Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anthony Koo | 1475 | 90.99% | 5 | 35.71% |
Amy Zhang | 66 | 4.07% | 1 | 7.14% |
Charlene Liu | 47 | 2.90% | 1 | 7.14% |
Harry Wentland | 18 | 1.11% | 3 | 21.43% |
Tony Cheng | 8 | 0.49% | 1 | 7.14% |
Bhawanpreet Lakha | 6 | 0.37% | 2 | 14.29% |
Dmytro Laktyushkin | 1 | 0.06% | 1 | 7.14% |
Total | 1621 | 14 |
/* * Copyright 2012-16 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dce_abm.h" #include "dm_services.h" #include "reg_helper.h" #include "fixed31_32.h" #include "dc.h" #include "atom.h" #define TO_DCE_ABM(abm)\ container_of(abm, struct dce_abm, base) #define REG(reg) \ (abm_dce->regs->reg) #undef FN #define FN(reg_name, field_name) \ abm_dce->abm_shift->field_name, abm_dce->abm_mask->field_name #define DC_LOGGER \ abm->ctx->logger #define CTX \ abm_dce->base.ctx #define MCP_ABM_LEVEL_SET 0x65 #define MCP_ABM_PIPE_SET 0x66 #define MCP_BL_SET 0x67 #define MCP_DISABLE_ABM_IMMEDIATELY 255 static unsigned int get_current_backlight_16_bit(struct dce_abm *abm_dce) { uint64_t current_backlight; uint32_t round_result; uint32_t pwm_period_cntl, bl_period, bl_int_count; uint32_t bl_pwm_cntl, bl_pwm, fractional_duty_cycle_en; uint32_t bl_period_mask, bl_pwm_mask; pwm_period_cntl = REG_READ(BL_PWM_PERIOD_CNTL); REG_GET(BL_PWM_PERIOD_CNTL, BL_PWM_PERIOD, &bl_period); REG_GET(BL_PWM_PERIOD_CNTL, BL_PWM_PERIOD_BITCNT, &bl_int_count); bl_pwm_cntl = REG_READ(BL_PWM_CNTL); REG_GET(BL_PWM_CNTL, BL_ACTIVE_INT_FRAC_CNT, (uint32_t *)(&bl_pwm)); REG_GET(BL_PWM_CNTL, BL_PWM_FRACTIONAL_EN, &fractional_duty_cycle_en); if (bl_int_count == 0) bl_int_count = 16; bl_period_mask = (1 << bl_int_count) - 1; bl_period &= bl_period_mask; bl_pwm_mask = bl_period_mask << (16 - bl_int_count); if (fractional_duty_cycle_en == 0) bl_pwm &= bl_pwm_mask; else bl_pwm &= 0xFFFF; current_backlight = bl_pwm << (1 + bl_int_count); if (bl_period == 0) bl_period = 0xFFFF; current_backlight = div_u64(current_backlight, bl_period); current_backlight = (current_backlight + 1) >> 1; current_backlight = (uint64_t)(current_backlight) * bl_period; round_result = (uint32_t)(current_backlight & 0xFFFFFFFF); round_result = (round_result >> (bl_int_count-1)) & 1; current_backlight >>= bl_int_count; current_backlight += round_result; return (uint32_t)(current_backlight); } static void driver_set_backlight_level(struct dce_abm *abm_dce, uint32_t level) { uint32_t backlight_24bit; uint32_t backlight_17bit; uint32_t backlight_16bit; uint32_t masked_pwm_period; uint8_t rounding_bit; uint8_t bit_count; uint64_t active_duty_cycle; uint32_t pwm_period_bitcnt; /* * 1. Convert 8-bit value to 17 bit U1.16 format * (1 integer, 16 fractional bits) */ /* 1.1 multiply 8 bit value by 0x10101 to get a 24 bit value, * effectively multiplying value by 256/255 * eg. for a level of 0xEF, backlight_24bit = 0xEF * 0x10101 = 0xEFEFEF */ backlight_24bit = level * 0x10101; /* 1.2 The upper 16 bits of the 24 bit value is the fraction, lower 8 * used for rounding, take most significant bit of fraction for * rounding, e.g. for 0xEFEFEF, rounding bit is 1 */ rounding_bit = (backlight_24bit >> 7) & 1; /* 1.3 Add the upper 16 bits of the 24 bit value with the rounding bit * resulting in a 17 bit value e.g. 0xEFF0 = (0xEFEFEF >> 8) + 1 */ backlight_17bit = (backlight_24bit >> 8) + rounding_bit; /* * 2. Find 16 bit backlight active duty cycle, where 0 <= backlight * active duty cycle <= backlight period */ /* 2.1 Apply bitmask for backlight period value based on value of BITCNT */ REG_GET_2(BL_PWM_PERIOD_CNTL, BL_PWM_PERIOD_BITCNT, &pwm_period_bitcnt, BL_PWM_PERIOD, &masked_pwm_period); if (pwm_period_bitcnt == 0) bit_count = 16; else bit_count = pwm_period_bitcnt; /* e.g. maskedPwmPeriod = 0x24 when bitCount is 6 */ masked_pwm_period = masked_pwm_period & ((1 << bit_count) - 1); /* 2.2 Calculate integer active duty cycle required upper 16 bits * contain integer component, lower 16 bits contain fractional component * of active duty cycle e.g. 0x21BDC0 = 0xEFF0 * 0x24 */ active_duty_cycle = backlight_17bit * masked_pwm_period; /* 2.3 Calculate 16 bit active duty cycle from integer and fractional * components shift by bitCount then mask 16 bits and add rounding bit * from MSB of fraction e.g. 0x86F7 = ((0x21BDC0 >> 6) & 0xFFF) + 0 */ backlight_16bit = active_duty_cycle >> bit_count; backlight_16bit &= 0xFFFF; backlight_16bit += (active_duty_cycle >> (bit_count - 1)) & 0x1; /* * 3. Program register with updated value */ /* 3.1 Lock group 2 backlight registers */ REG_UPDATE_2(BL_PWM_GRP1_REG_LOCK, BL_PWM_GRP1_IGNORE_MASTER_LOCK_EN, 1, BL_PWM_GRP1_REG_LOCK, 1); // 3.2 Write new active duty cycle REG_UPDATE(BL_PWM_CNTL, BL_ACTIVE_INT_FRAC_CNT, backlight_16bit); /* 3.3 Unlock group 2 backlight registers */ REG_UPDATE(BL_PWM_GRP1_REG_LOCK, BL_PWM_GRP1_REG_LOCK, 0); /* 5.4.4 Wait for pending bit to be cleared */ REG_WAIT(BL_PWM_GRP1_REG_LOCK, BL_PWM_GRP1_REG_UPDATE_PENDING, 0, 1, 10000); } static void dmcu_set_backlight_level( struct dce_abm *abm_dce, uint32_t level, uint32_t frame_ramp, uint32_t controller_id) { unsigned int backlight_16_bit = (level * 0x10101) >> 8; unsigned int backlight_17_bit = backlight_16_bit + (((backlight_16_bit & 0x80) >> 7) & 1); uint32_t rampingBoundary = 0xFFFF; uint32_t s2; /* set ramping boundary */ REG_WRITE(MASTER_COMM_DATA_REG1, rampingBoundary); /* setDMCUParam_Pipe */ REG_UPDATE_2(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_ABM_PIPE_SET, MASTER_COMM_CMD_REG_BYTE1, controller_id); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 80000); /* setDMCUParam_BL */ REG_UPDATE(BL1_PWM_USER_LEVEL, BL1_PWM_USER_LEVEL, backlight_17_bit); /* write ramp */ if (controller_id == 0) frame_ramp = 0; REG_WRITE(MASTER_COMM_DATA_REG1, frame_ramp); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_BL_SET); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* UpdateRequestedBacklightLevel */ s2 = REG_READ(BIOS_SCRATCH_2); s2 &= ~ATOM_S2_CURRENT_BL_LEVEL_MASK; level &= (ATOM_S2_CURRENT_BL_LEVEL_MASK >> ATOM_S2_CURRENT_BL_LEVEL_SHIFT); s2 |= (level << ATOM_S2_CURRENT_BL_LEVEL_SHIFT); REG_WRITE(BIOS_SCRATCH_2, s2); } static void dce_abm_init(struct abm *abm) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); unsigned int backlight = get_current_backlight_16_bit(abm_dce); REG_WRITE(DC_ABM1_HG_SAMPLE_RATE, 0x103); REG_WRITE(DC_ABM1_HG_SAMPLE_RATE, 0x101); REG_WRITE(DC_ABM1_LS_SAMPLE_RATE, 0x103); REG_WRITE(DC_ABM1_LS_SAMPLE_RATE, 0x101); REG_WRITE(BL1_PWM_BL_UPDATE_SAMPLE_RATE, 0x101); REG_SET_3(DC_ABM1_HG_MISC_CTRL, 0, ABM1_HG_NUM_OF_BINS_SEL, 0, ABM1_HG_VMAX_SEL, 1, ABM1_HG_BIN_BITWIDTH_SIZE_SEL, 0); REG_SET_3(DC_ABM1_IPCSC_COEFF_SEL, 0, ABM1_IPCSC_COEFF_SEL_R, 2, ABM1_IPCSC_COEFF_SEL_G, 4, ABM1_IPCSC_COEFF_SEL_B, 2); REG_UPDATE(BL1_PWM_CURRENT_ABM_LEVEL, BL1_PWM_CURRENT_ABM_LEVEL, backlight); REG_UPDATE(BL1_PWM_TARGET_ABM_LEVEL, BL1_PWM_TARGET_ABM_LEVEL, backlight); REG_UPDATE(BL1_PWM_USER_LEVEL, BL1_PWM_USER_LEVEL, backlight); REG_UPDATE_2(DC_ABM1_LS_MIN_MAX_PIXEL_VALUE_THRES, ABM1_LS_MIN_PIXEL_VALUE_THRES, 0, ABM1_LS_MAX_PIXEL_VALUE_THRES, 1000); REG_SET_3(DC_ABM1_HGLS_REG_READ_PROGRESS, 0, ABM1_HG_REG_READ_MISSED_FRAME_CLEAR, 1, ABM1_LS_REG_READ_MISSED_FRAME_CLEAR, 1, ABM1_BL_REG_READ_MISSED_FRAME_CLEAR, 1); } static unsigned int dce_abm_get_current_backlight_8_bit(struct abm *abm) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); unsigned int backlight = REG_READ(BL1_PWM_CURRENT_ABM_LEVEL); return (backlight >> 8); } static bool dce_abm_set_level(struct abm *abm, uint32_t level) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 80000); /* setDMCUParam_ABMLevel */ REG_UPDATE_2(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_ABM_LEVEL_SET, MASTER_COMM_CMD_REG_BYTE2, level); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); return true; } static bool dce_abm_immediate_disable(struct abm *abm) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 80000); /* setDMCUParam_ABMLevel */ REG_UPDATE_2(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_ABM_LEVEL_SET, MASTER_COMM_CMD_REG_BYTE2, MCP_DISABLE_ABM_IMMEDIATELY); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); abm->stored_backlight_registers.BL_PWM_CNTL = REG_READ(BL_PWM_CNTL); abm->stored_backlight_registers.BL_PWM_CNTL2 = REG_READ(BL_PWM_CNTL2); abm->stored_backlight_registers.BL_PWM_PERIOD_CNTL = REG_READ(BL_PWM_PERIOD_CNTL); REG_GET(LVTMA_PWRSEQ_REF_DIV, BL_PWM_REF_DIV, &abm->stored_backlight_registers.LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV); return true; } static bool dce_abm_init_backlight(struct abm *abm) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); uint32_t value; /* It must not be 0, so we have to restore them * Bios bug w/a - period resets to zero, * restoring to cache values which is always correct */ REG_GET(BL_PWM_CNTL, BL_ACTIVE_INT_FRAC_CNT, &value); if (value == 0 || value == 1) { if (abm->stored_backlight_registers.BL_PWM_CNTL != 0) { REG_WRITE(BL_PWM_CNTL, abm->stored_backlight_registers.BL_PWM_CNTL); REG_WRITE(BL_PWM_CNTL2, abm->stored_backlight_registers.BL_PWM_CNTL2); REG_WRITE(BL_PWM_PERIOD_CNTL, abm->stored_backlight_registers.BL_PWM_PERIOD_CNTL); REG_UPDATE(LVTMA_PWRSEQ_REF_DIV, BL_PWM_REF_DIV, abm->stored_backlight_registers. LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV); } else { /* TODO: Note: This should not really happen since VBIOS * should have initialized PWM registers on boot. */ REG_WRITE(BL_PWM_CNTL, 0xC000FA00); REG_WRITE(BL_PWM_PERIOD_CNTL, 0x000C0FA0); } } else { abm->stored_backlight_registers.BL_PWM_CNTL = REG_READ(BL_PWM_CNTL); abm->stored_backlight_registers.BL_PWM_CNTL2 = REG_READ(BL_PWM_CNTL2); abm->stored_backlight_registers.BL_PWM_PERIOD_CNTL = REG_READ(BL_PWM_PERIOD_CNTL); REG_GET(LVTMA_PWRSEQ_REF_DIV, BL_PWM_REF_DIV, &abm->stored_backlight_registers. LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV); } /* Have driver take backlight control * TakeBacklightControl(true) */ value = REG_READ(BIOS_SCRATCH_2); value |= ATOM_S2_VRI_BRIGHT_ENABLE; REG_WRITE(BIOS_SCRATCH_2, value); /* Enable the backlight output */ REG_UPDATE(BL_PWM_CNTL, BL_PWM_EN, 1); /* Unlock group 2 backlight registers */ REG_UPDATE(BL_PWM_GRP1_REG_LOCK, BL_PWM_GRP1_REG_LOCK, 0); return true; } static bool dce_abm_set_backlight_level( struct abm *abm, unsigned int backlight_level, unsigned int frame_ramp, unsigned int controller_id, bool use_smooth_brightness) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); DC_LOG_BACKLIGHT("New Backlight level: %d (0x%X)\n", backlight_level, backlight_level); /* If DMCU is in reset state, DMCU is uninitialized */ if (use_smooth_brightness) dmcu_set_backlight_level(abm_dce, backlight_level, frame_ramp, controller_id); else driver_set_backlight_level(abm_dce, backlight_level); return true; } static const struct abm_funcs dce_funcs = { .abm_init = dce_abm_init, .set_abm_level = dce_abm_set_level, .init_backlight = dce_abm_init_backlight, .set_backlight_level = dce_abm_set_backlight_level, .get_current_backlight_8_bit = dce_abm_get_current_backlight_8_bit, .set_abm_immediate_disable = dce_abm_immediate_disable }; static void dce_abm_construct( struct dce_abm *abm_dce, struct dc_context *ctx, const struct dce_abm_registers *regs, const struct dce_abm_shift *abm_shift, const struct dce_abm_mask *abm_mask) { struct abm *base = &abm_dce->base; base->ctx = ctx; base->funcs = &dce_funcs; base->stored_backlight_registers.BL_PWM_CNTL = 0; base->stored_backlight_registers.BL_PWM_CNTL2 = 0; base->stored_backlight_registers.BL_PWM_PERIOD_CNTL = 0; base->stored_backlight_registers.LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV = 0; abm_dce->regs = regs; abm_dce->abm_shift = abm_shift; abm_dce->abm_mask = abm_mask; } struct abm *dce_abm_create( struct dc_context *ctx, const struct dce_abm_registers *regs, const struct dce_abm_shift *abm_shift, const struct dce_abm_mask *abm_mask) { struct dce_abm *abm_dce = kzalloc(sizeof(*abm_dce), GFP_KERNEL); if (abm_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } dce_abm_construct(abm_dce, ctx, regs, abm_shift, abm_mask); abm_dce->base.funcs = &dce_funcs; return &abm_dce->base; } void dce_abm_destroy(struct abm **abm) { struct dce_abm *abm_dce = TO_DCE_ABM(*abm); kfree(abm_dce); *abm = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1