Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Roland Dreier | 3042 | 80.22% | 18 | 47.37% |
Michael S. Tsirkin | 624 | 16.46% | 5 | 13.16% |
Jens Axboe | 72 | 1.90% | 2 | 5.26% |
Kees Cook | 17 | 0.45% | 2 | 5.26% |
Ishai Rabinovitz | 15 | 0.40% | 1 | 2.63% |
Jack Morgenstein | 5 | 0.13% | 1 | 2.63% |
Al Viro | 3 | 0.08% | 2 | 5.26% |
Alexey Dobriyan | 3 | 0.08% | 1 | 2.63% |
Tejun Heo | 3 | 0.08% | 1 | 2.63% |
Eli Cohen | 3 | 0.08% | 1 | 2.63% |
Sean Hefty | 2 | 0.05% | 1 | 2.63% |
Himanshu Jha | 1 | 0.03% | 1 | 2.63% |
Lorenzo Stoakes | 1 | 0.03% | 1 | 2.63% |
Davidlohr Bueso A | 1 | 0.03% | 1 | 2.63% |
Total | 3792 | 38 |
/* * Copyright (c) 2004, 2005 Topspin Communications. All rights reserved. * Copyright (c) 2005 Cisco Systems. All rights reserved. * Copyright (c) 2005 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> #include <asm/page.h> #include "mthca_memfree.h" #include "mthca_dev.h" #include "mthca_cmd.h" /* * We allocate in as big chunks as we can, up to a maximum of 256 KB * per chunk. */ enum { MTHCA_ICM_ALLOC_SIZE = 1 << 18, MTHCA_TABLE_CHUNK_SIZE = 1 << 18 }; struct mthca_user_db_table { struct mutex mutex; struct { u64 uvirt; struct scatterlist mem; int refcount; } page[0]; }; static void mthca_free_icm_pages(struct mthca_dev *dev, struct mthca_icm_chunk *chunk) { int i; if (chunk->nsg > 0) pci_unmap_sg(dev->pdev, chunk->mem, chunk->npages, PCI_DMA_BIDIRECTIONAL); for (i = 0; i < chunk->npages; ++i) __free_pages(sg_page(&chunk->mem[i]), get_order(chunk->mem[i].length)); } static void mthca_free_icm_coherent(struct mthca_dev *dev, struct mthca_icm_chunk *chunk) { int i; for (i = 0; i < chunk->npages; ++i) { dma_free_coherent(&dev->pdev->dev, chunk->mem[i].length, lowmem_page_address(sg_page(&chunk->mem[i])), sg_dma_address(&chunk->mem[i])); } } void mthca_free_icm(struct mthca_dev *dev, struct mthca_icm *icm, int coherent) { struct mthca_icm_chunk *chunk, *tmp; if (!icm) return; list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) { if (coherent) mthca_free_icm_coherent(dev, chunk); else mthca_free_icm_pages(dev, chunk); kfree(chunk); } kfree(icm); } static int mthca_alloc_icm_pages(struct scatterlist *mem, int order, gfp_t gfp_mask) { struct page *page; /* * Use __GFP_ZERO because buggy firmware assumes ICM pages are * cleared, and subtle failures are seen if they aren't. */ page = alloc_pages(gfp_mask | __GFP_ZERO, order); if (!page) return -ENOMEM; sg_set_page(mem, page, PAGE_SIZE << order, 0); return 0; } static int mthca_alloc_icm_coherent(struct device *dev, struct scatterlist *mem, int order, gfp_t gfp_mask) { void *buf = dma_alloc_coherent(dev, PAGE_SIZE << order, &sg_dma_address(mem), gfp_mask); if (!buf) return -ENOMEM; sg_set_buf(mem, buf, PAGE_SIZE << order); BUG_ON(mem->offset); sg_dma_len(mem) = PAGE_SIZE << order; return 0; } struct mthca_icm *mthca_alloc_icm(struct mthca_dev *dev, int npages, gfp_t gfp_mask, int coherent) { struct mthca_icm *icm; struct mthca_icm_chunk *chunk = NULL; int cur_order; int ret; /* We use sg_set_buf for coherent allocs, which assumes low memory */ BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM)); icm = kmalloc(sizeof *icm, gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); if (!icm) return icm; icm->refcount = 0; INIT_LIST_HEAD(&icm->chunk_list); cur_order = get_order(MTHCA_ICM_ALLOC_SIZE); while (npages > 0) { if (!chunk) { chunk = kmalloc(sizeof *chunk, gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); if (!chunk) goto fail; sg_init_table(chunk->mem, MTHCA_ICM_CHUNK_LEN); chunk->npages = 0; chunk->nsg = 0; list_add_tail(&chunk->list, &icm->chunk_list); } while (1 << cur_order > npages) --cur_order; if (coherent) ret = mthca_alloc_icm_coherent(&dev->pdev->dev, &chunk->mem[chunk->npages], cur_order, gfp_mask); else ret = mthca_alloc_icm_pages(&chunk->mem[chunk->npages], cur_order, gfp_mask); if (!ret) { ++chunk->npages; if (coherent) ++chunk->nsg; else if (chunk->npages == MTHCA_ICM_CHUNK_LEN) { chunk->nsg = pci_map_sg(dev->pdev, chunk->mem, chunk->npages, PCI_DMA_BIDIRECTIONAL); if (chunk->nsg <= 0) goto fail; } if (chunk->npages == MTHCA_ICM_CHUNK_LEN) chunk = NULL; npages -= 1 << cur_order; } else { --cur_order; if (cur_order < 0) goto fail; } } if (!coherent && chunk) { chunk->nsg = pci_map_sg(dev->pdev, chunk->mem, chunk->npages, PCI_DMA_BIDIRECTIONAL); if (chunk->nsg <= 0) goto fail; } return icm; fail: mthca_free_icm(dev, icm, coherent); return NULL; } int mthca_table_get(struct mthca_dev *dev, struct mthca_icm_table *table, int obj) { int i = (obj & (table->num_obj - 1)) * table->obj_size / MTHCA_TABLE_CHUNK_SIZE; int ret = 0; mutex_lock(&table->mutex); if (table->icm[i]) { ++table->icm[i]->refcount; goto out; } table->icm[i] = mthca_alloc_icm(dev, MTHCA_TABLE_CHUNK_SIZE >> PAGE_SHIFT, (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN, table->coherent); if (!table->icm[i]) { ret = -ENOMEM; goto out; } if (mthca_MAP_ICM(dev, table->icm[i], table->virt + i * MTHCA_TABLE_CHUNK_SIZE)) { mthca_free_icm(dev, table->icm[i], table->coherent); table->icm[i] = NULL; ret = -ENOMEM; goto out; } ++table->icm[i]->refcount; out: mutex_unlock(&table->mutex); return ret; } void mthca_table_put(struct mthca_dev *dev, struct mthca_icm_table *table, int obj) { int i; if (!mthca_is_memfree(dev)) return; i = (obj & (table->num_obj - 1)) * table->obj_size / MTHCA_TABLE_CHUNK_SIZE; mutex_lock(&table->mutex); if (--table->icm[i]->refcount == 0) { mthca_UNMAP_ICM(dev, table->virt + i * MTHCA_TABLE_CHUNK_SIZE, MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE); mthca_free_icm(dev, table->icm[i], table->coherent); table->icm[i] = NULL; } mutex_unlock(&table->mutex); } void *mthca_table_find(struct mthca_icm_table *table, int obj, dma_addr_t *dma_handle) { int idx, offset, dma_offset, i; struct mthca_icm_chunk *chunk; struct mthca_icm *icm; struct page *page = NULL; if (!table->lowmem) return NULL; mutex_lock(&table->mutex); idx = (obj & (table->num_obj - 1)) * table->obj_size; icm = table->icm[idx / MTHCA_TABLE_CHUNK_SIZE]; dma_offset = offset = idx % MTHCA_TABLE_CHUNK_SIZE; if (!icm) goto out; list_for_each_entry(chunk, &icm->chunk_list, list) { for (i = 0; i < chunk->npages; ++i) { if (dma_handle && dma_offset >= 0) { if (sg_dma_len(&chunk->mem[i]) > dma_offset) *dma_handle = sg_dma_address(&chunk->mem[i]) + dma_offset; dma_offset -= sg_dma_len(&chunk->mem[i]); } /* DMA mapping can merge pages but not split them, * so if we found the page, dma_handle has already * been assigned to. */ if (chunk->mem[i].length > offset) { page = sg_page(&chunk->mem[i]); goto out; } offset -= chunk->mem[i].length; } } out: mutex_unlock(&table->mutex); return page ? lowmem_page_address(page) + offset : NULL; } int mthca_table_get_range(struct mthca_dev *dev, struct mthca_icm_table *table, int start, int end) { int inc = MTHCA_TABLE_CHUNK_SIZE / table->obj_size; int i, err; for (i = start; i <= end; i += inc) { err = mthca_table_get(dev, table, i); if (err) goto fail; } return 0; fail: while (i > start) { i -= inc; mthca_table_put(dev, table, i); } return err; } void mthca_table_put_range(struct mthca_dev *dev, struct mthca_icm_table *table, int start, int end) { int i; if (!mthca_is_memfree(dev)) return; for (i = start; i <= end; i += MTHCA_TABLE_CHUNK_SIZE / table->obj_size) mthca_table_put(dev, table, i); } struct mthca_icm_table *mthca_alloc_icm_table(struct mthca_dev *dev, u64 virt, int obj_size, int nobj, int reserved, int use_lowmem, int use_coherent) { struct mthca_icm_table *table; int obj_per_chunk; int num_icm; unsigned chunk_size; int i; obj_per_chunk = MTHCA_TABLE_CHUNK_SIZE / obj_size; num_icm = DIV_ROUND_UP(nobj, obj_per_chunk); table = kmalloc(struct_size(table, icm, num_icm), GFP_KERNEL); if (!table) return NULL; table->virt = virt; table->num_icm = num_icm; table->num_obj = nobj; table->obj_size = obj_size; table->lowmem = use_lowmem; table->coherent = use_coherent; mutex_init(&table->mutex); for (i = 0; i < num_icm; ++i) table->icm[i] = NULL; for (i = 0; i * MTHCA_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) { chunk_size = MTHCA_TABLE_CHUNK_SIZE; if ((i + 1) * MTHCA_TABLE_CHUNK_SIZE > nobj * obj_size) chunk_size = nobj * obj_size - i * MTHCA_TABLE_CHUNK_SIZE; table->icm[i] = mthca_alloc_icm(dev, chunk_size >> PAGE_SHIFT, (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN, use_coherent); if (!table->icm[i]) goto err; if (mthca_MAP_ICM(dev, table->icm[i], virt + i * MTHCA_TABLE_CHUNK_SIZE)) { mthca_free_icm(dev, table->icm[i], table->coherent); table->icm[i] = NULL; goto err; } /* * Add a reference to this ICM chunk so that it never * gets freed (since it contains reserved firmware objects). */ ++table->icm[i]->refcount; } return table; err: for (i = 0; i < num_icm; ++i) if (table->icm[i]) { mthca_UNMAP_ICM(dev, virt + i * MTHCA_TABLE_CHUNK_SIZE, MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE); mthca_free_icm(dev, table->icm[i], table->coherent); } kfree(table); return NULL; } void mthca_free_icm_table(struct mthca_dev *dev, struct mthca_icm_table *table) { int i; for (i = 0; i < table->num_icm; ++i) if (table->icm[i]) { mthca_UNMAP_ICM(dev, table->virt + i * MTHCA_TABLE_CHUNK_SIZE, MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE); mthca_free_icm(dev, table->icm[i], table->coherent); } kfree(table); } static u64 mthca_uarc_virt(struct mthca_dev *dev, struct mthca_uar *uar, int page) { return dev->uar_table.uarc_base + uar->index * dev->uar_table.uarc_size + page * MTHCA_ICM_PAGE_SIZE; } int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar, struct mthca_user_db_table *db_tab, int index, u64 uaddr) { struct page *pages[1]; int ret = 0; int i; if (!mthca_is_memfree(dev)) return 0; if (index < 0 || index > dev->uar_table.uarc_size / 8) return -EINVAL; mutex_lock(&db_tab->mutex); i = index / MTHCA_DB_REC_PER_PAGE; if ((db_tab->page[i].refcount >= MTHCA_DB_REC_PER_PAGE) || (db_tab->page[i].uvirt && db_tab->page[i].uvirt != uaddr) || (uaddr & 4095)) { ret = -EINVAL; goto out; } if (db_tab->page[i].refcount) { ++db_tab->page[i].refcount; goto out; } ret = get_user_pages_fast(uaddr & PAGE_MASK, 1, FOLL_WRITE, pages); if (ret < 0) goto out; sg_set_page(&db_tab->page[i].mem, pages[0], MTHCA_ICM_PAGE_SIZE, uaddr & ~PAGE_MASK); ret = pci_map_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE); if (ret < 0) { put_page(pages[0]); goto out; } ret = mthca_MAP_ICM_page(dev, sg_dma_address(&db_tab->page[i].mem), mthca_uarc_virt(dev, uar, i)); if (ret) { pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE); put_page(sg_page(&db_tab->page[i].mem)); goto out; } db_tab->page[i].uvirt = uaddr; db_tab->page[i].refcount = 1; out: mutex_unlock(&db_tab->mutex); return ret; } void mthca_unmap_user_db(struct mthca_dev *dev, struct mthca_uar *uar, struct mthca_user_db_table *db_tab, int index) { if (!mthca_is_memfree(dev)) return; /* * To make our bookkeeping simpler, we don't unmap DB * pages until we clean up the whole db table. */ mutex_lock(&db_tab->mutex); --db_tab->page[index / MTHCA_DB_REC_PER_PAGE].refcount; mutex_unlock(&db_tab->mutex); } struct mthca_user_db_table *mthca_init_user_db_tab(struct mthca_dev *dev) { struct mthca_user_db_table *db_tab; int npages; int i; if (!mthca_is_memfree(dev)) return NULL; npages = dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE; db_tab = kmalloc(struct_size(db_tab, page, npages), GFP_KERNEL); if (!db_tab) return ERR_PTR(-ENOMEM); mutex_init(&db_tab->mutex); for (i = 0; i < npages; ++i) { db_tab->page[i].refcount = 0; db_tab->page[i].uvirt = 0; sg_init_table(&db_tab->page[i].mem, 1); } return db_tab; } void mthca_cleanup_user_db_tab(struct mthca_dev *dev, struct mthca_uar *uar, struct mthca_user_db_table *db_tab) { int i; if (!mthca_is_memfree(dev)) return; for (i = 0; i < dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE; ++i) { if (db_tab->page[i].uvirt) { mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, uar, i), 1); pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE); put_page(sg_page(&db_tab->page[i].mem)); } } kfree(db_tab); } int mthca_alloc_db(struct mthca_dev *dev, enum mthca_db_type type, u32 qn, __be32 **db) { int group; int start, end, dir; int i, j; struct mthca_db_page *page; int ret = 0; mutex_lock(&dev->db_tab->mutex); switch (type) { case MTHCA_DB_TYPE_CQ_ARM: case MTHCA_DB_TYPE_SQ: group = 0; start = 0; end = dev->db_tab->max_group1; dir = 1; break; case MTHCA_DB_TYPE_CQ_SET_CI: case MTHCA_DB_TYPE_RQ: case MTHCA_DB_TYPE_SRQ: group = 1; start = dev->db_tab->npages - 1; end = dev->db_tab->min_group2; dir = -1; break; default: ret = -EINVAL; goto out; } for (i = start; i != end; i += dir) if (dev->db_tab->page[i].db_rec && !bitmap_full(dev->db_tab->page[i].used, MTHCA_DB_REC_PER_PAGE)) { page = dev->db_tab->page + i; goto found; } for (i = start; i != end; i += dir) if (!dev->db_tab->page[i].db_rec) { page = dev->db_tab->page + i; goto alloc; } if (dev->db_tab->max_group1 >= dev->db_tab->min_group2 - 1) { ret = -ENOMEM; goto out; } if (group == 0) ++dev->db_tab->max_group1; else --dev->db_tab->min_group2; page = dev->db_tab->page + end; alloc: page->db_rec = dma_zalloc_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE, &page->mapping, GFP_KERNEL); if (!page->db_rec) { ret = -ENOMEM; goto out; } ret = mthca_MAP_ICM_page(dev, page->mapping, mthca_uarc_virt(dev, &dev->driver_uar, i)); if (ret) { dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE, page->db_rec, page->mapping); goto out; } bitmap_zero(page->used, MTHCA_DB_REC_PER_PAGE); found: j = find_first_zero_bit(page->used, MTHCA_DB_REC_PER_PAGE); set_bit(j, page->used); if (group == 1) j = MTHCA_DB_REC_PER_PAGE - 1 - j; ret = i * MTHCA_DB_REC_PER_PAGE + j; page->db_rec[j] = cpu_to_be64((qn << 8) | (type << 5)); *db = (__be32 *) &page->db_rec[j]; out: mutex_unlock(&dev->db_tab->mutex); return ret; } void mthca_free_db(struct mthca_dev *dev, int type, int db_index) { int i, j; struct mthca_db_page *page; i = db_index / MTHCA_DB_REC_PER_PAGE; j = db_index % MTHCA_DB_REC_PER_PAGE; page = dev->db_tab->page + i; mutex_lock(&dev->db_tab->mutex); page->db_rec[j] = 0; if (i >= dev->db_tab->min_group2) j = MTHCA_DB_REC_PER_PAGE - 1 - j; clear_bit(j, page->used); if (bitmap_empty(page->used, MTHCA_DB_REC_PER_PAGE) && i >= dev->db_tab->max_group1 - 1) { mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, &dev->driver_uar, i), 1); dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE, page->db_rec, page->mapping); page->db_rec = NULL; if (i == dev->db_tab->max_group1) { --dev->db_tab->max_group1; /* XXX may be able to unmap more pages now */ } if (i == dev->db_tab->min_group2) ++dev->db_tab->min_group2; } mutex_unlock(&dev->db_tab->mutex); } int mthca_init_db_tab(struct mthca_dev *dev) { int i; if (!mthca_is_memfree(dev)) return 0; dev->db_tab = kmalloc(sizeof *dev->db_tab, GFP_KERNEL); if (!dev->db_tab) return -ENOMEM; mutex_init(&dev->db_tab->mutex); dev->db_tab->npages = dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE; dev->db_tab->max_group1 = 0; dev->db_tab->min_group2 = dev->db_tab->npages - 1; dev->db_tab->page = kmalloc_array(dev->db_tab->npages, sizeof(*dev->db_tab->page), GFP_KERNEL); if (!dev->db_tab->page) { kfree(dev->db_tab); return -ENOMEM; } for (i = 0; i < dev->db_tab->npages; ++i) dev->db_tab->page[i].db_rec = NULL; return 0; } void mthca_cleanup_db_tab(struct mthca_dev *dev) { int i; if (!mthca_is_memfree(dev)) return; /* * Because we don't always free our UARC pages when they * become empty to make mthca_free_db() simpler we need to * make a sweep through the doorbell pages and free any * leftover pages now. */ for (i = 0; i < dev->db_tab->npages; ++i) { if (!dev->db_tab->page[i].db_rec) continue; if (!bitmap_empty(dev->db_tab->page[i].used, MTHCA_DB_REC_PER_PAGE)) mthca_warn(dev, "Kernel UARC page %d not empty\n", i); mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, &dev->driver_uar, i), 1); dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE, dev->db_tab->page[i].db_rec, dev->db_tab->page[i].mapping); } kfree(dev->db_tab->page); kfree(dev->db_tab); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1