Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lionel Landwerlin | 2649 | 74.31% | 4 | 13.33% |
Ander Conselvan de Oliveira | 440 | 12.34% | 3 | 10.00% |
Shashank Sharma | 212 | 5.95% | 1 | 3.33% |
Maarten Lankhorst | 105 | 2.95% | 5 | 16.67% |
Ville Syrjälä | 75 | 2.10% | 6 | 20.00% |
Tvrtko A. Ursulin | 33 | 0.93% | 6 | 20.00% |
Chris Wilson | 27 | 0.76% | 1 | 3.33% |
Johnson Lin | 15 | 0.42% | 1 | 3.33% |
Rodrigo Vivi | 6 | 0.17% | 2 | 6.67% |
Jyri Sarha | 3 | 0.08% | 1 | 3.33% |
Total | 3565 | 30 |
/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * */ #include "intel_drv.h" #define CTM_COEFF_SIGN (1ULL << 63) #define CTM_COEFF_1_0 (1ULL << 32) #define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1) #define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1) #define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1) #define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1) #define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1) #define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1) #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255) #define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0) #define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1)) #define LEGACY_LUT_LENGTH 256 /* Post offset values for RGB->YCBCR conversion */ #define POSTOFF_RGB_TO_YUV_HI 0x800 #define POSTOFF_RGB_TO_YUV_ME 0x100 #define POSTOFF_RGB_TO_YUV_LO 0x800 /* * These values are direct register values specified in the Bspec, * for RGB->YUV conversion matrix (colorspace BT709) */ #define CSC_RGB_TO_YUV_RU_GU 0x2ba809d8 #define CSC_RGB_TO_YUV_BU 0x37e80000 #define CSC_RGB_TO_YUV_RY_GY 0x1e089cc0 #define CSC_RGB_TO_YUV_BY 0xb5280000 #define CSC_RGB_TO_YUV_RV_GV 0xbce89ad8 #define CSC_RGB_TO_YUV_BV 0x1e080000 /* * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point * format). This macro takes the coefficient we want transformed and the * number of fractional bits. * * We only have a 9 bits precision window which slides depending on the value * of the CTM coefficient and we write the value from bit 3. We also round the * value. */ #define ILK_CSC_COEFF_FP(coeff, fbits) \ (clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8) #define ILK_CSC_COEFF_LIMITED_RANGE \ ILK_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9) #define ILK_CSC_COEFF_1_0 \ ((7 << 12) | ILK_CSC_COEFF_FP(CTM_COEFF_1_0, 8)) static bool crtc_state_is_legacy_gamma(struct drm_crtc_state *state) { return !state->degamma_lut && !state->ctm && state->gamma_lut && drm_color_lut_size(state->gamma_lut) == LEGACY_LUT_LENGTH; } /* * When using limited range, multiply the matrix given by userspace by * the matrix that we would use for the limited range. */ static u64 *ctm_mult_by_limited(u64 *result, const u64 *input) { int i; for (i = 0; i < 9; i++) { u64 user_coeff = input[i]; u32 limited_coeff = CTM_COEFF_LIMITED_RANGE; u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0, CTM_COEFF_4_0 - 1) >> 2; /* * By scaling every co-efficient with limited range (16-235) * vs full range (0-255) the final o/p will be scaled down to * fit in the limited range supported by the panel. */ result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30; result[i] |= user_coeff & CTM_COEFF_SIGN; } return result; } static void ilk_load_ycbcr_conversion_matrix(struct intel_crtc *intel_crtc) { int pipe = intel_crtc->pipe; struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0); I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0); I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0); I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), CSC_RGB_TO_YUV_RU_GU); I915_WRITE(PIPE_CSC_COEFF_BU(pipe), CSC_RGB_TO_YUV_BU); I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), CSC_RGB_TO_YUV_RY_GY); I915_WRITE(PIPE_CSC_COEFF_BY(pipe), CSC_RGB_TO_YUV_BY); I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), CSC_RGB_TO_YUV_RV_GV); I915_WRITE(PIPE_CSC_COEFF_BV(pipe), CSC_RGB_TO_YUV_BV); I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), POSTOFF_RGB_TO_YUV_HI); I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), POSTOFF_RGB_TO_YUV_ME); I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), POSTOFF_RGB_TO_YUV_LO); I915_WRITE(PIPE_CSC_MODE(pipe), 0); } static void ilk_load_csc_matrix(struct drm_crtc_state *crtc_state) { struct drm_crtc *crtc = crtc_state->crtc; struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int i, pipe = intel_crtc->pipe; uint16_t coeffs[9] = { 0, }; struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state); bool limited_color_range = false; /* * FIXME if there's a gamma LUT after the CSC, we should * do the range compression using the gamma LUT instead. */ if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) limited_color_range = intel_crtc_state->limited_color_range; if (intel_crtc_state->ycbcr420) { ilk_load_ycbcr_conversion_matrix(intel_crtc); return; } else if (crtc_state->ctm) { struct drm_color_ctm *ctm = crtc_state->ctm->data; const u64 *input; u64 temp[9]; if (limited_color_range) input = ctm_mult_by_limited(temp, ctm->matrix); else input = ctm->matrix; /* * Convert fixed point S31.32 input to format supported by the * hardware. */ for (i = 0; i < ARRAY_SIZE(coeffs); i++) { uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i]; /* * Clamp input value to min/max supported by * hardware. */ abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1); /* sign bit */ if (CTM_COEFF_NEGATIVE(input[i])) coeffs[i] |= 1 << 15; if (abs_coeff < CTM_COEFF_0_125) coeffs[i] |= (3 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 12); else if (abs_coeff < CTM_COEFF_0_25) coeffs[i] |= (2 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 11); else if (abs_coeff < CTM_COEFF_0_5) coeffs[i] |= (1 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 10); else if (abs_coeff < CTM_COEFF_1_0) coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9); else if (abs_coeff < CTM_COEFF_2_0) coeffs[i] |= (7 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 8); else coeffs[i] |= (6 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 7); } } else { /* * Load an identity matrix if no coefficients are provided. * * TODO: Check what kind of values actually come out of the * pipe with these coeff/postoff values and adjust to get the * best accuracy. Perhaps we even need to take the bpc value * into consideration. */ for (i = 0; i < 3; i++) { if (limited_color_range) coeffs[i * 3 + i] = ILK_CSC_COEFF_LIMITED_RANGE; else coeffs[i * 3 + i] = ILK_CSC_COEFF_1_0; } } I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]); I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16); I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]); I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16); I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]); I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16); I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0); I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0); I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0); if (INTEL_GEN(dev_priv) > 6) { uint16_t postoff = 0; if (limited_color_range) postoff = (16 * (1 << 12) / 255) & 0x1fff; I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff); I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff); I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff); I915_WRITE(PIPE_CSC_MODE(pipe), 0); } else { uint32_t mode = CSC_MODE_YUV_TO_RGB; if (limited_color_range) mode |= CSC_BLACK_SCREEN_OFFSET; I915_WRITE(PIPE_CSC_MODE(pipe), mode); } } /* * Set up the pipe CSC unit on CherryView. */ static void cherryview_load_csc_matrix(struct drm_crtc_state *state) { struct drm_crtc *crtc = state->crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = to_intel_crtc(crtc)->pipe; uint32_t mode; if (state->ctm) { struct drm_color_ctm *ctm = state->ctm->data; uint16_t coeffs[9] = { 0, }; int i; for (i = 0; i < ARRAY_SIZE(coeffs); i++) { uint64_t abs_coeff = ((1ULL << 63) - 1) & ctm->matrix[i]; /* Round coefficient. */ abs_coeff += 1 << (32 - 13); /* Clamp to hardware limits. */ abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1); /* Write coefficients in S3.12 format. */ if (ctm->matrix[i] & (1ULL << 63)) coeffs[i] = 1 << 15; coeffs[i] |= ((abs_coeff >> 32) & 7) << 12; coeffs[i] |= (abs_coeff >> 20) & 0xfff; } I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe), coeffs[1] << 16 | coeffs[0]); I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe), coeffs[3] << 16 | coeffs[2]); I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe), coeffs[5] << 16 | coeffs[4]); I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe), coeffs[7] << 16 | coeffs[6]); I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]); } mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0); if (!crtc_state_is_legacy_gamma(state)) { mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) | (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0); } I915_WRITE(CGM_PIPE_MODE(pipe), mode); } void intel_color_set_csc(struct drm_crtc_state *crtc_state) { struct drm_device *dev = crtc_state->crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); if (dev_priv->display.load_csc_matrix) dev_priv->display.load_csc_matrix(crtc_state); } /* Loads the legacy palette/gamma unit for the CRTC. */ static void i9xx_load_luts_internal(struct drm_crtc *crtc, struct drm_property_blob *blob, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; int i; if (HAS_GMCH_DISPLAY(dev_priv)) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); } if (blob) { struct drm_color_lut *lut = blob->data; for (i = 0; i < 256; i++) { uint32_t word = (drm_color_lut_extract(lut[i].red, 8) << 16) | (drm_color_lut_extract(lut[i].green, 8) << 8) | drm_color_lut_extract(lut[i].blue, 8); if (HAS_GMCH_DISPLAY(dev_priv)) I915_WRITE(PALETTE(pipe, i), word); else I915_WRITE(LGC_PALETTE(pipe, i), word); } } else { for (i = 0; i < 256; i++) { uint32_t word = (i << 16) | (i << 8) | i; if (HAS_GMCH_DISPLAY(dev_priv)) I915_WRITE(PALETTE(pipe, i), word); else I915_WRITE(LGC_PALETTE(pipe, i), word); } } } static void i9xx_load_luts(struct drm_crtc_state *crtc_state) { i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut, to_intel_crtc_state(crtc_state)); } /* Loads the legacy palette/gamma unit for the CRTC on Haswell. */ static void haswell_load_luts(struct drm_crtc_state *crtc_state) { struct drm_crtc *crtc = crtc_state->crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state); bool reenable_ips = false; /* * Workaround : Do not read or write the pipe palette/gamma data while * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. */ if (IS_HASWELL(dev_priv) && intel_crtc_state->ips_enabled && (intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) { hsw_disable_ips(intel_crtc_state); reenable_ips = true; } intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT; I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT); i9xx_load_luts(crtc_state); if (reenable_ips) hsw_enable_ips(intel_crtc_state); } static void bdw_load_degamma_lut(struct drm_crtc_state *state) { struct drm_i915_private *dev_priv = to_i915(state->crtc->dev); enum pipe pipe = to_intel_crtc(state->crtc)->pipe; uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size; I915_WRITE(PREC_PAL_INDEX(pipe), PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT); if (state->degamma_lut) { struct drm_color_lut *lut = state->degamma_lut->data; for (i = 0; i < lut_size; i++) { uint32_t word = drm_color_lut_extract(lut[i].red, 10) << 20 | drm_color_lut_extract(lut[i].green, 10) << 10 | drm_color_lut_extract(lut[i].blue, 10); I915_WRITE(PREC_PAL_DATA(pipe), word); } } else { for (i = 0; i < lut_size; i++) { uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1); I915_WRITE(PREC_PAL_DATA(pipe), (v << 20) | (v << 10) | v); } } } static void bdw_load_gamma_lut(struct drm_crtc_state *state, u32 offset) { struct drm_i915_private *dev_priv = to_i915(state->crtc->dev); enum pipe pipe = to_intel_crtc(state->crtc)->pipe; uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size; WARN_ON(offset & ~PAL_PREC_INDEX_VALUE_MASK); I915_WRITE(PREC_PAL_INDEX(pipe), (offset ? PAL_PREC_SPLIT_MODE : 0) | PAL_PREC_AUTO_INCREMENT | offset); if (state->gamma_lut) { struct drm_color_lut *lut = state->gamma_lut->data; for (i = 0; i < lut_size; i++) { uint32_t word = (drm_color_lut_extract(lut[i].red, 10) << 20) | (drm_color_lut_extract(lut[i].green, 10) << 10) | drm_color_lut_extract(lut[i].blue, 10); I915_WRITE(PREC_PAL_DATA(pipe), word); } /* Program the max register to clamp values > 1.0. */ i = lut_size - 1; I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), drm_color_lut_extract(lut[i].red, 16)); I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), drm_color_lut_extract(lut[i].green, 16)); I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), drm_color_lut_extract(lut[i].blue, 16)); } else { for (i = 0; i < lut_size; i++) { uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1); I915_WRITE(PREC_PAL_DATA(pipe), (v << 20) | (v << 10) | v); } I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1); I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1); I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1); } } /* Loads the palette/gamma unit for the CRTC on Broadwell+. */ static void broadwell_load_luts(struct drm_crtc_state *state) { struct drm_i915_private *dev_priv = to_i915(state->crtc->dev); struct intel_crtc_state *intel_state = to_intel_crtc_state(state); enum pipe pipe = to_intel_crtc(state->crtc)->pipe; if (crtc_state_is_legacy_gamma(state)) { haswell_load_luts(state); return; } bdw_load_degamma_lut(state); bdw_load_gamma_lut(state, INTEL_INFO(dev_priv)->color.degamma_lut_size); intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT; I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT); POSTING_READ(GAMMA_MODE(pipe)); /* * Reset the index, otherwise it prevents the legacy palette to be * written properly. */ I915_WRITE(PREC_PAL_INDEX(pipe), 0); } static void glk_load_degamma_lut(struct drm_crtc_state *state) { struct drm_i915_private *dev_priv = to_i915(state->crtc->dev); enum pipe pipe = to_intel_crtc(state->crtc)->pipe; const uint32_t lut_size = 33; uint32_t i; /* * When setting the auto-increment bit, the hardware seems to * ignore the index bits, so we need to reset it to index 0 * separately. */ I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), 0); I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT); /* * FIXME: The pipe degamma table in geminilake doesn't support * different values per channel, so this just loads a linear table. */ for (i = 0; i < lut_size; i++) { uint32_t v = (i * (1 << 16)) / (lut_size - 1); I915_WRITE(PRE_CSC_GAMC_DATA(pipe), v); } /* Clamp values > 1.0. */ while (i++ < 35) I915_WRITE(PRE_CSC_GAMC_DATA(pipe), (1 << 16)); } static void glk_load_luts(struct drm_crtc_state *state) { struct drm_crtc *crtc = state->crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *intel_state = to_intel_crtc_state(state); enum pipe pipe = to_intel_crtc(crtc)->pipe; glk_load_degamma_lut(state); if (crtc_state_is_legacy_gamma(state)) { haswell_load_luts(state); return; } bdw_load_gamma_lut(state, 0); intel_state->gamma_mode = GAMMA_MODE_MODE_10BIT; I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_10BIT); POSTING_READ(GAMMA_MODE(pipe)); } /* Loads the palette/gamma unit for the CRTC on CherryView. */ static void cherryview_load_luts(struct drm_crtc_state *state) { struct drm_crtc *crtc = state->crtc; struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; struct drm_color_lut *lut; uint32_t i, lut_size; uint32_t word0, word1; if (crtc_state_is_legacy_gamma(state)) { /* Turn off degamma/gamma on CGM block. */ I915_WRITE(CGM_PIPE_MODE(pipe), (state->ctm ? CGM_PIPE_MODE_CSC : 0)); i9xx_load_luts_internal(crtc, state->gamma_lut, to_intel_crtc_state(state)); return; } if (state->degamma_lut) { lut = state->degamma_lut->data; lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size; for (i = 0; i < lut_size; i++) { /* Write LUT in U0.14 format. */ word0 = (drm_color_lut_extract(lut[i].green, 14) << 16) | drm_color_lut_extract(lut[i].blue, 14); word1 = drm_color_lut_extract(lut[i].red, 14); I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0); I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1); } } if (state->gamma_lut) { lut = state->gamma_lut->data; lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size; for (i = 0; i < lut_size; i++) { /* Write LUT in U0.10 format. */ word0 = (drm_color_lut_extract(lut[i].green, 10) << 16) | drm_color_lut_extract(lut[i].blue, 10); word1 = drm_color_lut_extract(lut[i].red, 10); I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0); I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1); } } I915_WRITE(CGM_PIPE_MODE(pipe), (state->ctm ? CGM_PIPE_MODE_CSC : 0) | (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) | (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0)); /* * Also program a linear LUT in the legacy block (behind the * CGM block). */ i9xx_load_luts_internal(crtc, NULL, to_intel_crtc_state(state)); } void intel_color_load_luts(struct drm_crtc_state *crtc_state) { struct drm_device *dev = crtc_state->crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); dev_priv->display.load_luts(crtc_state); } int intel_color_check(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); size_t gamma_length, degamma_length; degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size; gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size; /* * We allow both degamma & gamma luts at the right size or * NULL. */ if ((!crtc_state->degamma_lut || drm_color_lut_size(crtc_state->degamma_lut) == degamma_length) && (!crtc_state->gamma_lut || drm_color_lut_size(crtc_state->gamma_lut) == gamma_length)) return 0; /* * We also allow no degamma lut/ctm and a gamma lut at the legacy * size (256 entries). */ if (crtc_state_is_legacy_gamma(crtc_state)) return 0; return -EINVAL; } void intel_color_init(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); drm_mode_crtc_set_gamma_size(crtc, 256); if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix; dev_priv->display.load_luts = cherryview_load_luts; } else if (IS_HASWELL(dev_priv)) { dev_priv->display.load_csc_matrix = ilk_load_csc_matrix; dev_priv->display.load_luts = haswell_load_luts; } else if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) { dev_priv->display.load_csc_matrix = ilk_load_csc_matrix; dev_priv->display.load_luts = broadwell_load_luts; } else if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) { dev_priv->display.load_csc_matrix = ilk_load_csc_matrix; dev_priv->display.load_luts = glk_load_luts; } else { dev_priv->display.load_luts = i9xx_load_luts; } /* Enable color management support when we have degamma & gamma LUTs. */ if (INTEL_INFO(dev_priv)->color.degamma_lut_size != 0 && INTEL_INFO(dev_priv)->color.gamma_lut_size != 0) drm_crtc_enable_color_mgmt(crtc, INTEL_INFO(dev_priv)->color.degamma_lut_size, true, INTEL_INFO(dev_priv)->color.gamma_lut_size); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1