link->mst_stream_alloc_table.stream_allocations[i] = work_table[i]; } /* convert link_mst_stream_alloc_table to dm dp_mst_stream_alloc_table * because stream_encoder is not exposed to dm */ static enum dc_status allocate_mst_payload(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; struct link_encoder *link_encoder = link->link_enc; struct stream_encoder *stream_encoder = pipe_ctx->stream_res.stream_enc; struct dp_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp; struct fixed31_32 pbn; struct fixed31_32 pbn_per_slot; uint8_t i; DC_LOGGER_INIT(link->ctx->logger); /* enable_link_dp_mst already check link->enabled_stream_count * and stream is in link->stream[]. This is called during set mode, * stream_enc is available. */ /* get calculate VC payload for stream: stream_alloc */ if (dm_helpers_dp_mst_write_payload_allocation_table( stream->ctx, stream, &proposed_table, true)) { update_mst_stream_alloc_table( link, pipe_ctx->stream_res.stream_enc, &proposed_table); } else DC_LOG_WARNING("Failed to update" "MST allocation table for" "pipe idx:%d\n", pipe_ctx->pipe_idx); DC_LOG_MST("%s " "stream_count: %d: \n ", __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { DC_LOG_MST("stream_enc[%d]: %p " "stream[%d].vcp_id: %d " "stream[%d].slot_count: %d\n", i, (void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } ASSERT(proposed_table.stream_count > 0); /* program DP source TX for payload */ link_encoder->funcs->update_mst_stream_allocation_table( link_encoder, &link->mst_stream_alloc_table); /* send down message */ dm_helpers_dp_mst_poll_for_allocation_change_trigger( stream->ctx, stream); dm_helpers_dp_mst_send_payload_allocation( stream->ctx, stream, true); /* slot X.Y for only current stream */ pbn_per_slot = get_pbn_per_slot(stream); pbn = get_pbn_from_timing(pipe_ctx); avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot); stream_encoder->funcs->set_mst_bandwidth( stream_encoder, avg_time_slots_per_mtp); return DC_OK; } static enum dc_status deallocate_mst_payload(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; struct link_encoder *link_encoder = link->link_enc; struct stream_encoder *stream_encoder = pipe_ctx->stream_res.stream_enc; struct dp_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp = dc_fixpt_from_int(0); uint8_t i; bool mst_mode = (link->type == dc_connection_mst_branch); DC_LOGGER_INIT(link->ctx->logger); /* deallocate_mst_payload is called before disable link. When mode or * disable/enable monitor, new stream is created which is not in link * stream[] yet. For this, payload is not allocated yet, so de-alloc * should not done. For new mode set, map_resources will get engine * for new stream, so stream_enc->id should be validated until here. */ /* slot X.Y */ stream_encoder->funcs->set_mst_bandwidth( stream_encoder, avg_time_slots_per_mtp); /* TODO: which component is responsible for remove payload table? */ if (mst_mode) { if (dm_helpers_dp_mst_write_payload_allocation_table( stream->ctx, stream, &proposed_table, false)) { update_mst_stream_alloc_table( link, pipe_ctx->stream_res.stream_enc, &proposed_table); } else { DC_LOG_WARNING("Failed to update" "MST allocation table for" "pipe idx:%d\n", pipe_ctx->pipe_idx); } } DC_LOG_MST("%s" "stream_count: %d: ", __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { DC_LOG_MST("stream_enc[%d]: %p " "stream[%d].vcp_id: %d " "stream[%d].slot_count: %d\n", i, (void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } link_encoder->funcs->update_mst_stream_allocation_table( link_encoder, &link->mst_stream_alloc_table); if (mst_mode) { dm_helpers_dp_mst_poll_for_allocation_change_trigger( stream->ctx, stream); dm_helpers_dp_mst_send_payload_allocation( stream->ctx, stream, false); } return DC_OK; } void core_link_enable_stream( struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc *core_dc = pipe_ctx->stream->ctx->dc; struct dc_stream_state *stream = pipe_ctx->stream; enum dc_status status; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL) { stream->sink->link->link_enc->funcs->setup( stream->sink->link->link_enc, pipe_ctx->stream->signal); pipe_ctx->stream_res.stream_enc->funcs->setup_stereo_sync( pipe_ctx->stream_res.stream_enc, pipe_ctx->stream_res.tg->inst, stream->timing.timing_3d_format != TIMING_3D_FORMAT_NONE); } if (dc_is_dp_signal(pipe_ctx->stream->signal)) pipe_ctx->stream_res.stream_enc->funcs->dp_set_stream_attribute( pipe_ctx->stream_res.stream_enc, &stream->timing, stream->output_color_space); if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) pipe_ctx->stream_res.stream_enc->funcs->hdmi_set_stream_attribute( pipe_ctx->stream_res.stream_enc, &stream->timing, stream->phy_pix_clk, pipe_ctx->stream_res.audio != NULL); if (dc_is_dvi_signal(pipe_ctx->stream->signal)) pipe_ctx->stream_res.stream_enc->funcs->dvi_set_stream_attribute( pipe_ctx->stream_res.stream_enc, &stream->timing, (pipe_ctx->stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) ? true : false); if (dc_is_lvds_signal(pipe_ctx->stream->signal)) pipe_ctx->stream_res.stream_enc->funcs->lvds_set_stream_attribute( pipe_ctx->stream_res.stream_enc, &stream->timing); if (!IS_FPGA_MAXIMUS_DC(core_dc->ctx->dce_environment)) { resource_build_info_frame(pipe_ctx); core_dc->hwss.update_info_frame(pipe_ctx); /* eDP lit up by bios already, no need to enable again. */ if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP && pipe_ctx->stream->apply_edp_fast_boot_optimization) { pipe_ctx->stream->apply_edp_fast_boot_optimization = false; pipe_ctx->stream->dpms_off = false; return; } if (pipe_ctx->stream->dpms_off) return; status = enable_link(state, pipe_ctx); if (status != DC_OK) { DC_LOG_WARNING("enabling link %u failed: %d\n", pipe_ctx->stream->sink->link->link_index, status); /* Abort stream enable *unless* the failure was due to * DP link training - some DP monitors will recover and * show the stream anyway. But MST displays can't proceed * without link training. */ if (status != DC_FAIL_DP_LINK_TRAINING || pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { BREAK_TO_DEBUGGER(); return; } } core_dc->hwss.enable_audio_stream(pipe_ctx); /* turn off otg test pattern if enable */ if (pipe_ctx->stream_res.tg->funcs->set_test_pattern) pipe_ctx->stream_res.tg->funcs->set_test_pattern(pipe_ctx->stream_res.tg, CONTROLLER_DP_TEST_PATTERN_VIDEOMODE, COLOR_DEPTH_UNDEFINED); core_dc->hwss.enable_stream(pipe_ctx); if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) allocate_mst_payload(pipe_ctx); core_dc->hwss.unblank_stream(pipe_ctx, &pipe_ctx->stream->sink->link->cur_link_settings); } } void core_link_disable_stream(struct pipe_ctx *pipe_ctx, int option) { struct dc *core_dc = pipe_ctx->stream->ctx->dc; if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) deallocate_mst_payload(pipe_ctx); core_dc->hwss.blank_stream(pipe_ctx); core_dc->hwss.disable_stream(pipe_ctx, option); disable_link(pipe_ctx->stream->sink->link, pipe_ctx->stream->signal); } void core_link_set_avmute(struct pipe_ctx *pipe_ctx, bool enable) { struct dc *core_dc = pipe_ctx->stream->ctx->dc; if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A) return; core_dc->hwss.set_avmute(pipe_ctx, enable); } /** ***************************************************************************** * Function: dc_link_enable_hpd_filter * * @brief * If enable is true, programs HPD filter on associated HPD line using * delay_on_disconnect/delay_on_connect values dependent on * link->connector_signal * * If enable is false, programs HPD filter on associated HPD line with no * delays on connect or disconnect * * @param [in] link: pointer to the dc link * @param [in] enable: boolean specifying whether to enable hbd ***************************************************************************** */ void dc_link_enable_hpd_filter(struct dc_link *link, bool enable) { struct gpio *hpd; if (enable) { link->is_hpd_filter_disabled = false; program_hpd_filter(link); } else { link->is_hpd_filter_disabled = true; /* Obtain HPD handle */ hpd = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (!hpd) return; /* Setup HPD filtering */ if (dal_gpio_open(hpd, GPIO_MODE_INTERRUPT) == GPIO_RESULT_OK) { struct gpio_hpd_config config; config.delay_on_connect = 0; config.delay_on_disconnect = 0; dal_irq_setup_hpd_filter(hpd, &config); dal_gpio_close(hpd); } else { ASSERT_CRITICAL(false); } /* Release HPD handle */ dal_gpio_destroy_irq(&hpd); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1