Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Grégor Boirie | 4623 | 99.31% | 1 | 25.00% |
Nicholas Mc Guire | 20 | 0.43% | 1 | 25.00% |
Joe Perches | 9 | 0.19% | 1 | 25.00% |
Geert Uytterhoeven | 3 | 0.06% | 1 | 25.00% |
Total | 4655 | 4 |
/* * Murata ZPA2326 pressure and temperature sensor IIO driver * * Copyright (c) 2016 Parrot S.A. * * Author: Gregor Boirie <gregor.boirie@parrot.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ /** * DOC: ZPA2326 theory of operations * * This driver supports %INDIO_DIRECT_MODE and %INDIO_BUFFER_TRIGGERED IIO * modes. * A internal hardware trigger is also implemented to dispatch registered IIO * trigger consumers upon "sample ready" interrupts. * * ZPA2326 hardware supports 2 sampling mode: one shot and continuous. * * A complete one shot sampling cycle gets device out of low power mode, * performs pressure and temperature measurements, then automatically switches * back to low power mode. It is meant for on demand sampling with optimal power * saving at the cost of lower sampling rate and higher software overhead. * This is a natural candidate for IIO read_raw hook implementation * (%INDIO_DIRECT_MODE). It is also used for triggered buffering support to * ensure explicit synchronization with external trigger events * (%INDIO_BUFFER_TRIGGERED). * * The continuous mode works according to a periodic hardware measurement * process continuously pushing samples into an internal hardware FIFO (for * pressure samples only). Measurement cycle completion may be signaled by a * "sample ready" interrupt. * Typical software sequence of operations : * - get device out of low power mode, * - setup hardware sampling period, * - at end of period, upon data ready interrupt: pop pressure samples out of * hardware FIFO and fetch temperature sample * - when no longer needed, stop sampling process by putting device into * low power mode. * This mode is used to implement %INDIO_BUFFER_TRIGGERED mode if device tree * declares a valid interrupt line. In this case, the internal hardware trigger * drives acquisition. * * Note that hardware sampling frequency is taken into account only when * internal hardware trigger is attached as the highest sampling rate seems to * be the most energy efficient. * * TODO: * preset pressure threshold crossing / IIO events ; * differential pressure sampling ; * hardware samples averaging. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "zpa2326.h" /* 200 ms should be enough for the longest conversion time in one-shot mode. */ #define ZPA2326_CONVERSION_JIFFIES (HZ / 5) /* There should be a 1 ms delay (Tpup) after getting out of reset. */ #define ZPA2326_TPUP_USEC_MIN (1000) #define ZPA2326_TPUP_USEC_MAX (2000) /** * struct zpa2326_frequency - Hardware sampling frequency descriptor * @hz : Frequency in Hertz. * @odr: Output Data Rate word as expected by %ZPA2326_CTRL_REG3_REG. */ struct zpa2326_frequency { int hz; u16 odr; }; /* * Keep these in strict ascending order: last array entry is expected to * correspond to the highest sampling frequency. */ static const struct zpa2326_frequency zpa2326_sampling_frequencies[] = { { .hz = 1, .odr = 1 << ZPA2326_CTRL_REG3_ODR_SHIFT }, { .hz = 5, .odr = 5 << ZPA2326_CTRL_REG3_ODR_SHIFT }, { .hz = 11, .odr = 6 << ZPA2326_CTRL_REG3_ODR_SHIFT }, { .hz = 23, .odr = 7 << ZPA2326_CTRL_REG3_ODR_SHIFT }, }; /* Return the highest hardware sampling frequency available. */ static const struct zpa2326_frequency *zpa2326_highest_frequency(void) { return &zpa2326_sampling_frequencies[ ARRAY_SIZE(zpa2326_sampling_frequencies) - 1]; } /** * struct zpa_private - Per-device internal private state * @timestamp: Buffered samples ready datum. * @regmap: Underlying I2C / SPI bus adapter used to abstract slave register * accesses. * @result: Allows sampling logic to get completion status of operations * that interrupt handlers perform asynchronously. * @data_ready: Interrupt handler uses this to wake user context up at sampling * operation completion. * @trigger: Optional hardware / interrupt driven trigger used to notify * external devices a new sample is ready. * @waken: Flag indicating whether or not device has just been powered on. * @irq: Optional interrupt line: negative or zero if not declared into * DT, in which case sampling logic keeps polling status register * to detect completion. * @frequency: Current hardware sampling frequency. * @vref: Power / voltage reference. * @vdd: Power supply. */ struct zpa2326_private { s64 timestamp; struct regmap *regmap; int result; struct completion data_ready; struct iio_trigger *trigger; bool waken; int irq; const struct zpa2326_frequency *frequency; struct regulator *vref; struct regulator *vdd; }; #define zpa2326_err(idev, fmt, ...) \ dev_err(idev->dev.parent, fmt "\n", ##__VA_ARGS__) #define zpa2326_warn(idev, fmt, ...) \ dev_warn(idev->dev.parent, fmt "\n", ##__VA_ARGS__) #define zpa2326_dbg(idev, fmt, ...) \ dev_dbg(idev->dev.parent, fmt "\n", ##__VA_ARGS__) bool zpa2326_isreg_writeable(struct device *dev, unsigned int reg) { switch (reg) { case ZPA2326_REF_P_XL_REG: case ZPA2326_REF_P_L_REG: case ZPA2326_REF_P_H_REG: case ZPA2326_RES_CONF_REG: case ZPA2326_CTRL_REG0_REG: case ZPA2326_CTRL_REG1_REG: case ZPA2326_CTRL_REG2_REG: case ZPA2326_CTRL_REG3_REG: case ZPA2326_THS_P_LOW_REG: case ZPA2326_THS_P_HIGH_REG: return true; default: return false; } } EXPORT_SYMBOL_GPL(zpa2326_isreg_writeable); bool zpa2326_isreg_readable(struct device *dev, unsigned int reg) { switch (reg) { case ZPA2326_REF_P_XL_REG: case ZPA2326_REF_P_L_REG: case ZPA2326_REF_P_H_REG: case ZPA2326_DEVICE_ID_REG: case ZPA2326_RES_CONF_REG: case ZPA2326_CTRL_REG0_REG: case ZPA2326_CTRL_REG1_REG: case ZPA2326_CTRL_REG2_REG: case ZPA2326_CTRL_REG3_REG: case ZPA2326_INT_SOURCE_REG: case ZPA2326_THS_P_LOW_REG: case ZPA2326_THS_P_HIGH_REG: case ZPA2326_STATUS_REG: case ZPA2326_PRESS_OUT_XL_REG: case ZPA2326_PRESS_OUT_L_REG: case ZPA2326_PRESS_OUT_H_REG: case ZPA2326_TEMP_OUT_L_REG: case ZPA2326_TEMP_OUT_H_REG: return true; default: return false; } } EXPORT_SYMBOL_GPL(zpa2326_isreg_readable); bool zpa2326_isreg_precious(struct device *dev, unsigned int reg) { switch (reg) { case ZPA2326_INT_SOURCE_REG: case ZPA2326_PRESS_OUT_H_REG: return true; default: return false; } } EXPORT_SYMBOL_GPL(zpa2326_isreg_precious); /** * zpa2326_enable_device() - Enable device, i.e. get out of low power mode. * @indio_dev: The IIO device associated with the hardware to enable. * * Required to access complete register space and to perform any sampling * or control operations. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_enable_device(const struct iio_dev *indio_dev) { int err; err = regmap_write(((struct zpa2326_private *) iio_priv(indio_dev))->regmap, ZPA2326_CTRL_REG0_REG, ZPA2326_CTRL_REG0_ENABLE); if (err) { zpa2326_err(indio_dev, "failed to enable device (%d)", err); return err; } zpa2326_dbg(indio_dev, "enabled"); return 0; } /** * zpa2326_sleep() - Disable device, i.e. switch to low power mode. * @indio_dev: The IIO device associated with the hardware to disable. * * Only %ZPA2326_DEVICE_ID_REG and %ZPA2326_CTRL_REG0_REG registers may be * accessed once device is in the disabled state. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_sleep(const struct iio_dev *indio_dev) { int err; err = regmap_write(((struct zpa2326_private *) iio_priv(indio_dev))->regmap, ZPA2326_CTRL_REG0_REG, 0); if (err) { zpa2326_err(indio_dev, "failed to sleep (%d)", err); return err; } zpa2326_dbg(indio_dev, "sleeping"); return 0; } /** * zpa2326_reset_device() - Reset device to default hardware state. * @indio_dev: The IIO device associated with the hardware to reset. * * Disable sampling and empty hardware FIFO. * Device must be enabled before reset, i.e. not in low power mode. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_reset_device(const struct iio_dev *indio_dev) { int err; err = regmap_write(((struct zpa2326_private *) iio_priv(indio_dev))->regmap, ZPA2326_CTRL_REG2_REG, ZPA2326_CTRL_REG2_SWRESET); if (err) { zpa2326_err(indio_dev, "failed to reset device (%d)", err); return err; } usleep_range(ZPA2326_TPUP_USEC_MIN, ZPA2326_TPUP_USEC_MAX); zpa2326_dbg(indio_dev, "reset"); return 0; } /** * zpa2326_start_oneshot() - Start a single sampling cycle, i.e. in one shot * mode. * @indio_dev: The IIO device associated with the sampling hardware. * * Device must have been previously enabled and configured for one shot mode. * Device will be switched back to low power mode at end of cycle. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_start_oneshot(const struct iio_dev *indio_dev) { int err; err = regmap_write(((struct zpa2326_private *) iio_priv(indio_dev))->regmap, ZPA2326_CTRL_REG0_REG, ZPA2326_CTRL_REG0_ENABLE | ZPA2326_CTRL_REG0_ONE_SHOT); if (err) { zpa2326_err(indio_dev, "failed to start one shot cycle (%d)", err); return err; } zpa2326_dbg(indio_dev, "one shot cycle started"); return 0; } /** * zpa2326_power_on() - Power on device to allow subsequent configuration. * @indio_dev: The IIO device associated with the sampling hardware. * @private: Internal private state related to @indio_dev. * * Sampling will be disabled, preventing strange things from happening in our * back. Hardware FIFO content will be cleared. * When successful, device will be left in the enabled state to allow further * configuration. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_power_on(const struct iio_dev *indio_dev, const struct zpa2326_private *private) { int err; err = regulator_enable(private->vref); if (err) return err; err = regulator_enable(private->vdd); if (err) goto vref; zpa2326_dbg(indio_dev, "powered on"); err = zpa2326_enable_device(indio_dev); if (err) goto vdd; err = zpa2326_reset_device(indio_dev); if (err) goto sleep; return 0; sleep: zpa2326_sleep(indio_dev); vdd: regulator_disable(private->vdd); vref: regulator_disable(private->vref); zpa2326_dbg(indio_dev, "powered off"); return err; } /** * zpa2326_power_off() - Power off device, i.e. disable attached power * regulators. * @indio_dev: The IIO device associated with the sampling hardware. * @private: Internal private state related to @indio_dev. * * Return: Zero when successful, a negative error code otherwise. */ static void zpa2326_power_off(const struct iio_dev *indio_dev, const struct zpa2326_private *private) { regulator_disable(private->vdd); regulator_disable(private->vref); zpa2326_dbg(indio_dev, "powered off"); } /** * zpa2326_config_oneshot() - Setup device for one shot / on demand mode. * @indio_dev: The IIO device associated with the sampling hardware. * @irq: Optional interrupt line the hardware uses to notify new data * samples are ready. Negative or zero values indicate no interrupts * are available, meaning polling is required. * * Output Data Rate is configured for the highest possible rate so that * conversion time and power consumption are reduced to a minimum. * Note that hardware internal averaging machinery (not implemented in this * driver) is not applicable in this mode. * * Device must have been previously enabled before calling * zpa2326_config_oneshot(). * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_config_oneshot(const struct iio_dev *indio_dev, int irq) { struct regmap *regs = ((struct zpa2326_private *) iio_priv(indio_dev))->regmap; const struct zpa2326_frequency *freq = zpa2326_highest_frequency(); int err; /* Setup highest available Output Data Rate for one shot mode. */ err = regmap_write(regs, ZPA2326_CTRL_REG3_REG, freq->odr); if (err) return err; if (irq > 0) { /* Request interrupt when new sample is available. */ err = regmap_write(regs, ZPA2326_CTRL_REG1_REG, (u8)~ZPA2326_CTRL_REG1_MASK_DATA_READY); if (err) { dev_err(indio_dev->dev.parent, "failed to setup one shot mode (%d)", err); return err; } } zpa2326_dbg(indio_dev, "one shot mode setup @%dHz", freq->hz); return 0; } /** * zpa2326_clear_fifo() - Clear remaining entries in hardware FIFO. * @indio_dev: The IIO device associated with the sampling hardware. * @min_count: Number of samples present within hardware FIFO. * * @min_count argument is a hint corresponding to the known minimum number of * samples currently living in the FIFO. This allows to reduce the number of bus * accesses by skipping status register read operation as long as we know for * sure there are still entries left. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_clear_fifo(const struct iio_dev *indio_dev, unsigned int min_count) { struct regmap *regs = ((struct zpa2326_private *) iio_priv(indio_dev))->regmap; int err; unsigned int val; if (!min_count) { /* * No hint: read status register to determine whether FIFO is * empty or not. */ err = regmap_read(regs, ZPA2326_STATUS_REG, &val); if (err < 0) goto err; if (val & ZPA2326_STATUS_FIFO_E) /* Fifo is empty: nothing to trash. */ return 0; } /* Clear FIFO. */ do { /* * A single fetch from pressure MSB register is enough to pop * values out of FIFO. */ err = regmap_read(regs, ZPA2326_PRESS_OUT_H_REG, &val); if (err < 0) goto err; if (min_count) { /* * We know for sure there are at least min_count entries * left in FIFO. Skip status register read. */ min_count--; continue; } err = regmap_read(regs, ZPA2326_STATUS_REG, &val); if (err < 0) goto err; } while (!(val & ZPA2326_STATUS_FIFO_E)); zpa2326_dbg(indio_dev, "FIFO cleared"); return 0; err: zpa2326_err(indio_dev, "failed to clear FIFO (%d)", err); return err; } /** * zpa2326_dequeue_pressure() - Retrieve the most recent pressure sample from * hardware FIFO. * @indio_dev: The IIO device associated with the sampling hardware. * @pressure: Sampled pressure output. * * Note that ZPA2326 hardware FIFO stores pressure samples only. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_dequeue_pressure(const struct iio_dev *indio_dev, u32 *pressure) { struct regmap *regs = ((struct zpa2326_private *) iio_priv(indio_dev))->regmap; unsigned int val; int err; int cleared = -1; err = regmap_read(regs, ZPA2326_STATUS_REG, &val); if (err < 0) return err; *pressure = 0; if (val & ZPA2326_STATUS_P_OR) { /* * Fifo overrun : first sample dequeued from FIFO is the * newest. */ zpa2326_warn(indio_dev, "FIFO overflow"); err = regmap_bulk_read(regs, ZPA2326_PRESS_OUT_XL_REG, pressure, 3); if (err) return err; #define ZPA2326_FIFO_DEPTH (16U) /* Hardware FIFO may hold no more than 16 pressure samples. */ return zpa2326_clear_fifo(indio_dev, ZPA2326_FIFO_DEPTH - 1); } /* * Fifo has not overflown : retrieve newest sample. We need to pop * values out until FIFO is empty : last fetched pressure is the newest. * In nominal cases, we should find a single queued sample only. */ do { err = regmap_bulk_read(regs, ZPA2326_PRESS_OUT_XL_REG, pressure, 3); if (err) return err; err = regmap_read(regs, ZPA2326_STATUS_REG, &val); if (err < 0) return err; cleared++; } while (!(val & ZPA2326_STATUS_FIFO_E)); if (cleared) /* * Samples were pushed by hardware during previous rounds but we * didn't consume them fast enough: inform user. */ zpa2326_dbg(indio_dev, "cleared %d FIFO entries", cleared); return 0; } /** * zpa2326_fill_sample_buffer() - Enqueue new channel samples to IIO buffer. * @indio_dev: The IIO device associated with the sampling hardware. * @private: Internal private state related to @indio_dev. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_fill_sample_buffer(struct iio_dev *indio_dev, const struct zpa2326_private *private) { struct { u32 pressure; u16 temperature; u64 timestamp; } sample; int err; if (test_bit(0, indio_dev->active_scan_mask)) { /* Get current pressure from hardware FIFO. */ err = zpa2326_dequeue_pressure(indio_dev, &sample.pressure); if (err) { zpa2326_warn(indio_dev, "failed to fetch pressure (%d)", err); return err; } } if (test_bit(1, indio_dev->active_scan_mask)) { /* Get current temperature. */ err = regmap_bulk_read(private->regmap, ZPA2326_TEMP_OUT_L_REG, &sample.temperature, 2); if (err) { zpa2326_warn(indio_dev, "failed to fetch temperature (%d)", err); return err; } } /* * Now push samples using timestamp stored either : * - by hardware interrupt handler if interrupt is available: see * zpa2326_handle_irq(), * - or oneshot completion polling machinery : see * zpa2326_trigger_handler(). */ zpa2326_dbg(indio_dev, "filling raw samples buffer"); iio_push_to_buffers_with_timestamp(indio_dev, &sample, private->timestamp); return 0; } #ifdef CONFIG_PM static int zpa2326_runtime_suspend(struct device *parent) { const struct iio_dev *indio_dev = dev_get_drvdata(parent); if (pm_runtime_autosuspend_expiration(parent)) /* Userspace changed autosuspend delay. */ return -EAGAIN; zpa2326_power_off(indio_dev, iio_priv(indio_dev)); return 0; } static int zpa2326_runtime_resume(struct device *parent) { const struct iio_dev *indio_dev = dev_get_drvdata(parent); return zpa2326_power_on(indio_dev, iio_priv(indio_dev)); } const struct dev_pm_ops zpa2326_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(zpa2326_runtime_suspend, zpa2326_runtime_resume, NULL) }; EXPORT_SYMBOL_GPL(zpa2326_pm_ops); /** * zpa2326_resume() - Request the PM layer to power supply the device. * @indio_dev: The IIO device associated with the sampling hardware. * * Return: * < 0 - a negative error code meaning failure ; * 0 - success, device has just been powered up ; * 1 - success, device was already powered. */ static int zpa2326_resume(const struct iio_dev *indio_dev) { int err; err = pm_runtime_get_sync(indio_dev->dev.parent); if (err < 0) return err; if (err > 0) { /* * Device was already power supplied: get it out of low power * mode and inform caller. */ zpa2326_enable_device(indio_dev); return 1; } /* Inform caller device has just been brought back to life. */ return 0; } /** * zpa2326_suspend() - Schedule a power down using autosuspend feature of PM * layer. * @indio_dev: The IIO device associated with the sampling hardware. * * Device is switched to low power mode at first to save power even when * attached regulator is a "dummy" one. */ static void zpa2326_suspend(struct iio_dev *indio_dev) { struct device *parent = indio_dev->dev.parent; zpa2326_sleep(indio_dev); pm_runtime_mark_last_busy(parent); pm_runtime_put_autosuspend(parent); } static void zpa2326_init_runtime(struct device *parent) { pm_runtime_get_noresume(parent); pm_runtime_set_active(parent); pm_runtime_enable(parent); pm_runtime_set_autosuspend_delay(parent, 1000); pm_runtime_use_autosuspend(parent); pm_runtime_mark_last_busy(parent); pm_runtime_put_autosuspend(parent); } static void zpa2326_fini_runtime(struct device *parent) { pm_runtime_disable(parent); pm_runtime_set_suspended(parent); } #else /* !CONFIG_PM */ static int zpa2326_resume(const struct iio_dev *indio_dev) { zpa2326_enable_device(indio_dev); return 0; } static void zpa2326_suspend(struct iio_dev *indio_dev) { zpa2326_sleep(indio_dev); } #define zpa2326_init_runtime(_parent) #define zpa2326_fini_runtime(_parent) #endif /* !CONFIG_PM */ /** * zpa2326_handle_irq() - Process hardware interrupts. * @irq: Interrupt line the hardware uses to notify new data has arrived. * @data: The IIO device associated with the sampling hardware. * * Timestamp buffered samples as soon as possible then schedule threaded bottom * half. * * Return: Always successful. */ static irqreturn_t zpa2326_handle_irq(int irq, void *data) { struct iio_dev *indio_dev = data; if (iio_buffer_enabled(indio_dev)) { /* Timestamping needed for buffered sampling only. */ ((struct zpa2326_private *) iio_priv(indio_dev))->timestamp = iio_get_time_ns(indio_dev); } return IRQ_WAKE_THREAD; } /** * zpa2326_handle_threaded_irq() - Interrupt bottom-half handler. * @irq: Interrupt line the hardware uses to notify new data has arrived. * @data: The IIO device associated with the sampling hardware. * * Mainly ensures interrupt is caused by a real "new sample available" * condition. This relies upon the ability to perform blocking / sleeping bus * accesses to slave's registers. This is why zpa2326_handle_threaded_irq() is * called from within a thread, i.e. not called from hard interrupt context. * * When device is using its own internal hardware trigger in continuous sampling * mode, data are available into hardware FIFO once interrupt has occurred. All * we have to do is to dispatch the trigger, which in turn will fetch data and * fill IIO buffer. * * When not using its own internal hardware trigger, the device has been * configured in one-shot mode either by an external trigger or the IIO read_raw * hook. This means one of the latter is currently waiting for sampling * completion, in which case we must simply wake it up. * * See zpa2326_trigger_handler(). * * Return: * %IRQ_NONE - no consistent interrupt happened ; * %IRQ_HANDLED - there was new samples available. */ static irqreturn_t zpa2326_handle_threaded_irq(int irq, void *data) { struct iio_dev *indio_dev = data; struct zpa2326_private *priv = iio_priv(indio_dev); unsigned int val; bool cont; irqreturn_t ret = IRQ_NONE; /* * Are we using our own internal trigger in triggered buffer mode, i.e., * currently working in continuous sampling mode ? */ cont = (iio_buffer_enabled(indio_dev) && iio_trigger_using_own(indio_dev)); /* * Device works according to a level interrupt scheme: reading interrupt * status de-asserts interrupt line. */ priv->result = regmap_read(priv->regmap, ZPA2326_INT_SOURCE_REG, &val); if (priv->result < 0) { if (cont) return IRQ_NONE; goto complete; } /* Data ready is the only interrupt source we requested. */ if (!(val & ZPA2326_INT_SOURCE_DATA_READY)) { /* * Interrupt happened but no new sample available: likely caused * by spurious interrupts, in which case, returning IRQ_NONE * allows to benefit from the generic spurious interrupts * handling. */ zpa2326_warn(indio_dev, "unexpected interrupt status %02x", val); if (cont) return IRQ_NONE; priv->result = -ENODATA; goto complete; } /* New sample available: dispatch internal trigger consumers. */ iio_trigger_poll_chained(priv->trigger); if (cont) /* * Internal hardware trigger has been scheduled above : it will * fetch data on its own. */ return IRQ_HANDLED; ret = IRQ_HANDLED; complete: /* * Wake up direct or externaly triggered buffer mode waiters: see * zpa2326_sample_oneshot() and zpa2326_trigger_handler(). */ complete(&priv->data_ready); return ret; } /** * zpa2326_wait_oneshot_completion() - Wait for oneshot data ready interrupt. * @indio_dev: The IIO device associated with the sampling hardware. * @private: Internal private state related to @indio_dev. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_wait_oneshot_completion(const struct iio_dev *indio_dev, struct zpa2326_private *private) { unsigned int val; long timeout; zpa2326_dbg(indio_dev, "waiting for one shot completion interrupt"); timeout = wait_for_completion_interruptible_timeout( &private->data_ready, ZPA2326_CONVERSION_JIFFIES); if (timeout > 0) /* * Interrupt handler completed before timeout: return operation * status. */ return private->result; /* Clear all interrupts just to be sure. */ regmap_read(private->regmap, ZPA2326_INT_SOURCE_REG, &val); if (!timeout) { /* Timed out. */ zpa2326_warn(indio_dev, "no one shot interrupt occurred (%ld)", timeout); return -ETIME; } zpa2326_warn(indio_dev, "wait for one shot interrupt cancelled"); return -ERESTARTSYS; } static int zpa2326_init_managed_irq(struct device *parent, struct iio_dev *indio_dev, struct zpa2326_private *private, int irq) { int err; private->irq = irq; if (irq <= 0) { /* * Platform declared no interrupt line: device will be polled * for data availability. */ dev_info(parent, "no interrupt found, running in polling mode"); return 0; } init_completion(&private->data_ready); /* Request handler to be scheduled into threaded interrupt context. */ err = devm_request_threaded_irq(parent, irq, zpa2326_handle_irq, zpa2326_handle_threaded_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, dev_name(parent), indio_dev); if (err) { dev_err(parent, "failed to request interrupt %d (%d)", irq, err); return err; } dev_info(parent, "using interrupt %d", irq); return 0; } /** * zpa2326_poll_oneshot_completion() - Actively poll for one shot data ready. * @indio_dev: The IIO device associated with the sampling hardware. * * Loop over registers content to detect end of sampling cycle. Used when DT * declared no valid interrupt lines. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_poll_oneshot_completion(const struct iio_dev *indio_dev) { unsigned long tmout = jiffies + ZPA2326_CONVERSION_JIFFIES; struct regmap *regs = ((struct zpa2326_private *) iio_priv(indio_dev))->regmap; unsigned int val; int err; zpa2326_dbg(indio_dev, "polling for one shot completion"); /* * At least, 100 ms is needed for the device to complete its one-shot * cycle. */ if (msleep_interruptible(100)) return -ERESTARTSYS; /* Poll for conversion completion in hardware. */ while (true) { err = regmap_read(regs, ZPA2326_CTRL_REG0_REG, &val); if (err < 0) goto err; if (!(val & ZPA2326_CTRL_REG0_ONE_SHOT)) /* One-shot bit self clears at conversion end. */ break; if (time_after(jiffies, tmout)) { /* Prevent from waiting forever : let's time out. */ err = -ETIME; goto err; } usleep_range(10000, 20000); } /* * In oneshot mode, pressure sample availability guarantees that * temperature conversion has also completed : just check pressure * status bit to keep things simple. */ err = regmap_read(regs, ZPA2326_STATUS_REG, &val); if (err < 0) goto err; if (!(val & ZPA2326_STATUS_P_DA)) { /* No sample available. */ err = -ENODATA; goto err; } return 0; err: zpa2326_warn(indio_dev, "failed to poll one shot completion (%d)", err); return err; } /** * zpa2326_fetch_raw_sample() - Retrieve a raw sample and convert it to CPU * endianness. * @indio_dev: The IIO device associated with the sampling hardware. * @type: Type of measurement / channel to fetch from. * @value: Sample output. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_fetch_raw_sample(const struct iio_dev *indio_dev, enum iio_chan_type type, int *value) { struct regmap *regs = ((struct zpa2326_private *) iio_priv(indio_dev))->regmap; int err; switch (type) { case IIO_PRESSURE: zpa2326_dbg(indio_dev, "fetching raw pressure sample"); err = regmap_bulk_read(regs, ZPA2326_PRESS_OUT_XL_REG, value, 3); if (err) { zpa2326_warn(indio_dev, "failed to fetch pressure (%d)", err); return err; } /* Pressure is a 24 bits wide little-endian unsigned int. */ *value = (((u8 *)value)[2] << 16) | (((u8 *)value)[1] << 8) | ((u8 *)value)[0]; return IIO_VAL_INT; case IIO_TEMP: zpa2326_dbg(indio_dev, "fetching raw temperature sample"); err = regmap_bulk_read(regs, ZPA2326_TEMP_OUT_L_REG, value, 2); if (err) { zpa2326_warn(indio_dev, "failed to fetch temperature (%d)", err); return err; } /* Temperature is a 16 bits wide little-endian signed int. */ *value = (int)le16_to_cpup((__le16 *)value); return IIO_VAL_INT; default: return -EINVAL; } } /** * zpa2326_sample_oneshot() - Perform a complete one shot sampling cycle. * @indio_dev: The IIO device associated with the sampling hardware. * @type: Type of measurement / channel to fetch from. * @value: Sample output. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_sample_oneshot(struct iio_dev *indio_dev, enum iio_chan_type type, int *value) { int ret; struct zpa2326_private *priv; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = zpa2326_resume(indio_dev); if (ret < 0) goto release; priv = iio_priv(indio_dev); if (ret > 0) { /* * We were already power supplied. Just clear hardware FIFO to * get rid of samples acquired during previous rounds (if any). * Sampling operation always generates both temperature and * pressure samples. The latter are always enqueued into * hardware FIFO. This may lead to situations were pressure * samples still sit into FIFO when previous cycle(s) fetched * temperature data only. * Hence, we need to clear hardware FIFO content to prevent from * getting outdated values at the end of current cycle. */ if (type == IIO_PRESSURE) { ret = zpa2326_clear_fifo(indio_dev, 0); if (ret) goto suspend; } } else { /* * We have just been power supplied, i.e. device is in default * "out of reset" state, meaning we need to reconfigure it * entirely. */ ret = zpa2326_config_oneshot(indio_dev, priv->irq); if (ret) goto suspend; } /* Start a sampling cycle in oneshot mode. */ ret = zpa2326_start_oneshot(indio_dev); if (ret) goto suspend; /* Wait for sampling cycle to complete. */ if (priv->irq > 0) ret = zpa2326_wait_oneshot_completion(indio_dev, priv); else ret = zpa2326_poll_oneshot_completion(indio_dev); if (ret) goto suspend; /* Retrieve raw sample value and convert it to CPU endianness. */ ret = zpa2326_fetch_raw_sample(indio_dev, type, value); suspend: zpa2326_suspend(indio_dev); release: iio_device_release_direct_mode(indio_dev); return ret; } /** * zpa2326_trigger_handler() - Perform an IIO buffered sampling round in one * shot mode. * @irq: The software interrupt assigned to @data * @data: The IIO poll function dispatched by external trigger our device is * attached to. * * Bottom-half handler called by the IIO trigger to which our device is * currently attached. Allows us to synchronize this device buffered sampling * either with external events (such as timer expiration, external device sample * ready, etc...) or with its own interrupt (internal hardware trigger). * * When using an external trigger, basically run the same sequence of operations * as for zpa2326_sample_oneshot() with the following hereafter. Hardware FIFO * is not cleared since already done at buffering enable time and samples * dequeueing always retrieves the most recent value. * * Otherwise, when internal hardware trigger has dispatched us, just fetch data * from hardware FIFO. * * Fetched data will pushed unprocessed to IIO buffer since samples conversion * is delegated to userspace in buffered mode (endianness, etc...). * * Return: * %IRQ_NONE - no consistent interrupt happened ; * %IRQ_HANDLED - there was new samples available. */ static irqreturn_t zpa2326_trigger_handler(int irq, void *data) { struct iio_dev *indio_dev = ((struct iio_poll_func *) data)->indio_dev; struct zpa2326_private *priv = iio_priv(indio_dev); bool cont; /* * We have been dispatched, meaning we are in triggered buffer mode. * Using our own internal trigger implies we are currently in continuous * hardware sampling mode. */ cont = iio_trigger_using_own(indio_dev); if (!cont) { /* On demand sampling : start a one shot cycle. */ if (zpa2326_start_oneshot(indio_dev)) goto out; /* Wait for sampling cycle to complete. */ if (priv->irq <= 0) { /* No interrupt available: poll for completion. */ if (zpa2326_poll_oneshot_completion(indio_dev)) goto out; /* Only timestamp sample once it is ready. */ priv->timestamp = iio_get_time_ns(indio_dev); } else { /* Interrupt handlers will timestamp for us. */ if (zpa2326_wait_oneshot_completion(indio_dev, priv)) goto out; } } /* Enqueue to IIO buffer / userspace. */ zpa2326_fill_sample_buffer(indio_dev, priv); out: if (!cont) /* Don't switch to low power if sampling continuously. */ zpa2326_sleep(indio_dev); /* Inform attached trigger we are done. */ iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } /** * zpa2326_preenable_buffer() - Prepare device for configuring triggered * sampling * modes. * @indio_dev: The IIO device associated with the sampling hardware. * * Basically power up device. * Called with IIO device's lock held. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_preenable_buffer(struct iio_dev *indio_dev) { int ret = zpa2326_resume(indio_dev); if (ret < 0) return ret; /* Tell zpa2326_postenable_buffer() if we have just been powered on. */ ((struct zpa2326_private *) iio_priv(indio_dev))->waken = iio_priv(indio_dev); return 0; } /** * zpa2326_postenable_buffer() - Configure device for triggered sampling. * @indio_dev: The IIO device associated with the sampling hardware. * * Basically setup one-shot mode if plugging external trigger. * Otherwise, let internal trigger configure continuous sampling : * see zpa2326_set_trigger_state(). * * If an error is returned, IIO layer will call our postdisable hook for us, * i.e. no need to explicitly power device off here. * Called with IIO device's lock held. * * Called with IIO device's lock held. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_postenable_buffer(struct iio_dev *indio_dev) { const struct zpa2326_private *priv = iio_priv(indio_dev); int err; if (!priv->waken) { /* * We were already power supplied. Just clear hardware FIFO to * get rid of samples acquired during previous rounds (if any). */ err = zpa2326_clear_fifo(indio_dev, 0); if (err) goto err; } if (!iio_trigger_using_own(indio_dev) && priv->waken) { /* * We are using an external trigger and we have just been * powered up: reconfigure one-shot mode. */ err = zpa2326_config_oneshot(indio_dev, priv->irq); if (err) goto err; } /* Plug our own trigger event handler. */ err = iio_triggered_buffer_postenable(indio_dev); if (err) goto err; return 0; err: zpa2326_err(indio_dev, "failed to enable buffering (%d)", err); return err; } static int zpa2326_postdisable_buffer(struct iio_dev *indio_dev) { zpa2326_suspend(indio_dev); return 0; } static const struct iio_buffer_setup_ops zpa2326_buffer_setup_ops = { .preenable = zpa2326_preenable_buffer, .postenable = zpa2326_postenable_buffer, .predisable = iio_triggered_buffer_predisable, .postdisable = zpa2326_postdisable_buffer }; /** * zpa2326_set_trigger_state() - Start / stop continuous sampling. * @trig: The trigger being attached to IIO device associated with the sampling * hardware. * @state: Tell whether to start (true) or stop (false) * * Basically enable / disable hardware continuous sampling mode. * * Called with IIO device's lock held at postenable() or predisable() time. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_set_trigger_state(struct iio_trigger *trig, bool state) { const struct iio_dev *indio_dev = dev_get_drvdata( trig->dev.parent); const struct zpa2326_private *priv = iio_priv(indio_dev); int err; if (!state) { /* * Switch trigger off : in case of failure, interrupt is left * disabled in order to prevent handler from accessing released * resources. */ unsigned int val; /* * As device is working in continuous mode, handlers may be * accessing resources we are currently freeing... * Prevent this by disabling interrupt handlers and ensure * the device will generate no more interrupts unless explicitly * required to, i.e. by restoring back to default one shot mode. */ disable_irq(priv->irq); /* * Disable continuous sampling mode to restore settings for * one shot / direct sampling operations. */ err = regmap_write(priv->regmap, ZPA2326_CTRL_REG3_REG, zpa2326_highest_frequency()->odr); if (err) return err; /* * Now that device won't generate interrupts on its own, * acknowledge any currently active interrupts (may happen on * rare occasions while stopping continuous mode). */ err = regmap_read(priv->regmap, ZPA2326_INT_SOURCE_REG, &val); if (err < 0) return err; /* * Re-enable interrupts only if we can guarantee the device will * generate no more interrupts to prevent handlers from * accessing released resources. */ enable_irq(priv->irq); zpa2326_dbg(indio_dev, "continuous mode stopped"); } else { /* * Switch trigger on : start continuous sampling at required * frequency. */ if (priv->waken) { /* Enable interrupt if getting out of reset. */ err = regmap_write(priv->regmap, ZPA2326_CTRL_REG1_REG, (u8) ~ZPA2326_CTRL_REG1_MASK_DATA_READY); if (err) return err; } /* Enable continuous sampling at specified frequency. */ err = regmap_write(priv->regmap, ZPA2326_CTRL_REG3_REG, ZPA2326_CTRL_REG3_ENABLE_MEAS | priv->frequency->odr); if (err) return err; zpa2326_dbg(indio_dev, "continuous mode setup @%dHz", priv->frequency->hz); } return 0; } static const struct iio_trigger_ops zpa2326_trigger_ops = { .set_trigger_state = zpa2326_set_trigger_state, }; /** * zpa2326_init_trigger() - Create an interrupt driven / hardware trigger * allowing to notify external devices a new sample is * ready. * @parent: Hardware sampling device @indio_dev is a child of. * @indio_dev: The IIO device associated with the sampling hardware. * @private: Internal private state related to @indio_dev. * @irq: Optional interrupt line the hardware uses to notify new data * samples are ready. Negative or zero values indicate no interrupts * are available, meaning polling is required. * * Only relevant when DT declares a valid interrupt line. * * Return: Zero when successful, a negative error code otherwise. */ static int zpa2326_init_managed_trigger(struct device *parent, struct iio_dev *indio_dev, struct zpa2326_private *private, int irq) { struct iio_trigger *trigger; int ret; if (irq <= 0) return 0; trigger = devm_iio_trigger_alloc(parent, "%s-dev%d", indio_dev->name, indio_dev->id); if (!trigger) return -ENOMEM; /* Basic setup. */ trigger->dev.parent = parent; trigger->ops = &zpa2326_trigger_ops; private->trigger = trigger; /* Register to triggers space. */ ret = devm_iio_trigger_register(parent, trigger); if (ret) dev_err(parent, "failed to register hardware trigger (%d)", ret); return ret; } static int zpa2326_get_frequency(const struct iio_dev *indio_dev) { return ((struct zpa2326_private *)iio_priv(indio_dev))->frequency->hz; } static int zpa2326_set_frequency(struct iio_dev *indio_dev, int hz) { struct zpa2326_private *priv = iio_priv(indio_dev); int freq; int err; /* Check if requested frequency is supported. */ for (freq = 0; freq < ARRAY_SIZE(zpa2326_sampling_frequencies); freq++) if (zpa2326_sampling_frequencies[freq].hz == hz) break; if (freq == ARRAY_SIZE(zpa2326_sampling_frequencies)) return -EINVAL; /* Don't allow changing frequency if buffered sampling is ongoing. */ err = iio_device_claim_direct_mode(indio_dev); if (err) return err; priv->frequency = &zpa2326_sampling_frequencies[freq]; iio_device_release_direct_mode(indio_dev); return 0; } /* Expose supported hardware sampling frequencies (Hz) through sysfs. */ static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1 5 11 23"); static struct attribute *zpa2326_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group zpa2326_attribute_group = { .attrs = zpa2326_attributes, }; static int zpa2326_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { switch (mask) { case IIO_CHAN_INFO_RAW: return zpa2326_sample_oneshot(indio_dev, chan->type, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_PRESSURE: /* * Pressure resolution is 1/64 Pascal. Scale to kPascal * as required by IIO ABI. */ *val = 1; *val2 = 64000; return IIO_VAL_FRACTIONAL; case IIO_TEMP: /* * Temperature follows the equation: * Temp[degC] = Tempcode * 0.00649 - 176.83 * where: * Tempcode is composed the raw sampled 16 bits. * * Hence, to produce a temperature in milli-degrees * Celsius according to IIO ABI, we need to apply the * following equation to raw samples: * Temp[milli degC] = (Tempcode + Offset) * Scale * where: * Offset = -176.83 / 0.00649 * Scale = 0.00649 * 1000 */ *val = 6; *val2 = 490000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: *val = -17683000; *val2 = 649; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: *val = zpa2326_get_frequency(indio_dev); return IIO_VAL_INT; default: return -EINVAL; } } static int zpa2326_write_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int val, int val2, long mask) { if ((mask != IIO_CHAN_INFO_SAMP_FREQ) || val2) return -EINVAL; return zpa2326_set_frequency(indio_dev, val); } static const struct iio_chan_spec zpa2326_channels[] = { [0] = { .type = IIO_PRESSURE, .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 24, .storagebits = 32, .endianness = IIO_LE, }, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, [1] = { .type = IIO_TEMP, .scan_index = 1, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_LE, }, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, [2] = IIO_CHAN_SOFT_TIMESTAMP(2), }; static const struct iio_info zpa2326_info = { .attrs = &zpa2326_attribute_group, .read_raw = zpa2326_read_raw, .write_raw = zpa2326_write_raw, }; static struct iio_dev *zpa2326_create_managed_iiodev(struct device *device, const char *name, struct regmap *regmap) { struct iio_dev *indio_dev; /* Allocate space to hold IIO device internal state. */ indio_dev = devm_iio_device_alloc(device, sizeof(struct zpa2326_private)); if (!indio_dev) return NULL; /* Setup for userspace synchronous on demand sampling. */ indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->dev.parent = device; indio_dev->channels = zpa2326_channels; indio_dev->num_channels = ARRAY_SIZE(zpa2326_channels); indio_dev->name = name; indio_dev->info = &zpa2326_info; return indio_dev; } int zpa2326_probe(struct device *parent, const char *name, int irq, unsigned int hwid, struct regmap *regmap) { struct iio_dev *indio_dev; struct zpa2326_private *priv; int err; unsigned int id; indio_dev = zpa2326_create_managed_iiodev(parent, name, regmap); if (!indio_dev) return -ENOMEM; priv = iio_priv(indio_dev); priv->vref = devm_regulator_get(parent, "vref"); if (IS_ERR(priv->vref)) return PTR_ERR(priv->vref); priv->vdd = devm_regulator_get(parent, "vdd"); if (IS_ERR(priv->vdd)) return PTR_ERR(priv->vdd); /* Set default hardware sampling frequency to highest rate supported. */ priv->frequency = zpa2326_highest_frequency(); /* * Plug device's underlying bus abstraction : this MUST be set before * registering interrupt handlers since an interrupt might happen if * power up sequence is not properly applied. */ priv->regmap = regmap; err = devm_iio_triggered_buffer_setup(parent, indio_dev, NULL, zpa2326_trigger_handler, &zpa2326_buffer_setup_ops); if (err) return err; err = zpa2326_init_managed_trigger(parent, indio_dev, priv, irq); if (err) return err; err = zpa2326_init_managed_irq(parent, indio_dev, priv, irq); if (err) return err; /* Power up to check device ID and perform initial hardware setup. */ err = zpa2326_power_on(indio_dev, priv); if (err) return err; /* Read id register to check we are talking to the right slave. */ err = regmap_read(regmap, ZPA2326_DEVICE_ID_REG, &id); if (err) goto sleep; if (id != hwid) { dev_err(parent, "found device with unexpected id %02x", id); err = -ENODEV; goto sleep; } err = zpa2326_config_oneshot(indio_dev, irq); if (err) goto sleep; /* Setup done : go sleeping. Device will be awaken upon user request. */ err = zpa2326_sleep(indio_dev); if (err) goto poweroff; dev_set_drvdata(parent, indio_dev); zpa2326_init_runtime(parent); err = iio_device_register(indio_dev); if (err) { zpa2326_fini_runtime(parent); goto poweroff; } return 0; sleep: /* Put to sleep just in case power regulators are "dummy" ones. */ zpa2326_sleep(indio_dev); poweroff: zpa2326_power_off(indio_dev, priv); return err; } EXPORT_SYMBOL_GPL(zpa2326_probe); void zpa2326_remove(const struct device *parent) { struct iio_dev *indio_dev = dev_get_drvdata(parent); iio_device_unregister(indio_dev); zpa2326_fini_runtime(indio_dev->dev.parent); zpa2326_sleep(indio_dev); zpa2326_power_off(indio_dev, iio_priv(indio_dev)); } EXPORT_SYMBOL_GPL(zpa2326_remove); MODULE_AUTHOR("Gregor Boirie <gregor.boirie@parrot.com>"); MODULE_DESCRIPTION("Core driver for Murata ZPA2326 pressure sensor"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1