Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neil Brown | 10292 | 65.16% | 224 | 57.14% |
Linus Torvalds (pre-git) | 853 | 5.40% | 5 | 1.28% |
Coly Li | 772 | 4.89% | 2 | 0.51% |
Linus Torvalds | 655 | 4.15% | 6 | 1.53% |
Shaohua Li | 585 | 3.70% | 21 | 5.36% |
Lei Ming | 385 | 2.44% | 9 | 2.30% |
Andrew Morton | 312 | 1.98% | 10 | 2.55% |
Robert LeBlanc | 211 | 1.34% | 1 | 0.26% |
Goldwyn Rodrigues | 190 | 1.20% | 6 | 1.53% |
Dan J Williams | 188 | 1.19% | 5 | 1.28% |
Jianpeng Ma | 172 | 1.09% | 8 | 2.04% |
Kent Overstreet | 165 | 1.04% | 8 | 2.04% |
Christoph Hellwig | 115 | 0.73% | 8 | 2.04% |
Al Viro | 107 | 0.68% | 5 | 1.28% |
Yufen Yu | 103 | 0.65% | 2 | 0.51% |
Namhyung Kim | 95 | 0.60% | 3 | 0.77% |
Alex Lyakas | 73 | 0.46% | 2 | 0.51% |
Jonathan E Brassow | 70 | 0.44% | 7 | 1.79% |
Tomasz Majchrzak | 65 | 0.41% | 3 | 0.77% |
Michael Christie | 63 | 0.40% | 1 | 0.26% |
Nate Dailey | 43 | 0.27% | 3 | 0.77% |
Andre Noll | 36 | 0.23% | 5 | 1.28% |
Gioh Kim | 28 | 0.18% | 1 | 0.26% |
Mike Accetta | 22 | 0.14% | 1 | 0.26% |
Ming Lei | 20 | 0.13% | 2 | 0.51% |
Kees Cook | 15 | 0.09% | 2 | 0.51% |
Suzanne Wood | 15 | 0.09% | 1 | 0.26% |
Guoqing Jiang | 15 | 0.09% | 5 | 1.28% |
Joe Lawrence | 14 | 0.09% | 1 | 0.26% |
Xiao Ni | 12 | 0.08% | 1 | 0.26% |
Andy Shevchenko | 10 | 0.06% | 1 | 0.26% |
Jens Axboe | 9 | 0.06% | 5 | 1.28% |
Tejun Heo | 9 | 0.06% | 3 | 0.77% |
Martin K. Petersen | 9 | 0.06% | 2 | 0.51% |
Mariusz Dabrowski | 8 | 0.05% | 1 | 0.26% |
Hirokazu Takahashi | 7 | 0.04% | 1 | 0.26% |
Lukasz Dorau | 6 | 0.04% | 1 | 0.26% |
Tomáš Hodek | 6 | 0.04% | 1 | 0.26% |
Lukas Czerner | 5 | 0.03% | 1 | 0.26% |
Lars Ellenberg | 5 | 0.03% | 1 | 0.26% |
Randy Dunlap | 4 | 0.03% | 1 | 0.26% |
Thomas Gleixner | 4 | 0.03% | 1 | 0.26% |
Bart Van Assche | 3 | 0.02% | 1 | 0.26% |
Christian Dietrich | 3 | 0.02% | 1 | 0.26% |
Paul Gortmaker | 3 | 0.02% | 1 | 0.26% |
Eric Sesterhenn / Snakebyte | 3 | 0.02% | 1 | 0.26% |
Mikulas Patocka | 2 | 0.01% | 2 | 0.51% |
Wei Fang | 1 | 0.01% | 1 | 0.26% |
Zhilong Liu | 1 | 0.01% | 1 | 0.26% |
Pawel Baldysiak | 1 | 0.01% | 1 | 0.26% |
Mike Snitzer | 1 | 0.01% | 1 | 0.26% |
Dave Jones | 1 | 0.01% | 1 | 0.26% |
Jes Sorensen | 1 | 0.01% | 1 | 0.26% |
Paul E. McKenney | 1 | 0.01% | 1 | 0.26% |
Jan Engelhardt | 1 | 0.01% | 1 | 0.26% |
H. Peter Anvin | 1 | 0.01% | 1 | 0.26% |
Total | 15796 | 392 |
/* * raid1.c : Multiple Devices driver for Linux * * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat * * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman * * RAID-1 management functions. * * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 * * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> * * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support * bitmapped intelligence in resync: * * - bitmap marked during normal i/o * - bitmap used to skip nondirty blocks during sync * * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: * - persistent bitmap code * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/blkdev.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/ratelimit.h> #include <trace/events/block.h> #include "md.h" #include "raid1.h" #include "md-bitmap.h" #define UNSUPPORTED_MDDEV_FLAGS \ ((1L << MD_HAS_JOURNAL) | \ (1L << MD_JOURNAL_CLEAN) | \ (1L << MD_HAS_PPL) | \ (1L << MD_HAS_MULTIPLE_PPLS)) /* * Number of guaranteed r1bios in case of extreme VM load: */ #define NR_RAID1_BIOS 256 /* when we get a read error on a read-only array, we redirect to another * device without failing the first device, or trying to over-write to * correct the read error. To keep track of bad blocks on a per-bio * level, we store IO_BLOCKED in the appropriate 'bios' pointer */ #define IO_BLOCKED ((struct bio *)1) /* When we successfully write to a known bad-block, we need to remove the * bad-block marking which must be done from process context. So we record * the success by setting devs[n].bio to IO_MADE_GOOD */ #define IO_MADE_GOOD ((struct bio *)2) #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) /* When there are this many requests queue to be written by * the raid1 thread, we become 'congested' to provide back-pressure * for writeback. */ static int max_queued_requests = 1024; static void allow_barrier(struct r1conf *conf, sector_t sector_nr); static void lower_barrier(struct r1conf *conf, sector_t sector_nr); #define raid1_log(md, fmt, args...) \ do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) #include "raid1-10.c" /* * for resync bio, r1bio pointer can be retrieved from the per-bio * 'struct resync_pages'. */ static inline struct r1bio *get_resync_r1bio(struct bio *bio) { return get_resync_pages(bio)->raid_bio; } static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) { struct pool_info *pi = data; int size = offsetof(struct r1bio, bios[pi->raid_disks]); /* allocate a r1bio with room for raid_disks entries in the bios array */ return kzalloc(size, gfp_flags); } static void r1bio_pool_free(void *r1_bio, void *data) { kfree(r1_bio); } #define RESYNC_DEPTH 32 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) { struct pool_info *pi = data; struct r1bio *r1_bio; struct bio *bio; int need_pages; int j; struct resync_pages *rps; r1_bio = r1bio_pool_alloc(gfp_flags, pi); if (!r1_bio) return NULL; rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), gfp_flags); if (!rps) goto out_free_r1bio; /* * Allocate bios : 1 for reading, n-1 for writing */ for (j = pi->raid_disks ; j-- ; ) { bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); if (!bio) goto out_free_bio; r1_bio->bios[j] = bio; } /* * Allocate RESYNC_PAGES data pages and attach them to * the first bio. * If this is a user-requested check/repair, allocate * RESYNC_PAGES for each bio. */ if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) need_pages = pi->raid_disks; else need_pages = 1; for (j = 0; j < pi->raid_disks; j++) { struct resync_pages *rp = &rps[j]; bio = r1_bio->bios[j]; if (j < need_pages) { if (resync_alloc_pages(rp, gfp_flags)) goto out_free_pages; } else { memcpy(rp, &rps[0], sizeof(*rp)); resync_get_all_pages(rp); } rp->raid_bio = r1_bio; bio->bi_private = rp; } r1_bio->master_bio = NULL; return r1_bio; out_free_pages: while (--j >= 0) resync_free_pages(&rps[j]); out_free_bio: while (++j < pi->raid_disks) bio_put(r1_bio->bios[j]); kfree(rps); out_free_r1bio: r1bio_pool_free(r1_bio, data); return NULL; } static void r1buf_pool_free(void *__r1_bio, void *data) { struct pool_info *pi = data; int i; struct r1bio *r1bio = __r1_bio; struct resync_pages *rp = NULL; for (i = pi->raid_disks; i--; ) { rp = get_resync_pages(r1bio->bios[i]); resync_free_pages(rp); bio_put(r1bio->bios[i]); } /* resync pages array stored in the 1st bio's .bi_private */ kfree(rp); r1bio_pool_free(r1bio, data); } static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) { int i; for (i = 0; i < conf->raid_disks * 2; i++) { struct bio **bio = r1_bio->bios + i; if (!BIO_SPECIAL(*bio)) bio_put(*bio); *bio = NULL; } } static void free_r1bio(struct r1bio *r1_bio) { struct r1conf *conf = r1_bio->mddev->private; put_all_bios(conf, r1_bio); mempool_free(r1_bio, &conf->r1bio_pool); } static void put_buf(struct r1bio *r1_bio) { struct r1conf *conf = r1_bio->mddev->private; sector_t sect = r1_bio->sector; int i; for (i = 0; i < conf->raid_disks * 2; i++) { struct bio *bio = r1_bio->bios[i]; if (bio->bi_end_io) rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); } mempool_free(r1_bio, &conf->r1buf_pool); lower_barrier(conf, sect); } static void reschedule_retry(struct r1bio *r1_bio) { unsigned long flags; struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; int idx; idx = sector_to_idx(r1_bio->sector); spin_lock_irqsave(&conf->device_lock, flags); list_add(&r1_bio->retry_list, &conf->retry_list); atomic_inc(&conf->nr_queued[idx]); spin_unlock_irqrestore(&conf->device_lock, flags); wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); } /* * raid_end_bio_io() is called when we have finished servicing a mirrored * operation and are ready to return a success/failure code to the buffer * cache layer. */ static void call_bio_endio(struct r1bio *r1_bio) { struct bio *bio = r1_bio->master_bio; struct r1conf *conf = r1_bio->mddev->private; if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) bio->bi_status = BLK_STS_IOERR; bio_endio(bio); /* * Wake up any possible resync thread that waits for the device * to go idle. */ allow_barrier(conf, r1_bio->sector); } static void raid_end_bio_io(struct r1bio *r1_bio) { struct bio *bio = r1_bio->master_bio; /* if nobody has done the final endio yet, do it now */ if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { pr_debug("raid1: sync end %s on sectors %llu-%llu\n", (bio_data_dir(bio) == WRITE) ? "write" : "read", (unsigned long long) bio->bi_iter.bi_sector, (unsigned long long) bio_end_sector(bio) - 1); call_bio_endio(r1_bio); } free_r1bio(r1_bio); } /* * Update disk head position estimator based on IRQ completion info. */ static inline void update_head_pos(int disk, struct r1bio *r1_bio) { struct r1conf *conf = r1_bio->mddev->private; conf->mirrors[disk].head_position = r1_bio->sector + (r1_bio->sectors); } /* * Find the disk number which triggered given bio */ static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) { int mirror; struct r1conf *conf = r1_bio->mddev->private; int raid_disks = conf->raid_disks; for (mirror = 0; mirror < raid_disks * 2; mirror++) if (r1_bio->bios[mirror] == bio) break; BUG_ON(mirror == raid_disks * 2); update_head_pos(mirror, r1_bio); return mirror; } static void raid1_end_read_request(struct bio *bio) { int uptodate = !bio->bi_status; struct r1bio *r1_bio = bio->bi_private; struct r1conf *conf = r1_bio->mddev->private; struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; /* * this branch is our 'one mirror IO has finished' event handler: */ update_head_pos(r1_bio->read_disk, r1_bio); if (uptodate) set_bit(R1BIO_Uptodate, &r1_bio->state); else if (test_bit(FailFast, &rdev->flags) && test_bit(R1BIO_FailFast, &r1_bio->state)) /* This was a fail-fast read so we definitely * want to retry */ ; else { /* If all other devices have failed, we want to return * the error upwards rather than fail the last device. * Here we redefine "uptodate" to mean "Don't want to retry" */ unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); if (r1_bio->mddev->degraded == conf->raid_disks || (r1_bio->mddev->degraded == conf->raid_disks-1 && test_bit(In_sync, &rdev->flags))) uptodate = 1; spin_unlock_irqrestore(&conf->device_lock, flags); } if (uptodate) { raid_end_bio_io(r1_bio); rdev_dec_pending(rdev, conf->mddev); } else { /* * oops, read error: */ char b[BDEVNAME_SIZE]; pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", mdname(conf->mddev), bdevname(rdev->bdev, b), (unsigned long long)r1_bio->sector); set_bit(R1BIO_ReadError, &r1_bio->state); reschedule_retry(r1_bio); /* don't drop the reference on read_disk yet */ } } static void close_write(struct r1bio *r1_bio) { /* it really is the end of this request */ if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { bio_free_pages(r1_bio->behind_master_bio); bio_put(r1_bio->behind_master_bio); r1_bio->behind_master_bio = NULL; } /* clear the bitmap if all writes complete successfully */ md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, r1_bio->sectors, !test_bit(R1BIO_Degraded, &r1_bio->state), test_bit(R1BIO_BehindIO, &r1_bio->state)); md_write_end(r1_bio->mddev); } static void r1_bio_write_done(struct r1bio *r1_bio) { if (!atomic_dec_and_test(&r1_bio->remaining)) return; if (test_bit(R1BIO_WriteError, &r1_bio->state)) reschedule_retry(r1_bio); else { close_write(r1_bio); if (test_bit(R1BIO_MadeGood, &r1_bio->state)) reschedule_retry(r1_bio); else raid_end_bio_io(r1_bio); } } static void raid1_end_write_request(struct bio *bio) { struct r1bio *r1_bio = bio->bi_private; int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); struct r1conf *conf = r1_bio->mddev->private; struct bio *to_put = NULL; int mirror = find_bio_disk(r1_bio, bio); struct md_rdev *rdev = conf->mirrors[mirror].rdev; bool discard_error; discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; /* * 'one mirror IO has finished' event handler: */ if (bio->bi_status && !discard_error) { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, & conf->mddev->recovery); if (test_bit(FailFast, &rdev->flags) && (bio->bi_opf & MD_FAILFAST) && /* We never try FailFast to WriteMostly devices */ !test_bit(WriteMostly, &rdev->flags)) { md_error(r1_bio->mddev, rdev); if (!test_bit(Faulty, &rdev->flags)) /* This is the only remaining device, * We need to retry the write without * FailFast */ set_bit(R1BIO_WriteError, &r1_bio->state); else { /* Finished with this branch */ r1_bio->bios[mirror] = NULL; to_put = bio; } } else set_bit(R1BIO_WriteError, &r1_bio->state); } else { /* * Set R1BIO_Uptodate in our master bio, so that we * will return a good error code for to the higher * levels even if IO on some other mirrored buffer * fails. * * The 'master' represents the composite IO operation * to user-side. So if something waits for IO, then it * will wait for the 'master' bio. */ sector_t first_bad; int bad_sectors; r1_bio->bios[mirror] = NULL; to_put = bio; /* * Do not set R1BIO_Uptodate if the current device is * rebuilding or Faulty. This is because we cannot use * such device for properly reading the data back (we could * potentially use it, if the current write would have felt * before rdev->recovery_offset, but for simplicity we don't * check this here. */ if (test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) set_bit(R1BIO_Uptodate, &r1_bio->state); /* Maybe we can clear some bad blocks. */ if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, &first_bad, &bad_sectors) && !discard_error) { r1_bio->bios[mirror] = IO_MADE_GOOD; set_bit(R1BIO_MadeGood, &r1_bio->state); } } if (behind) { if (test_bit(WriteMostly, &rdev->flags)) atomic_dec(&r1_bio->behind_remaining); /* * In behind mode, we ACK the master bio once the I/O * has safely reached all non-writemostly * disks. Setting the Returned bit ensures that this * gets done only once -- we don't ever want to return * -EIO here, instead we'll wait */ if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && test_bit(R1BIO_Uptodate, &r1_bio->state)) { /* Maybe we can return now */ if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { struct bio *mbio = r1_bio->master_bio; pr_debug("raid1: behind end write sectors" " %llu-%llu\n", (unsigned long long) mbio->bi_iter.bi_sector, (unsigned long long) bio_end_sector(mbio) - 1); call_bio_endio(r1_bio); } } } if (r1_bio->bios[mirror] == NULL) rdev_dec_pending(rdev, conf->mddev); /* * Let's see if all mirrored write operations have finished * already. */ r1_bio_write_done(r1_bio); if (to_put) bio_put(to_put); } static sector_t align_to_barrier_unit_end(sector_t start_sector, sector_t sectors) { sector_t len; WARN_ON(sectors == 0); /* * len is the number of sectors from start_sector to end of the * barrier unit which start_sector belongs to. */ len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - start_sector; if (len > sectors) len = sectors; return len; } /* * This routine returns the disk from which the requested read should * be done. There is a per-array 'next expected sequential IO' sector * number - if this matches on the next IO then we use the last disk. * There is also a per-disk 'last know head position' sector that is * maintained from IRQ contexts, both the normal and the resync IO * completion handlers update this position correctly. If there is no * perfect sequential match then we pick the disk whose head is closest. * * If there are 2 mirrors in the same 2 devices, performance degrades * because position is mirror, not device based. * * The rdev for the device selected will have nr_pending incremented. */ static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) { const sector_t this_sector = r1_bio->sector; int sectors; int best_good_sectors; int best_disk, best_dist_disk, best_pending_disk; int has_nonrot_disk; int disk; sector_t best_dist; unsigned int min_pending; struct md_rdev *rdev; int choose_first; int choose_next_idle; rcu_read_lock(); /* * Check if we can balance. We can balance on the whole * device if no resync is going on, or below the resync window. * We take the first readable disk when above the resync window. */ retry: sectors = r1_bio->sectors; best_disk = -1; best_dist_disk = -1; best_dist = MaxSector; best_pending_disk = -1; min_pending = UINT_MAX; best_good_sectors = 0; has_nonrot_disk = 0; choose_next_idle = 0; clear_bit(R1BIO_FailFast, &r1_bio->state); if ((conf->mddev->recovery_cp < this_sector + sectors) || (mddev_is_clustered(conf->mddev) && md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, this_sector + sectors))) choose_first = 1; else choose_first = 0; for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { sector_t dist; sector_t first_bad; int bad_sectors; unsigned int pending; bool nonrot; rdev = rcu_dereference(conf->mirrors[disk].rdev); if (r1_bio->bios[disk] == IO_BLOCKED || rdev == NULL || test_bit(Faulty, &rdev->flags)) continue; if (!test_bit(In_sync, &rdev->flags) && rdev->recovery_offset < this_sector + sectors) continue; if (test_bit(WriteMostly, &rdev->flags)) { /* Don't balance among write-mostly, just * use the first as a last resort */ if (best_dist_disk < 0) { if (is_badblock(rdev, this_sector, sectors, &first_bad, &bad_sectors)) { if (first_bad <= this_sector) /* Cannot use this */ continue; best_good_sectors = first_bad - this_sector; } else best_good_sectors = sectors; best_dist_disk = disk; best_pending_disk = disk; } continue; } /* This is a reasonable device to use. It might * even be best. */ if (is_badblock(rdev, this_sector, sectors, &first_bad, &bad_sectors)) { if (best_dist < MaxSector) /* already have a better device */ continue; if (first_bad <= this_sector) { /* cannot read here. If this is the 'primary' * device, then we must not read beyond * bad_sectors from another device.. */ bad_sectors -= (this_sector - first_bad); if (choose_first && sectors > bad_sectors) sectors = bad_sectors; if (best_good_sectors > sectors) best_good_sectors = sectors; } else { sector_t good_sectors = first_bad - this_sector; if (good_sectors > best_good_sectors) { best_good_sectors = good_sectors; best_disk = disk; } if (choose_first) break; } continue; } else { if ((sectors > best_good_sectors) && (best_disk >= 0)) best_disk = -1; best_good_sectors = sectors; } if (best_disk >= 0) /* At least two disks to choose from so failfast is OK */ set_bit(R1BIO_FailFast, &r1_bio->state); nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); has_nonrot_disk |= nonrot; pending = atomic_read(&rdev->nr_pending); dist = abs(this_sector - conf->mirrors[disk].head_position); if (choose_first) { best_disk = disk; break; } /* Don't change to another disk for sequential reads */ if (conf->mirrors[disk].next_seq_sect == this_sector || dist == 0) { int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; struct raid1_info *mirror = &conf->mirrors[disk]; best_disk = disk; /* * If buffered sequential IO size exceeds optimal * iosize, check if there is idle disk. If yes, choose * the idle disk. read_balance could already choose an * idle disk before noticing it's a sequential IO in * this disk. This doesn't matter because this disk * will idle, next time it will be utilized after the * first disk has IO size exceeds optimal iosize. In * this way, iosize of the first disk will be optimal * iosize at least. iosize of the second disk might be * small, but not a big deal since when the second disk * starts IO, the first disk is likely still busy. */ if (nonrot && opt_iosize > 0 && mirror->seq_start != MaxSector && mirror->next_seq_sect > opt_iosize && mirror->next_seq_sect - opt_iosize >= mirror->seq_start) { choose_next_idle = 1; continue; } break; } if (choose_next_idle) continue; if (min_pending > pending) { min_pending = pending; best_pending_disk = disk; } if (dist < best_dist) { best_dist = dist; best_dist_disk = disk; } } /* * If all disks are rotational, choose the closest disk. If any disk is * non-rotational, choose the disk with less pending request even the * disk is rotational, which might/might not be optimal for raids with * mixed ratation/non-rotational disks depending on workload. */ if (best_disk == -1) { if (has_nonrot_disk || min_pending == 0) best_disk = best_pending_disk; else best_disk = best_dist_disk; } if (best_disk >= 0) { rdev = rcu_dereference(conf->mirrors[best_disk].rdev); if (!rdev) goto retry; atomic_inc(&rdev->nr_pending); sectors = best_good_sectors; if (conf->mirrors[best_disk].next_seq_sect != this_sector) conf->mirrors[best_disk].seq_start = this_sector; conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; } rcu_read_unlock(); *max_sectors = sectors; return best_disk; } static int raid1_congested(struct mddev *mddev, int bits) { struct r1conf *conf = mddev->private; int i, ret = 0; if ((bits & (1 << WB_async_congested)) && conf->pending_count >= max_queued_requests) return 1; rcu_read_lock(); for (i = 0; i < conf->raid_disks * 2; i++) { struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) { struct request_queue *q = bdev_get_queue(rdev->bdev); BUG_ON(!q); /* Note the '|| 1' - when read_balance prefers * non-congested targets, it can be removed */ if ((bits & (1 << WB_async_congested)) || 1) ret |= bdi_congested(q->backing_dev_info, bits); else ret &= bdi_congested(q->backing_dev_info, bits); } } rcu_read_unlock(); return ret; } static void flush_bio_list(struct r1conf *conf, struct bio *bio) { /* flush any pending bitmap writes to disk before proceeding w/ I/O */ md_bitmap_unplug(conf->mddev->bitmap); wake_up(&conf->wait_barrier); while (bio) { /* submit pending writes */ struct bio *next = bio->bi_next; struct md_rdev *rdev = (void *)bio->bi_disk; bio->bi_next = NULL; bio_set_dev(bio, rdev->bdev); if (test_bit(Faulty, &rdev->flags)) { bio_io_error(bio); } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && !blk_queue_discard(bio->bi_disk->queue))) /* Just ignore it */ bio_endio(bio); else generic_make_request(bio); bio = next; } } static void flush_pending_writes(struct r1conf *conf) { /* Any writes that have been queued but are awaiting * bitmap updates get flushed here. */ spin_lock_irq(&conf->device_lock); if (conf->pending_bio_list.head) { struct blk_plug plug; struct bio *bio; bio = bio_list_get(&conf->pending_bio_list); conf->pending_count = 0; spin_unlock_irq(&conf->device_lock); /* * As this is called in a wait_event() loop (see freeze_array), * current->state might be TASK_UNINTERRUPTIBLE which will * cause a warning when we prepare to wait again. As it is * rare that this path is taken, it is perfectly safe to force * us to go around the wait_event() loop again, so the warning * is a false-positive. Silence the warning by resetting * thread state */ __set_current_state(TASK_RUNNING); blk_start_plug(&plug); flush_bio_list(conf, bio); blk_finish_plug(&plug); } else spin_unlock_irq(&conf->device_lock); } /* Barriers.... * Sometimes we need to suspend IO while we do something else, * either some resync/recovery, or reconfigure the array. * To do this we raise a 'barrier'. * The 'barrier' is a counter that can be raised multiple times * to count how many activities are happening which preclude * normal IO. * We can only raise the barrier if there is no pending IO. * i.e. if nr_pending == 0. * We choose only to raise the barrier if no-one is waiting for the * barrier to go down. This means that as soon as an IO request * is ready, no other operations which require a barrier will start * until the IO request has had a chance. * * So: regular IO calls 'wait_barrier'. When that returns there * is no backgroup IO happening, It must arrange to call * allow_barrier when it has finished its IO. * backgroup IO calls must call raise_barrier. Once that returns * there is no normal IO happeing. It must arrange to call * lower_barrier when the particular background IO completes. */ static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); spin_lock_irq(&conf->resync_lock); /* Wait until no block IO is waiting */ wait_event_lock_irq(conf->wait_barrier, !atomic_read(&conf->nr_waiting[idx]), conf->resync_lock); /* block any new IO from starting */ atomic_inc(&conf->barrier[idx]); /* * In raise_barrier() we firstly increase conf->barrier[idx] then * check conf->nr_pending[idx]. In _wait_barrier() we firstly * increase conf->nr_pending[idx] then check conf->barrier[idx]. * A memory barrier here to make sure conf->nr_pending[idx] won't * be fetched before conf->barrier[idx] is increased. Otherwise * there will be a race between raise_barrier() and _wait_barrier(). */ smp_mb__after_atomic(); /* For these conditions we must wait: * A: while the array is in frozen state * B: while conf->nr_pending[idx] is not 0, meaning regular I/O * existing in corresponding I/O barrier bucket. * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches * max resync count which allowed on current I/O barrier bucket. */ wait_event_lock_irq(conf->wait_barrier, (!conf->array_frozen && !atomic_read(&conf->nr_pending[idx]) && atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), conf->resync_lock); if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { atomic_dec(&conf->barrier[idx]); spin_unlock_irq(&conf->resync_lock); wake_up(&conf->wait_barrier); return -EINTR; } atomic_inc(&conf->nr_sync_pending); spin_unlock_irq(&conf->resync_lock); return 0; } static void lower_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); atomic_dec(&conf->barrier[idx]); atomic_dec(&conf->nr_sync_pending); wake_up(&conf->wait_barrier); } static void _wait_barrier(struct r1conf *conf, int idx) { /* * We need to increase conf->nr_pending[idx] very early here, * then raise_barrier() can be blocked when it waits for * conf->nr_pending[idx] to be 0. Then we can avoid holding * conf->resync_lock when there is no barrier raised in same * barrier unit bucket. Also if the array is frozen, I/O * should be blocked until array is unfrozen. */ atomic_inc(&conf->nr_pending[idx]); /* * In _wait_barrier() we firstly increase conf->nr_pending[idx], then * check conf->barrier[idx]. In raise_barrier() we firstly increase * conf->barrier[idx], then check conf->nr_pending[idx]. A memory * barrier is necessary here to make sure conf->barrier[idx] won't be * fetched before conf->nr_pending[idx] is increased. Otherwise there * will be a race between _wait_barrier() and raise_barrier(). */ smp_mb__after_atomic(); /* * Don't worry about checking two atomic_t variables at same time * here. If during we check conf->barrier[idx], the array is * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is * 0, it is safe to return and make the I/O continue. Because the * array is frozen, all I/O returned here will eventually complete * or be queued, no race will happen. See code comment in * frozen_array(). */ if (!READ_ONCE(conf->array_frozen) && !atomic_read(&conf->barrier[idx])) return; /* * After holding conf->resync_lock, conf->nr_pending[idx] * should be decreased before waiting for barrier to drop. * Otherwise, we may encounter a race condition because * raise_barrer() might be waiting for conf->nr_pending[idx] * to be 0 at same time. */ spin_lock_irq(&conf->resync_lock); atomic_inc(&conf->nr_waiting[idx]); atomic_dec(&conf->nr_pending[idx]); /* * In case freeze_array() is waiting for * get_unqueued_pending() == extra */ wake_up(&conf->wait_barrier); /* Wait for the barrier in same barrier unit bucket to drop. */ wait_event_lock_irq(conf->wait_barrier, !conf->array_frozen && !atomic_read(&conf->barrier[idx]), conf->resync_lock); atomic_inc(&conf->nr_pending[idx]); atomic_dec(&conf->nr_waiting[idx]); spin_unlock_irq(&conf->resync_lock); } static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); /* * Very similar to _wait_barrier(). The difference is, for read * I/O we don't need wait for sync I/O, but if the whole array * is frozen, the read I/O still has to wait until the array is * unfrozen. Since there is no ordering requirement with * conf->barrier[idx] here, memory barrier is unnecessary as well. */ atomic_inc(&conf->nr_pending[idx]); if (!READ_ONCE(conf->array_frozen)) return; spin_lock_irq(&conf->resync_lock); atomic_inc(&conf->nr_waiting[idx]); atomic_dec(&conf->nr_pending[idx]); /* * In case freeze_array() is waiting for * get_unqueued_pending() == extra */ wake_up(&conf->wait_barrier); /* Wait for array to be unfrozen */ wait_event_lock_irq(conf->wait_barrier, !conf->array_frozen, conf->resync_lock); atomic_inc(&conf->nr_pending[idx]); atomic_dec(&conf->nr_waiting[idx]); spin_unlock_irq(&conf->resync_lock); } static void wait_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); _wait_barrier(conf, idx); } static void _allow_barrier(struct r1conf *conf, int idx) { atomic_dec(&conf->nr_pending[idx]); wake_up(&conf->wait_barrier); } static void allow_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); _allow_barrier(conf, idx); } /* conf->resync_lock should be held */ static int get_unqueued_pending(struct r1conf *conf) { int idx, ret; ret = atomic_read(&conf->nr_sync_pending); for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) ret += atomic_read(&conf->nr_pending[idx]) - atomic_read(&conf->nr_queued[idx]); return ret; } static void freeze_array(struct r1conf *conf, int extra) { /* Stop sync I/O and normal I/O and wait for everything to * go quiet. * This is called in two situations: * 1) management command handlers (reshape, remove disk, quiesce). * 2) one normal I/O request failed. * After array_frozen is set to 1, new sync IO will be blocked at * raise_barrier(), and new normal I/O will blocked at _wait_barrier() * or wait_read_barrier(). The flying I/Os will either complete or be * queued. When everything goes quite, there are only queued I/Os left. * Every flying I/O contributes to a conf->nr_pending[idx], idx is the * barrier bucket index which this I/O request hits. When all sync and * normal I/O are queued, sum of all conf->nr_pending[] will match sum * of all conf->nr_queued[]. But normal I/O failure is an exception, * in handle_read_error(), we may call freeze_array() before trying to * fix the read error. In this case, the error read I/O is not queued, * so get_unqueued_pending() == 1. * * Therefore before this function returns, we need to wait until * get_unqueued_pendings(conf) gets equal to extra. For * normal I/O context, extra is 1, in rested situations extra is 0. */ spin_lock_irq(&conf->resync_lock); conf->array_frozen = 1; raid1_log(conf->mddev, "wait freeze"); wait_event_lock_irq_cmd( conf->wait_barrier, get_unqueued_pending(conf) == extra, conf->resync_lock, flush_pending_writes(conf)); spin_unlock_irq(&conf->resync_lock); } static void unfreeze_array(struct r1conf *conf) { /* reverse the effect of the freeze */ spin_lock_irq(&conf->resync_lock); conf->array_frozen = 0; spin_unlock_irq(&conf->resync_lock); wake_up(&conf->wait_barrier); } static void alloc_behind_master_bio(struct r1bio *r1_bio, struct bio *bio) { int size = bio->bi_iter.bi_size; unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; int i = 0; struct bio *behind_bio = NULL; behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); if (!behind_bio) return; /* discard op, we don't support writezero/writesame yet */ if (!bio_has_data(bio)) { behind_bio->bi_iter.bi_size = size; goto skip_copy; } behind_bio->bi_write_hint = bio->bi_write_hint; while (i < vcnt && size) { struct page *page; int len = min_t(int, PAGE_SIZE, size); page = alloc_page(GFP_NOIO); if (unlikely(!page)) goto free_pages; bio_add_page(behind_bio, page, len, 0); size -= len; i++; } bio_copy_data(behind_bio, bio); skip_copy: r1_bio->behind_master_bio = behind_bio; set_bit(R1BIO_BehindIO, &r1_bio->state); return; free_pages: pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_iter.bi_size); bio_free_pages(behind_bio); bio_put(behind_bio); } struct raid1_plug_cb { struct blk_plug_cb cb; struct bio_list pending; int pending_cnt; }; static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) { struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); struct mddev *mddev = plug->cb.data; struct r1conf *conf = mddev->private; struct bio *bio; if (from_schedule || current->bio_list) { spin_lock_irq(&conf->device_lock); bio_list_merge(&conf->pending_bio_list, &plug->pending); conf->pending_count += plug->pending_cnt; spin_unlock_irq(&conf->device_lock); wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); kfree(plug); return; } /* we aren't scheduling, so we can do the write-out directly. */ bio = bio_list_get(&plug->pending); flush_bio_list(conf, bio); kfree(plug); } static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) { r1_bio->master_bio = bio; r1_bio->sectors = bio_sectors(bio); r1_bio->state = 0; r1_bio->mddev = mddev; r1_bio->sector = bio->bi_iter.bi_sector; } static inline struct r1bio * alloc_r1bio(struct mddev *mddev, struct bio *bio) { struct r1conf *conf = mddev->private; struct r1bio *r1_bio; r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); /* Ensure no bio records IO_BLOCKED */ memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); init_r1bio(r1_bio, mddev, bio); return r1_bio; } static void raid1_read_request(struct mddev *mddev, struct bio *bio, int max_read_sectors, struct r1bio *r1_bio) { struct r1conf *conf = mddev->private; struct raid1_info *mirror; struct bio *read_bio; struct bitmap *bitmap = mddev->bitmap; const int op = bio_op(bio); const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); int max_sectors; int rdisk; bool print_msg = !!r1_bio; char b[BDEVNAME_SIZE]; /* * If r1_bio is set, we are blocking the raid1d thread * so there is a tiny risk of deadlock. So ask for * emergency memory if needed. */ gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; if (print_msg) { /* Need to get the block device name carefully */ struct md_rdev *rdev; rcu_read_lock(); rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); if (rdev) bdevname(rdev->bdev, b); else strcpy(b, "???"); rcu_read_unlock(); } /* * Still need barrier for READ in case that whole * array is frozen. */ wait_read_barrier(conf, bio->bi_iter.bi_sector); if (!r1_bio) r1_bio = alloc_r1bio(mddev, bio); else init_r1bio(r1_bio, mddev, bio); r1_bio->sectors = max_read_sectors; /* * make_request() can abort the operation when read-ahead is being * used and no empty request is available. */ rdisk = read_balance(conf, r1_bio, &max_sectors); if (rdisk < 0) { /* couldn't find anywhere to read from */ if (print_msg) { pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", mdname(mddev), b, (unsigned long long)r1_bio->sector); } raid_end_bio_io(r1_bio); return; } mirror = conf->mirrors + rdisk; if (print_msg) pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", mdname(mddev), (unsigned long long)r1_bio->sector, bdevname(mirror->rdev->bdev, b)); if (test_bit(WriteMostly, &mirror->rdev->flags) && bitmap) { /* * Reading from a write-mostly device must take care not to * over-take any writes that are 'behind' */ raid1_log(mddev, "wait behind writes"); wait_event(bitmap->behind_wait, atomic_read(&bitmap->behind_writes) == 0); } if (max_sectors < bio_sectors(bio)) { struct bio *split = bio_split(bio, max_sectors, gfp, &conf->bio_split); bio_chain(split, bio); generic_make_request(bio); bio = split; r1_bio->master_bio = bio; r1_bio->sectors = max_sectors; } r1_bio->read_disk = rdisk; read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); r1_bio->bios[rdisk] = read_bio; read_bio->bi_iter.bi_sector = r1_bio->sector + mirror->rdev->data_offset; bio_set_dev(read_bio, mirror->rdev->bdev); read_bio->bi_end_io = raid1_end_read_request; bio_set_op_attrs(read_bio, op, do_sync); if (test_bit(FailFast, &mirror->rdev->flags) && test_bit(R1BIO_FailFast, &r1_bio->state)) read_bio->bi_opf |= MD_FAILFAST; read_bio->bi_private = r1_bio; if (mddev->gendisk) trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, disk_devt(mddev->gendisk), r1_bio->sector); generic_make_request(read_bio); } static void raid1_write_request(struct mddev *mddev, struct bio *bio, int max_write_sectors) { struct r1conf *conf = mddev->private; struct r1bio *r1_bio; int i, disks; struct bitmap *bitmap = mddev->bitmap; unsigned long flags; struct md_rdev *blocked_rdev; struct blk_plug_cb *cb; struct raid1_plug_cb *plug = NULL; int first_clone; int max_sectors; if (mddev_is_clustered(mddev) && md_cluster_ops->area_resyncing(mddev, WRITE, bio->bi_iter.bi_sector, bio_end_sector(bio))) { DEFINE_WAIT(w); for (;;) { prepare_to_wait(&conf->wait_barrier, &w, TASK_IDLE); if (!md_cluster_ops->area_resyncing(mddev, WRITE, bio->bi_iter.bi_sector, bio_end_sector(bio))) break; schedule(); } finish_wait(&conf->wait_barrier, &w); } /* * Register the new request and wait if the reconstruction * thread has put up a bar for new requests. * Continue immediately if no resync is active currently. */ wait_barrier(conf, bio->bi_iter.bi_sector); r1_bio = alloc_r1bio(mddev, bio); r1_bio->sectors = max_write_sectors; if (conf->pending_count >= max_queued_requests) { md_wakeup_thread(mddev->thread); raid1_log(mddev, "wait queued"); wait_event(conf->wait_barrier, conf->pending_count < max_queued_requests); } /* first select target devices under rcu_lock and * inc refcount on their rdev. Record them by setting * bios[x] to bio * If there are known/acknowledged bad blocks on any device on * which we have seen a write error, we want to avoid writing those * blocks. * This potentially requires several writes to write around * the bad blocks. Each set of writes gets it's own r1bio * with a set of bios attached. */ disks = conf->raid_disks * 2; retry_write: blocked_rdev = NULL; rcu_read_lock(); max_sectors = r1_bio->sectors; for (i = 0; i < disks; i++) { struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { atomic_inc(&rdev->nr_pending); blocked_rdev = rdev; break; } r1_bio->bios[i] = NULL; if (!rdev || test_bit(Faulty, &rdev->flags)) { if (i < conf->raid_disks) set_bit(R1BIO_Degraded, &r1_bio->state); continue; } atomic_inc(&rdev->nr_pending); if (test_bit(WriteErrorSeen, &rdev->flags)) { sector_t first_bad; int bad_sectors; int is_bad; is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, &first_bad, &bad_sectors); if (is_bad < 0) { /* mustn't write here until the bad block is * acknowledged*/ set_bit(BlockedBadBlocks, &rdev->flags); blocked_rdev = rdev; break; } if (is_bad && first_bad <= r1_bio->sector) { /* Cannot write here at all */ bad_sectors -= (r1_bio->sector - first_bad); if (bad_sectors < max_sectors) /* mustn't write more than bad_sectors * to other devices yet */ max_sectors = bad_sectors; rdev_dec_pending(rdev, mddev); /* We don't set R1BIO_Degraded as that * only applies if the disk is * missing, so it might be re-added, * and we want to know to recover this * chunk. * In this case the device is here, * and the fact that this chunk is not * in-sync is recorded in the bad * block log */ continue; } if (is_bad) { int good_sectors = first_bad - r1_bio->sector; if (good_sectors < max_sectors) max_sectors = good_sectors; } } r1_bio->bios[i] = bio; } rcu_read_unlock(); if (unlikely(blocked_rdev)) { /* Wait for this device to become unblocked */ int j; for (j = 0; j < i; j++) if (r1_bio->bios[j]) rdev_dec_pending(conf->mirrors[j].rdev, mddev); r1_bio->state = 0; allow_barrier(conf, bio->bi_iter.bi_sector); raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); md_wait_for_blocked_rdev(blocked_rdev, mddev); wait_barrier(conf, bio->bi_iter.bi_sector); goto retry_write; } if (max_sectors < bio_sectors(bio)) { struct bio *split = bio_split(bio, max_sectors, GFP_NOIO, &conf->bio_split); bio_chain(split, bio); generic_make_request(bio); bio = split; r1_bio->master_bio = bio; r1_bio->sectors = max_sectors; } atomic_set(&r1_bio->remaining, 1); atomic_set(&r1_bio->behind_remaining, 0); first_clone = 1; for (i = 0; i < disks; i++) { struct bio *mbio = NULL; if (!r1_bio->bios[i]) continue; if (first_clone) { /* do behind I/O ? * Not if there are too many, or cannot * allocate memory, or a reader on WriteMostly * is waiting for behind writes to flush */ if (bitmap && (atomic_read(&bitmap->behind_writes) < mddev->bitmap_info.max_write_behind) && !waitqueue_active(&bitmap->behind_wait)) { alloc_behind_master_bio(r1_bio, bio); } md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, test_bit(R1BIO_BehindIO, &r1_bio->state)); first_clone = 0; } if (r1_bio->behind_master_bio) mbio = bio_clone_fast(r1_bio->behind_master_bio, GFP_NOIO, &mddev->bio_set); else mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); if (r1_bio->behind_master_bio) { if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) atomic_inc(&r1_bio->behind_remaining); } r1_bio->bios[i] = mbio; mbio->bi_iter.bi_sector = (r1_bio->sector + conf->mirrors[i].rdev->data_offset); bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); mbio->bi_end_io = raid1_end_write_request; mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && conf->raid_disks - mddev->degraded > 1) mbio->bi_opf |= MD_FAILFAST; mbio->bi_private = r1_bio; atomic_inc(&r1_bio->remaining); if (mddev->gendisk) trace_block_bio_remap(mbio->bi_disk->queue, mbio, disk_devt(mddev->gendisk), r1_bio->sector); /* flush_pending_writes() needs access to the rdev so...*/ mbio->bi_disk = (void *)conf->mirrors[i].rdev; cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); if (cb) plug = container_of(cb, struct raid1_plug_cb, cb); else plug = NULL; if (plug) { bio_list_add(&plug->pending, mbio); plug->pending_cnt++; } else { spin_lock_irqsave(&conf->device_lock, flags); bio_list_add(&conf->pending_bio_list, mbio); conf->pending_count++; spin_unlock_irqrestore(&conf->device_lock, flags); md_wakeup_thread(mddev->thread); } } r1_bio_write_done(r1_bio); /* In case raid1d snuck in to freeze_array */ wake_up(&conf->wait_barrier); } static bool raid1_make_request(struct mddev *mddev, struct bio *bio) { sector_t sectors; if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { md_flush_request(mddev, bio); return true; } /* * There is a limit to the maximum size, but * the read/write handler might find a lower limit * due to bad blocks. To avoid multiple splits, * we pass the maximum number of sectors down * and let the lower level perform the split. */ sectors = align_to_barrier_unit_end( bio->bi_iter.bi_sector, bio_sectors(bio)); if (bio_data_dir(bio) == READ) raid1_read_request(mddev, bio, sectors, NULL); else { if (!md_write_start(mddev,bio)) return false; raid1_write_request(mddev, bio, sectors); } return true; } static void raid1_status(struct seq_file *seq, struct mddev *mddev) { struct r1conf *conf = mddev->private; int i; seq_printf(seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); rcu_read_lock(); for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); } rcu_read_unlock(); seq_printf(seq, "]"); } static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) { char b[BDEVNAME_SIZE]; struct r1conf *conf = mddev->private; unsigned long flags; /* * If it is not operational, then we have already marked it as dead * else if it is the last working disks, ignore the error, let the * next level up know. * else mark the drive as failed */ spin_lock_irqsave(&conf->device_lock, flags); if (test_bit(In_sync, &rdev->flags) && (conf->raid_disks - mddev->degraded) == 1) { /* * Don't fail the drive, act as though we were just a * normal single drive. * However don't try a recovery from this drive as * it is very likely to fail. */ conf->recovery_disabled = mddev->recovery_disabled; spin_unlock_irqrestore(&conf->device_lock, flags); return; } set_bit(Blocked, &rdev->flags); if (test_and_clear_bit(In_sync, &rdev->flags)) { mddev->degraded++; set_bit(Faulty, &rdev->flags); } else set_bit(Faulty, &rdev->flags); spin_unlock_irqrestore(&conf->device_lock, flags); /* * if recovery is running, make sure it aborts. */ set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_mask_bits(&mddev->sb_flags, 0, BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" "md/raid1:%s: Operation continuing on %d devices.\n", mdname(mddev), bdevname(rdev->bdev, b), mdname(mddev), conf->raid_disks - mddev->degraded); } static void print_conf(struct r1conf *conf) { int i; pr_debug("RAID1 conf printout:\n"); if (!conf) { pr_debug("(!conf)\n"); return; } pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, conf->raid_disks); rcu_read_lock(); for (i = 0; i < conf->raid_disks; i++) { char b[BDEVNAME_SIZE]; struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); if (rdev) pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", i, !test_bit(In_sync, &rdev->flags), !test_bit(Faulty, &rdev->flags), bdevname(rdev->bdev,b)); } rcu_read_unlock(); } static void close_sync(struct r1conf *conf) { int idx; for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { _wait_barrier(conf, idx); _allow_barrier(conf, idx); } mempool_exit(&conf->r1buf_pool); } static int raid1_spare_active(struct mddev *mddev) { int i; struct r1conf *conf = mddev->private; int count = 0; unsigned long flags; /* * Find all failed disks within the RAID1 configuration * and mark them readable. * Called under mddev lock, so rcu protection not needed. * device_lock used to avoid races with raid1_end_read_request * which expects 'In_sync' flags and ->degraded to be consistent. */ spin_lock_irqsave(&conf->device_lock, flags); for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = conf->mirrors[i].rdev; struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; if (repl && !test_bit(Candidate, &repl->flags) && repl->recovery_offset == MaxSector && !test_bit(Faulty, &repl->flags) && !test_and_set_bit(In_sync, &repl->flags)) { /* replacement has just become active */ if (!rdev || !test_and_clear_bit(In_sync, &rdev->flags)) count++; if (rdev) { /* Replaced device not technically * faulty, but we need to be sure * it gets removed and never re-added */ set_bit(Faulty, &rdev->flags); sysfs_notify_dirent_safe( rdev->sysfs_state); } } if (rdev && rdev->recovery_offset == MaxSector && !test_bit(Faulty, &rdev->flags) && !test_and_set_bit(In_sync, &rdev->flags)) { count++; sysfs_notify_dirent_safe(rdev->sysfs_state); } } mddev->degraded -= count; spin_unlock_irqrestore(&conf->device_lock, flags); print_conf(conf); return count; } static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r1conf *conf = mddev->private; int err = -EEXIST; int mirror = 0; struct raid1_info *p; int first = 0; int last = conf->raid_disks - 1; if (mddev->recovery_disabled == conf->recovery_disabled) return -EBUSY; if (md_integrity_add_rdev(rdev, mddev)) return -ENXIO; if (rdev->raid_disk >= 0) first = last = rdev->raid_disk; /* * find the disk ... but prefer rdev->saved_raid_disk * if possible. */ if (rdev->saved_raid_disk >= 0 && rdev->saved_raid_disk >= first && rdev->saved_raid_disk < conf->raid_disks && conf->mirrors[rdev->saved_raid_disk].rdev == NULL) first = last = rdev->saved_raid_disk; for (mirror = first; mirror <= last; mirror++) { p = conf->mirrors+mirror; if (!p->rdev) { if (mddev->gendisk) disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); p->head_position = 0; rdev->raid_disk = mirror; err = 0; /* As all devices are equivalent, we don't need a full recovery * if this was recently any drive of the array */ if (rdev->saved_raid_disk < 0) conf->fullsync = 1; rcu_assign_pointer(p->rdev, rdev); break; } if (test_bit(WantReplacement, &p->rdev->flags) && p[conf->raid_disks].rdev == NULL) { /* Add this device as a replacement */ clear_bit(In_sync, &rdev->flags); set_bit(Replacement, &rdev->flags); rdev->raid_disk = mirror; err = 0; conf->fullsync = 1; rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); break; } } if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); print_conf(conf); return err; } static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r1conf *conf = mddev->private; int err = 0; int number = rdev->raid_disk; struct raid1_info *p = conf->mirrors + number; if (rdev != p->rdev) p = conf->mirrors + conf->raid_disks + number; print_conf(conf); if (rdev == p->rdev) { if (test_bit(In_sync, &rdev->flags) || atomic_read(&rdev->nr_pending)) { err = -EBUSY; goto abort; } /* Only remove non-faulty devices if recovery * is not possible. */ if (!test_bit(Faulty, &rdev->flags) && mddev->recovery_disabled != conf->recovery_disabled && mddev->degraded < conf->raid_disks) { err = -EBUSY; goto abort; } p->rdev = NULL; if (!test_bit(RemoveSynchronized, &rdev->flags)) { synchronize_rcu(); if (atomic_read(&rdev->nr_pending)) { /* lost the race, try later */ err = -EBUSY; p->rdev = rdev; goto abort; } } if (conf->mirrors[conf->raid_disks + number].rdev) { /* We just removed a device that is being replaced. * Move down the replacement. We drain all IO before * doing this to avoid confusion. */ struct md_rdev *repl = conf->mirrors[conf->raid_disks + number].rdev; freeze_array(conf, 0); if (atomic_read(&repl->nr_pending)) { /* It means that some queued IO of retry_list * hold repl. Thus, we cannot set replacement * as NULL, avoiding rdev NULL pointer * dereference in sync_request_write and * handle_write_finished. */ err = -EBUSY; unfreeze_array(conf); goto abort; } clear_bit(Replacement, &repl->flags); p->rdev = repl; conf->mirrors[conf->raid_disks + number].rdev = NULL; unfreeze_array(conf); } clear_bit(WantReplacement, &rdev->flags); err = md_integrity_register(mddev); } abort: print_conf(conf); return err; } static void end_sync_read(struct bio *bio) { struct r1bio *r1_bio = get_resync_r1bio(bio); update_head_pos(r1_bio->read_disk, r1_bio); /* * we have read a block, now it needs to be re-written, * or re-read if the read failed. * We don't do much here, just schedule handling by raid1d */ if (!bio->bi_status) set_bit(R1BIO_Uptodate, &r1_bio->state); if (atomic_dec_and_test(&r1_bio->remaining)) reschedule_retry(r1_bio); } static void end_sync_write(struct bio *bio) { int uptodate = !bio->bi_status; struct r1bio *r1_bio = get_resync_r1bio(bio); struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; sector_t first_bad; int bad_sectors; struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; if (!uptodate) { sector_t sync_blocks = 0; sector_t s = r1_bio->sector; long sectors_to_go = r1_bio->sectors; /* make sure these bits doesn't get cleared. */ do { md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); s += sync_blocks; sectors_to_go -= sync_blocks; } while (sectors_to_go > 0); set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, & mddev->recovery); set_bit(R1BIO_WriteError, &r1_bio->state); } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, &first_bad, &bad_sectors) && !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, r1_bio->sector, r1_bio->sectors, &first_bad, &bad_sectors) ) set_bit(R1BIO_MadeGood, &r1_bio->state); if (atomic_dec_and_test(&r1_bio->remaining)) { int s = r1_bio->sectors; if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) reschedule_retry(r1_bio); else { put_buf(r1_bio); md_done_sync(mddev, s, uptodate); } } } static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, int sectors, struct page *page, int rw) { if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) /* success */ return 1; if (rw == WRITE) { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, & rdev->mddev->recovery); } /* need to record an error - either for the block or the device */ if (!rdev_set_badblocks(rdev, sector, sectors, 0)) md_error(rdev->mddev, rdev); return 0; } static int fix_sync_read_error(struct r1bio *r1_bio) { /* Try some synchronous reads of other devices to get * good data, much like with normal read errors. Only * read into the pages we already have so we don't * need to re-issue the read request. * We don't need to freeze the array, because being in an * active sync request, there is no normal IO, and * no overlapping syncs. * We don't need to check is_badblock() again as we * made sure that anything with a bad block in range * will have bi_end_io clear. */ struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; struct bio *bio = r1_bio->bios[r1_bio->read_disk]; struct page **pages = get_resync_pages(bio)->pages; sector_t sect = r1_bio->sector; int sectors = r1_bio->sectors; int idx = 0; struct md_rdev *rdev; rdev = conf->mirrors[r1_bio->read_disk].rdev; if (test_bit(FailFast, &rdev->flags)) { /* Don't try recovering from here - just fail it * ... unless it is the last working device of course */ md_error(mddev, rdev); if (test_bit(Faulty, &rdev->flags)) /* Don't try to read from here, but make sure * put_buf does it's thing */ bio->bi_end_io = end_sync_write; } while(sectors) { int s = sectors; int d = r1_bio->read_disk; int success = 0; int start; if (s > (PAGE_SIZE>>9)) s = PAGE_SIZE >> 9; do { if (r1_bio->bios[d]->bi_end_io == end_sync_read) { /* No rcu protection needed here devices * can only be removed when no resync is * active, and resync is currently active */ rdev = conf->mirrors[d].rdev; if (sync_page_io(rdev, sect, s<<9, pages[idx], REQ_OP_READ, 0, false)) { success = 1; break; } } d++; if (d == conf->raid_disks * 2) d = 0; } while (!success && d != r1_bio->read_disk); if (!success) { char b[BDEVNAME_SIZE]; int abort = 0; /* Cannot read from anywhere, this block is lost. * Record a bad block on each device. If that doesn't * work just disable and interrupt the recovery. * Don't fail devices as that won't really help. */ pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", mdname(mddev), bio_devname(bio, b), (unsigned long long)r1_bio->sector); for (d = 0; d < conf->raid_disks * 2; d++) { rdev = conf->mirrors[d].rdev; if (!rdev || test_bit(Faulty, &rdev->flags)) continue; if (!rdev_set_badblocks(rdev, sect, s, 0)) abort = 1; } if (abort) { conf->recovery_disabled = mddev->recovery_disabled; set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_done_sync(mddev, r1_bio->sectors, 0); put_buf(r1_bio); return 0; } /* Try next page */ sectors -= s; sect += s; idx++; continue; } start = d; /* write it back and re-read */ while (d != r1_bio->read_disk) { if (d == 0) d = conf->raid_disks * 2; d--; if (r1_bio->bios[d]->bi_end_io != end_sync_read) continue; rdev = conf->mirrors[d].rdev; if (r1_sync_page_io(rdev, sect, s, pages[idx], WRITE) == 0) { r1_bio->bios[d]->bi_end_io = NULL; rdev_dec_pending(rdev, mddev); } } d = start; while (d != r1_bio->read_disk) { if (d == 0) d = conf->raid_disks * 2; d--; if (r1_bio->bios[d]->bi_end_io != end_sync_read) continue; rdev = conf->mirrors[d].rdev; if (r1_sync_page_io(rdev, sect, s, pages[idx], READ) != 0) atomic_add(s, &rdev->corrected_errors); } sectors -= s; sect += s; idx ++; } set_bit(R1BIO_Uptodate, &r1_bio->state); bio->bi_status = 0; return 1; } static void process_checks(struct r1bio *r1_bio) { /* We have read all readable devices. If we haven't * got the block, then there is no hope left. * If we have, then we want to do a comparison * and skip the write if everything is the same. * If any blocks failed to read, then we need to * attempt an over-write */ struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; int primary; int i; int vcnt; /* Fix variable parts of all bios */ vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); for (i = 0; i < conf->raid_disks * 2; i++) { blk_status_t status; struct bio *b = r1_bio->bios[i]; struct resync_pages *rp = get_resync_pages(b); if (b->bi_end_io != end_sync_read) continue; /* fixup the bio for reuse, but preserve errno */ status = b->bi_status; bio_reset(b); b->bi_status = status; b->bi_iter.bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; bio_set_dev(b, conf->mirrors[i].rdev->bdev); b->bi_end_io = end_sync_read; rp->raid_bio = r1_bio; b->bi_private = rp; /* initialize bvec table again */ md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); } for (primary = 0; primary < conf->raid_disks * 2; primary++) if (r1_bio->bios[primary]->bi_end_io == end_sync_read && !r1_bio->bios[primary]->bi_status) { r1_bio->bios[primary]->bi_end_io = NULL; rdev_dec_pending(conf->mirrors[primary].rdev, mddev); break; } r1_bio->read_disk = primary; for (i = 0; i < conf->raid_disks * 2; i++) { int j; struct bio *pbio = r1_bio->bios[primary]; struct bio *sbio = r1_bio->bios[i]; blk_status_t status = sbio->bi_status; struct page **ppages = get_resync_pages(pbio)->pages; struct page **spages = get_resync_pages(sbio)->pages; struct bio_vec *bi; int page_len[RESYNC_PAGES] = { 0 }; if (sbio->bi_end_io != end_sync_read) continue; /* Now we can 'fixup' the error value */ sbio->bi_status = 0; bio_for_each_segment_all(bi, sbio, j) page_len[j] = bi->bv_len; if (!status) { for (j = vcnt; j-- ; ) { if (memcmp(page_address(ppages[j]), page_address(spages[j]), page_len[j])) break; } } else j = 0; if (j >= 0) atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && !status)) { /* No need to write to this device. */ sbio->bi_end_io = NULL; rdev_dec_pending(conf->mirrors[i].rdev, mddev); continue; } bio_copy_data(sbio, pbio); } } static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) { struct r1conf *conf = mddev->private; int i; int disks = conf->raid_disks * 2; struct bio *wbio; if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) /* ouch - failed to read all of that. */ if (!fix_sync_read_error(r1_bio)) return; if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) process_checks(r1_bio); /* * schedule writes */ atomic_set(&r1_bio->remaining, 1); for (i = 0; i < disks ; i++) { wbio = r1_bio->bios[i]; if (wbio->bi_end_io == NULL || (wbio->bi_end_io == end_sync_read && (i == r1_bio->read_disk || !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) continue; if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) continue; bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) wbio->bi_opf |= MD_FAILFAST; wbio->bi_end_io = end_sync_write; atomic_inc(&r1_bio->remaining); md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); generic_make_request(wbio); } if (atomic_dec_and_test(&r1_bio->remaining)) { /* if we're here, all write(s) have completed, so clean up */ int s = r1_bio->sectors; if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) reschedule_retry(r1_bio); else { put_buf(r1_bio); md_done_sync(mddev, s, 1); } } } /* * This is a kernel thread which: * * 1. Retries failed read operations on working mirrors. * 2. Updates the raid superblock when problems encounter. * 3. Performs writes following reads for array synchronising. */ static void fix_read_error(struct r1conf *conf, int read_disk, sector_t sect, int sectors) { struct mddev *mddev = conf->mddev; while(sectors) { int s = sectors; int d = read_disk; int success = 0; int start; struct md_rdev *rdev; if (s > (PAGE_SIZE>>9)) s = PAGE_SIZE >> 9; do { sector_t first_bad; int bad_sectors; rcu_read_lock(); rdev = rcu_dereference(conf->mirrors[d].rdev); if (rdev && (test_bit(In_sync, &rdev->flags) || (!test_bit(Faulty, &rdev->flags) && rdev->recovery_offset >= sect + s)) && is_badblock(rdev, sect, s, &first_bad, &bad_sectors) == 0) { atomic_inc(&rdev->nr_pending); rcu_read_unlock(); if (sync_page_io(rdev, sect, s<<9, conf->tmppage, REQ_OP_READ, 0, false)) success = 1; rdev_dec_pending(rdev, mddev); if (success) break; } else rcu_read_unlock(); d++; if (d == conf->raid_disks * 2) d = 0; } while (!success && d != read_disk); if (!success) { /* Cannot read from anywhere - mark it bad */ struct md_rdev *rdev = conf->mirrors[read_disk].rdev; if (!rdev_set_badblocks(rdev, sect, s, 0)) md_error(mddev, rdev); break; } /* write it back and re-read */ start = d; while (d != read_disk) { if (d==0) d = conf->raid_disks * 2; d--; rcu_read_lock(); rdev = rcu_dereference(conf->mirrors[d].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) { atomic_inc(&rdev->nr_pending); rcu_read_unlock(); r1_sync_page_io(rdev, sect, s, conf->tmppage, WRITE); rdev_dec_pending(rdev, mddev); } else rcu_read_unlock(); } d = start; while (d != read_disk) { char b[BDEVNAME_SIZE]; if (d==0) d = conf->raid_disks * 2; d--; rcu_read_lock(); rdev = rcu_dereference(conf->mirrors[d].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) { atomic_inc(&rdev->nr_pending); rcu_read_unlock(); if (r1_sync_page_io(rdev, sect, s, conf->tmppage, READ)) { atomic_add(s, &rdev->corrected_errors); pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", mdname(mddev), s, (unsigned long long)(sect + rdev->data_offset), bdevname(rdev->bdev, b)); } rdev_dec_pending(rdev, mddev); } else rcu_read_unlock(); } sectors -= s; sect += s; } } static int narrow_write_error(struct r1bio *r1_bio, int i) { struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; struct md_rdev *rdev = conf->mirrors[i].rdev; /* bio has the data to be written to device 'i' where * we just recently had a write error. * We repeatedly clone the bio and trim down to one block, * then try the write. Where the write fails we record * a bad block. * It is conceivable that the bio doesn't exactly align with * blocks. We must handle this somehow. * * We currently own a reference on the rdev. */ int block_sectors; sector_t sector; int sectors; int sect_to_write = r1_bio->sectors; int ok = 1; if (rdev->badblocks.shift < 0) return 0; block_sectors = roundup(1 << rdev->badblocks.shift, bdev_logical_block_size(rdev->bdev) >> 9); sector = r1_bio->sector; sectors = ((sector + block_sectors) & ~(sector_t)(block_sectors - 1)) - sector; while (sect_to_write) { struct bio *wbio; if (sectors > sect_to_write) sectors = sect_to_write; /* Write at 'sector' for 'sectors'*/ if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { wbio = bio_clone_fast(r1_bio->behind_master_bio, GFP_NOIO, &mddev->bio_set); } else { wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, &mddev->bio_set); } bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); wbio->bi_iter.bi_sector = r1_bio->sector; wbio->bi_iter.bi_size = r1_bio->sectors << 9; bio_trim(wbio, sector - r1_bio->sector, sectors); wbio->bi_iter.bi_sector += rdev->data_offset; bio_set_dev(wbio, rdev->bdev); if (submit_bio_wait(wbio) < 0) /* failure! */ ok = rdev_set_badblocks(rdev, sector, sectors, 0) && ok; bio_put(wbio); sect_to_write -= sectors; sector += sectors; sectors = block_sectors; } return ok; } static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) { int m; int s = r1_bio->sectors; for (m = 0; m < conf->raid_disks * 2 ; m++) { struct md_rdev *rdev = conf->mirrors[m].rdev; struct bio *bio = r1_bio->bios[m]; if (bio->bi_end_io == NULL) continue; if (!bio->bi_status && test_bit(R1BIO_MadeGood, &r1_bio->state)) { rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); } if (bio->bi_status && test_bit(R1BIO_WriteError, &r1_bio->state)) { if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) md_error(conf->mddev, rdev); } } put_buf(r1_bio); md_done_sync(conf->mddev, s, 1); } static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) { int m, idx; bool fail = false; for (m = 0; m < conf->raid_disks * 2 ; m++) if (r1_bio->bios[m] == IO_MADE_GOOD) { struct md_rdev *rdev = conf->mirrors[m].rdev; rdev_clear_badblocks(rdev, r1_bio->sector, r1_bio->sectors, 0); rdev_dec_pending(rdev, conf->mddev); } else if (r1_bio->bios[m] != NULL) { /* This drive got a write error. We need to * narrow down and record precise write * errors. */ fail = true; if (!narrow_write_error(r1_bio, m)) { md_error(conf->mddev, conf->mirrors[m].rdev); /* an I/O failed, we can't clear the bitmap */ set_bit(R1BIO_Degraded, &r1_bio->state); } rdev_dec_pending(conf->mirrors[m].rdev, conf->mddev); } if (fail) { spin_lock_irq(&conf->device_lock); list_add(&r1_bio->retry_list, &conf->bio_end_io_list); idx = sector_to_idx(r1_bio->sector); atomic_inc(&conf->nr_queued[idx]); spin_unlock_irq(&conf->device_lock); /* * In case freeze_array() is waiting for condition * get_unqueued_pending() == extra to be true. */ wake_up(&conf->wait_barrier); md_wakeup_thread(conf->mddev->thread); } else { if (test_bit(R1BIO_WriteError, &r1_bio->state)) close_write(r1_bio); raid_end_bio_io(r1_bio); } } static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) { struct mddev *mddev = conf->mddev; struct bio *bio; struct md_rdev *rdev; clear_bit(R1BIO_ReadError, &r1_bio->state); /* we got a read error. Maybe the drive is bad. Maybe just * the block and we can fix it. * We freeze all other IO, and try reading the block from * other devices. When we find one, we re-write * and check it that fixes the read error. * This is all done synchronously while the array is * frozen */ bio = r1_bio->bios[r1_bio->read_disk]; bio_put(bio); r1_bio->bios[r1_bio->read_disk] = NULL; rdev = conf->mirrors[r1_bio->read_disk].rdev; if (mddev->ro == 0 && !test_bit(FailFast, &rdev->flags)) { freeze_array(conf, 1); fix_read_error(conf, r1_bio->read_disk, r1_bio->sector, r1_bio->sectors); unfreeze_array(conf); } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { md_error(mddev, rdev); } else { r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; } rdev_dec_pending(rdev, conf->mddev); allow_barrier(conf, r1_bio->sector); bio = r1_bio->master_bio; /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ r1_bio->state = 0; raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); } static void raid1d(struct md_thread *thread) { struct mddev *mddev = thread->mddev; struct r1bio *r1_bio; unsigned long flags; struct r1conf *conf = mddev->private; struct list_head *head = &conf->retry_list; struct blk_plug plug; int idx; md_check_recovery(mddev); if (!list_empty_careful(&conf->bio_end_io_list) && !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { LIST_HEAD(tmp); spin_lock_irqsave(&conf->device_lock, flags); if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) list_splice_init(&conf->bio_end_io_list, &tmp); spin_unlock_irqrestore(&conf->device_lock, flags); while (!list_empty(&tmp)) { r1_bio = list_first_entry(&tmp, struct r1bio, retry_list); list_del(&r1_bio->retry_list); idx = sector_to_idx(r1_bio->sector); atomic_dec(&conf->nr_queued[idx]); if (mddev->degraded) set_bit(R1BIO_Degraded, &r1_bio->state); if (test_bit(R1BIO_WriteError, &r1_bio->state)) close_write(r1_bio); raid_end_bio_io(r1_bio); } } blk_start_plug(&plug); for (;;) { flush_pending_writes(conf); spin_lock_irqsave(&conf->device_lock, flags); if (list_empty(head)) { spin_unlock_irqrestore(&conf->device_lock, flags); break; } r1_bio = list_entry(head->prev, struct r1bio, retry_list); list_del(head->prev); idx = sector_to_idx(r1_bio->sector); atomic_dec(&conf->nr_queued[idx]); spin_unlock_irqrestore(&conf->device_lock, flags); mddev = r1_bio->mddev; conf = mddev->private; if (test_bit(R1BIO_IsSync, &r1_bio->state)) { if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) handle_sync_write_finished(conf, r1_bio); else sync_request_write(mddev, r1_bio); } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) handle_write_finished(conf, r1_bio); else if (test_bit(R1BIO_ReadError, &r1_bio->state)) handle_read_error(conf, r1_bio); else WARN_ON_ONCE(1); cond_resched(); if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) md_check_recovery(mddev); } blk_finish_plug(&plug); } static int init_resync(struct r1conf *conf) { int buffs; buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; BUG_ON(mempool_initialized(&conf->r1buf_pool)); return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, r1buf_pool_free, conf->poolinfo); } static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) { struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); struct resync_pages *rps; struct bio *bio; int i; for (i = conf->poolinfo->raid_disks; i--; ) { bio = r1bio->bios[i]; rps = bio->bi_private; bio_reset(bio); bio->bi_private = rps; } r1bio->master_bio = NULL; return r1bio; } /* * perform a "sync" on one "block" * * We need to make sure that no normal I/O request - particularly write * requests - conflict with active sync requests. * * This is achieved by tracking pending requests and a 'barrier' concept * that can be installed to exclude normal IO requests. */ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) { struct r1conf *conf = mddev->private; struct r1bio *r1_bio; struct bio *bio; sector_t max_sector, nr_sectors; int disk = -1; int i; int wonly = -1; int write_targets = 0, read_targets = 0; sector_t sync_blocks; int still_degraded = 0; int good_sectors = RESYNC_SECTORS; int min_bad = 0; /* number of sectors that are bad in all devices */ int idx = sector_to_idx(sector_nr); int page_idx = 0; if (!mempool_initialized(&conf->r1buf_pool)) if (init_resync(conf)) return 0; max_sector = mddev->dev_sectors; if (sector_nr >= max_sector) { /* If we aborted, we need to abort the * sync on the 'current' bitmap chunk (there will * only be one in raid1 resync. * We can find the current addess in mddev->curr_resync */ if (mddev->curr_resync < max_sector) /* aborted */ md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, &sync_blocks, 1); else /* completed sync */ conf->fullsync = 0; md_bitmap_close_sync(mddev->bitmap); close_sync(conf); if (mddev_is_clustered(mddev)) { conf->cluster_sync_low = 0; conf->cluster_sync_high = 0; } return 0; } if (mddev->bitmap == NULL && mddev->recovery_cp == MaxSector && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && conf->fullsync == 0) { *skipped = 1; return max_sector - sector_nr; } /* before building a request, check if we can skip these blocks.. * This call the bitmap_start_sync doesn't actually record anything */ if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { /* We can skip this block, and probably several more */ *skipped = 1; return sync_blocks; } /* * If there is non-resync activity waiting for a turn, then let it * though before starting on this new sync request. */ if (atomic_read(&conf->nr_waiting[idx])) schedule_timeout_uninterruptible(1); /* we are incrementing sector_nr below. To be safe, we check against * sector_nr + two times RESYNC_SECTORS */ md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); if (raise_barrier(conf, sector_nr)) return 0; r1_bio = raid1_alloc_init_r1buf(conf); rcu_read_lock(); /* * If we get a correctably read error during resync or recovery, * we might want to read from a different device. So we * flag all drives that could conceivably be read from for READ, * and any others (which will be non-In_sync devices) for WRITE. * If a read fails, we try reading from something else for which READ * is OK. */ r1_bio->mddev = mddev; r1_bio->sector = sector_nr; r1_bio->state = 0; set_bit(R1BIO_IsSync, &r1_bio->state); /* make sure good_sectors won't go across barrier unit boundary */ good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); for (i = 0; i < conf->raid_disks * 2; i++) { struct md_rdev *rdev; bio = r1_bio->bios[i]; rdev = rcu_dereference(conf->mirrors[i].rdev); if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { if (i < conf->raid_disks) still_degraded = 1; } else if (!test_bit(In_sync, &rdev->flags)) { bio_set_op_attrs(bio, REQ_OP_WRITE, 0); bio->bi_end_io = end_sync_write; write_targets ++; } else { /* may need to read from here */ sector_t first_bad = MaxSector; int bad_sectors; if (is_badblock(rdev, sector_nr, good_sectors, &first_bad, &bad_sectors)) { if (first_bad > sector_nr) good_sectors = first_bad - sector_nr; else { bad_sectors -= (sector_nr - first_bad); if (min_bad == 0 || min_bad > bad_sectors) min_bad = bad_sectors; } } if (sector_nr < first_bad) { if (test_bit(WriteMostly, &rdev->flags)) { if (wonly < 0) wonly = i; } else { if (disk < 0) disk = i; } bio_set_op_attrs(bio, REQ_OP_READ, 0); bio->bi_end_io = end_sync_read; read_targets++; } else if (!test_bit(WriteErrorSeen, &rdev->flags) && test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { /* * The device is suitable for reading (InSync), * but has bad block(s) here. Let's try to correct them, * if we are doing resync or repair. Otherwise, leave * this device alone for this sync request. */ bio_set_op_attrs(bio, REQ_OP_WRITE, 0); bio->bi_end_io = end_sync_write; write_targets++; } } if (bio->bi_end_io) { atomic_inc(&rdev->nr_pending); bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; bio_set_dev(bio, rdev->bdev); if (test_bit(FailFast, &rdev->flags)) bio->bi_opf |= MD_FAILFAST; } } rcu_read_unlock(); if (disk < 0) disk = wonly; r1_bio->read_disk = disk; if (read_targets == 0 && min_bad > 0) { /* These sectors are bad on all InSync devices, so we * need to mark them bad on all write targets */ int ok = 1; for (i = 0 ; i < conf->raid_disks * 2 ; i++) if (r1_bio->bios[i]->bi_end_io == end_sync_write) { struct md_rdev *rdev = conf->mirrors[i].rdev; ok = rdev_set_badblocks(rdev, sector_nr, min_bad, 0 ) && ok; } set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); *skipped = 1; put_buf(r1_bio); if (!ok) { /* Cannot record the badblocks, so need to * abort the resync. * If there are multiple read targets, could just * fail the really bad ones ??? */ conf->recovery_disabled = mddev->recovery_disabled; set_bit(MD_RECOVERY_INTR, &mddev->recovery); return 0; } else return min_bad; } if (min_bad > 0 && min_bad < good_sectors) { /* only resync enough to reach the next bad->good * transition */ good_sectors = min_bad; } if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) /* extra read targets are also write targets */ write_targets += read_targets-1; if (write_targets == 0 || read_targets == 0) { /* There is nowhere to write, so all non-sync * drives must be failed - so we are finished */ sector_t rv; if (min_bad > 0) max_sector = sector_nr + min_bad; rv = max_sector - sector_nr; *skipped = 1; put_buf(r1_bio); return rv; } if (max_sector > mddev->resync_max) max_sector = mddev->resync_max; /* Don't do IO beyond here */ if (max_sector > sector_nr + good_sectors) max_sector = sector_nr + good_sectors; nr_sectors = 0; sync_blocks = 0; do { struct page *page; int len = PAGE_SIZE; if (sector_nr + (len>>9) > max_sector) len = (max_sector - sector_nr) << 9; if (len == 0) break; if (sync_blocks == 0) { if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded) && !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) break; if ((len >> 9) > sync_blocks) len = sync_blocks<<9; } for (i = 0 ; i < conf->raid_disks * 2; i++) { struct resync_pages *rp; bio = r1_bio->bios[i]; rp = get_resync_pages(bio); if (bio->bi_end_io) { page = resync_fetch_page(rp, page_idx); /* * won't fail because the vec table is big * enough to hold all these pages */ bio_add_page(bio, page, len, 0); } } nr_sectors += len>>9; sector_nr += len>>9; sync_blocks -= (len>>9); } while (++page_idx < RESYNC_PAGES); r1_bio->sectors = nr_sectors; if (mddev_is_clustered(mddev) && conf->cluster_sync_high < sector_nr + nr_sectors) { conf->cluster_sync_low = mddev->curr_resync_completed; conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; /* Send resync message */ md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, conf->cluster_sync_high); } /* For a user-requested sync, we read all readable devices and do a * compare */ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { atomic_set(&r1_bio->remaining, read_targets); for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { bio = r1_bio->bios[i]; if (bio->bi_end_io == end_sync_read) { read_targets--; md_sync_acct_bio(bio, nr_sectors); if (read_targets == 1) bio->bi_opf &= ~MD_FAILFAST; generic_make_request(bio); } } } else { atomic_set(&r1_bio->remaining, 1); bio = r1_bio->bios[r1_bio->read_disk]; md_sync_acct_bio(bio, nr_sectors); if (read_targets == 1) bio->bi_opf &= ~MD_FAILFAST; generic_make_request(bio); } return nr_sectors; } static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) { if (sectors) return sectors; return mddev->dev_sectors; } static struct r1conf *setup_conf(struct mddev *mddev) { struct r1conf *conf; int i; struct raid1_info *disk; struct md_rdev *rdev; int err = -ENOMEM; conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); if (!conf) goto abort; conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->nr_pending) goto abort; conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->nr_waiting) goto abort; conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->nr_queued) goto abort; conf->barrier = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->barrier) goto abort; conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), mddev->raid_disks, 2), GFP_KERNEL); if (!conf->mirrors) goto abort; conf->tmppage = alloc_page(GFP_KERNEL); if (!conf->tmppage) goto abort; conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); if (!conf->poolinfo) goto abort; conf->poolinfo->raid_disks = mddev->raid_disks * 2; err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc, r1bio_pool_free, conf->poolinfo); if (err) goto abort; err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); if (err) goto abort; conf->poolinfo->mddev = mddev; err = -EINVAL; spin_lock_init(&conf->device_lock); rdev_for_each(rdev, mddev) { int disk_idx = rdev->raid_disk; if (disk_idx >= mddev->raid_disks || disk_idx < 0) continue; if (test_bit(Replacement, &rdev->flags)) disk = conf->mirrors + mddev->raid_disks + disk_idx; else disk = conf->mirrors + disk_idx; if (disk->rdev) goto abort; disk->rdev = rdev; disk->head_position = 0; disk->seq_start = MaxSector; } conf->raid_disks = mddev->raid_disks; conf->mddev = mddev; INIT_LIST_HEAD(&conf->retry_list); INIT_LIST_HEAD(&conf->bio_end_io_list); spin_lock_init(&conf->resync_lock); init_waitqueue_head(&conf->wait_barrier); bio_list_init(&conf->pending_bio_list); conf->pending_count = 0; conf->recovery_disabled = mddev->recovery_disabled - 1; err = -EIO; for (i = 0; i < conf->raid_disks * 2; i++) { disk = conf->mirrors + i; if (i < conf->raid_disks && disk[conf->raid_disks].rdev) { /* This slot has a replacement. */ if (!disk->rdev) { /* No original, just make the replacement * a recovering spare */ disk->rdev = disk[conf->raid_disks].rdev; disk[conf->raid_disks].rdev = NULL; } else if (!test_bit(In_sync, &disk->rdev->flags)) /* Original is not in_sync - bad */ goto abort; } if (!disk->rdev || !test_bit(In_sync, &disk->rdev->flags)) { disk->head_position = 0; if (disk->rdev && (disk->rdev->saved_raid_disk < 0)) conf->fullsync = 1; } } err = -ENOMEM; conf->thread = md_register_thread(raid1d, mddev, "raid1"); if (!conf->thread) goto abort; return conf; abort: if (conf) { mempool_exit(&conf->r1bio_pool); kfree(conf->mirrors); safe_put_page(conf->tmppage); kfree(conf->poolinfo); kfree(conf->nr_pending); kfree(conf->nr_waiting); kfree(conf->nr_queued); kfree(conf->barrier); bioset_exit(&conf->bio_split); kfree(conf); } return ERR_PTR(err); } static void raid1_free(struct mddev *mddev, void *priv); static int raid1_run(struct mddev *mddev) { struct r1conf *conf; int i; struct md_rdev *rdev; int ret; bool discard_supported = false; if (mddev->level != 1) { pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", mdname(mddev), mddev->level); return -EIO; } if (mddev->reshape_position != MaxSector) { pr_warn("md/raid1:%s: reshape_position set but not supported\n", mdname(mddev)); return -EIO; } if (mddev_init_writes_pending(mddev) < 0) return -ENOMEM; /* * copy the already verified devices into our private RAID1 * bookkeeping area. [whatever we allocate in run(), * should be freed in raid1_free()] */ if (mddev->private == NULL) conf = setup_conf(mddev); else conf = mddev->private; if (IS_ERR(conf)) return PTR_ERR(conf); if (mddev->queue) { blk_queue_max_write_same_sectors(mddev->queue, 0); blk_queue_max_write_zeroes_sectors(mddev->queue, 0); } rdev_for_each(rdev, mddev) { if (!mddev->gendisk) continue; disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); if (blk_queue_discard(bdev_get_queue(rdev->bdev))) discard_supported = true; } mddev->degraded = 0; for (i=0; i < conf->raid_disks; i++) if (conf->mirrors[i].rdev == NULL || !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || test_bit(Faulty, &conf->mirrors[i].rdev->flags)) mddev->degraded++; if (conf->raid_disks - mddev->degraded == 1) mddev->recovery_cp = MaxSector; if (mddev->recovery_cp != MaxSector) pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", mdname(mddev)); pr_info("md/raid1:%s: active with %d out of %d mirrors\n", mdname(mddev), mddev->raid_disks - mddev->degraded, mddev->raid_disks); /* * Ok, everything is just fine now */ mddev->thread = conf->thread; conf->thread = NULL; mddev->private = conf; set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); if (mddev->queue) { if (discard_supported) blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); else blk_queue_flag_clear(QUEUE_FLAG_DISCARD, mddev->queue); } ret = md_integrity_register(mddev); if (ret) { md_unregister_thread(&mddev->thread); raid1_free(mddev, conf); } return ret; } static void raid1_free(struct mddev *mddev, void *priv) { struct r1conf *conf = priv; mempool_exit(&conf->r1bio_pool); kfree(conf->mirrors); safe_put_page(conf->tmppage); kfree(conf->poolinfo); kfree(conf->nr_pending); kfree(conf->nr_waiting); kfree(conf->nr_queued); kfree(conf->barrier); bioset_exit(&conf->bio_split); kfree(conf); } static int raid1_resize(struct mddev *mddev, sector_t sectors) { /* no resync is happening, and there is enough space * on all devices, so we can resize. * We need to make sure resync covers any new space. * If the array is shrinking we should possibly wait until * any io in the removed space completes, but it hardly seems * worth it. */ sector_t newsize = raid1_size(mddev, sectors, 0); if (mddev->external_size && mddev->array_sectors > newsize) return -EINVAL; if (mddev->bitmap) { int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); if (ret) return ret; } md_set_array_sectors(mddev, newsize); if (sectors > mddev->dev_sectors && mddev->recovery_cp > mddev->dev_sectors) { mddev->recovery_cp = mddev->dev_sectors; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } mddev->dev_sectors = sectors; mddev->resync_max_sectors = sectors; return 0; } static int raid1_reshape(struct mddev *mddev) { /* We need to: * 1/ resize the r1bio_pool * 2/ resize conf->mirrors * * We allocate a new r1bio_pool if we can. * Then raise a device barrier and wait until all IO stops. * Then resize conf->mirrors and swap in the new r1bio pool. * * At the same time, we "pack" the devices so that all the missing * devices have the higher raid_disk numbers. */ mempool_t newpool, oldpool; struct pool_info *newpoolinfo; struct raid1_info *newmirrors; struct r1conf *conf = mddev->private; int cnt, raid_disks; unsigned long flags; int d, d2; int ret; memset(&newpool, 0, sizeof(newpool)); memset(&oldpool, 0, sizeof(oldpool)); /* Cannot change chunk_size, layout, or level */ if (mddev->chunk_sectors != mddev->new_chunk_sectors || mddev->layout != mddev->new_layout || mddev->level != mddev->new_level) { mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->new_layout = mddev->layout; mddev->new_level = mddev->level; return -EINVAL; } if (!mddev_is_clustered(mddev)) md_allow_write(mddev); raid_disks = mddev->raid_disks + mddev->delta_disks; if (raid_disks < conf->raid_disks) { cnt=0; for (d= 0; d < conf->raid_disks; d++) if (conf->mirrors[d].rdev) cnt++; if (cnt > raid_disks) return -EBUSY; } newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); if (!newpoolinfo) return -ENOMEM; newpoolinfo->mddev = mddev; newpoolinfo->raid_disks = raid_disks * 2; ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc, r1bio_pool_free, newpoolinfo); if (ret) { kfree(newpoolinfo); return ret; } newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), raid_disks, 2), GFP_KERNEL); if (!newmirrors) { kfree(newpoolinfo); mempool_exit(&newpool); return -ENOMEM; } freeze_array(conf, 0); /* ok, everything is stopped */ oldpool = conf->r1bio_pool; conf->r1bio_pool = newpool; for (d = d2 = 0; d < conf->raid_disks; d++) { struct md_rdev *rdev = conf->mirrors[d].rdev; if (rdev && rdev->raid_disk != d2) { sysfs_unlink_rdev(mddev, rdev); rdev->raid_disk = d2; sysfs_unlink_rdev(mddev, rdev); if (sysfs_link_rdev(mddev, rdev)) pr_warn("md/raid1:%s: cannot register rd%d\n", mdname(mddev), rdev->raid_disk); } if (rdev) newmirrors[d2++].rdev = rdev; } kfree(conf->mirrors); conf->mirrors = newmirrors; kfree(conf->poolinfo); conf->poolinfo = newpoolinfo; spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded += (raid_disks - conf->raid_disks); spin_unlock_irqrestore(&conf->device_lock, flags); conf->raid_disks = mddev->raid_disks = raid_disks; mddev->delta_disks = 0; unfreeze_array(conf); set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); mempool_exit(&oldpool); return 0; } static void raid1_quiesce(struct mddev *mddev, int quiesce) { struct r1conf *conf = mddev->private; if (quiesce) freeze_array(conf, 0); else unfreeze_array(conf); } static void *raid1_takeover(struct mddev *mddev) { /* raid1 can take over: * raid5 with 2 devices, any layout or chunk size */ if (mddev->level == 5 && mddev->raid_disks == 2) { struct r1conf *conf; mddev->new_level = 1; mddev->new_layout = 0; mddev->new_chunk_sectors = 0; conf = setup_conf(mddev); if (!IS_ERR(conf)) { /* Array must appear to be quiesced */ conf->array_frozen = 1; mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS); } return conf; } return ERR_PTR(-EINVAL); } static struct md_personality raid1_personality = { .name = "raid1", .level = 1, .owner = THIS_MODULE, .make_request = raid1_make_request, .run = raid1_run, .free = raid1_free, .status = raid1_status, .error_handler = raid1_error, .hot_add_disk = raid1_add_disk, .hot_remove_disk= raid1_remove_disk, .spare_active = raid1_spare_active, .sync_request = raid1_sync_request, .resize = raid1_resize, .size = raid1_size, .check_reshape = raid1_reshape, .quiesce = raid1_quiesce, .takeover = raid1_takeover, .congested = raid1_congested, }; static int __init raid_init(void) { return register_md_personality(&raid1_personality); } static void raid_exit(void) { unregister_md_personality(&raid1_personality); } module_init(raid_init); module_exit(raid_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); MODULE_ALIAS("md-personality-3"); /* RAID1 */ MODULE_ALIAS("md-raid1"); MODULE_ALIAS("md-level-1"); module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1