Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans Verkuil | 5598 | 90.61% | 12 | 44.44% |
Laurent Pinchart | 223 | 3.61% | 2 | 7.41% |
Martin Bugge | 201 | 3.25% | 4 | 14.81% |
Mats Randgaard | 124 | 2.01% | 3 | 11.11% |
Gianluca Gennari | 20 | 0.32% | 1 | 3.70% |
Wei Yongjun | 5 | 0.08% | 1 | 3.70% |
Bhaktipriya Shridhar | 4 | 0.06% | 1 | 3.70% |
Mauro Carvalho Chehab | 2 | 0.03% | 2 | 7.41% |
Arvind Yadav | 1 | 0.02% | 1 | 3.70% |
Total | 6178 | 27 |
// SPDX-License-Identifier: GPL-2.0-only /* * Analog Devices AD9389B/AD9889B video encoder driver * * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ /* * References (c = chapter, p = page): * REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B, * HDMI Transitter, Rev. A, October 2010 */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/videodev2.h> #include <linux/workqueue.h> #include <linux/v4l2-dv-timings.h> #include <media/v4l2-device.h> #include <media/v4l2-common.h> #include <media/v4l2-dv-timings.h> #include <media/v4l2-ctrls.h> #include <media/i2c/ad9389b.h> static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-2)"); MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver"); MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>"); MODULE_LICENSE("GPL"); #define MASK_AD9389B_EDID_RDY_INT 0x04 #define MASK_AD9389B_MSEN_INT 0x40 #define MASK_AD9389B_HPD_INT 0x80 #define MASK_AD9389B_HPD_DETECT 0x40 #define MASK_AD9389B_MSEN_DETECT 0x20 #define MASK_AD9389B_EDID_RDY 0x10 #define EDID_MAX_RETRIES (8) #define EDID_DELAY 250 #define EDID_MAX_SEGM 8 /* ********************************************************************** * * Arrays with configuration parameters for the AD9389B * ********************************************************************** */ struct ad9389b_state_edid { /* total number of blocks */ u32 blocks; /* Number of segments read */ u32 segments; u8 data[EDID_MAX_SEGM * 256]; /* Number of EDID read retries left */ unsigned read_retries; }; struct ad9389b_state { struct ad9389b_platform_data pdata; struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler hdl; int chip_revision; /* Is the ad9389b powered on? */ bool power_on; /* Did we receive hotplug and rx-sense signals? */ bool have_monitor; /* timings from s_dv_timings */ struct v4l2_dv_timings dv_timings; /* controls */ struct v4l2_ctrl *hdmi_mode_ctrl; struct v4l2_ctrl *hotplug_ctrl; struct v4l2_ctrl *rx_sense_ctrl; struct v4l2_ctrl *have_edid0_ctrl; struct v4l2_ctrl *rgb_quantization_range_ctrl; struct i2c_client *edid_i2c_client; struct ad9389b_state_edid edid; /* Running counter of the number of detected EDIDs (for debugging) */ unsigned edid_detect_counter; struct delayed_work edid_handler; /* work entry */ }; static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd); static bool ad9389b_check_edid_status(struct v4l2_subdev *sd); static void ad9389b_setup(struct v4l2_subdev *sd); static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq); static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq); static inline struct ad9389b_state *get_ad9389b_state(struct v4l2_subdev *sd) { return container_of(sd, struct ad9389b_state, sd); } static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ad9389b_state, hdl)->sd; } /* ------------------------ I2C ----------------------------------------------- */ static int ad9389b_rd(struct v4l2_subdev *sd, u8 reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); return i2c_smbus_read_byte_data(client, reg); } static int ad9389b_wr(struct v4l2_subdev *sd, u8 reg, u8 val) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; int i; for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, reg, val); if (ret == 0) return 0; } v4l2_err(sd, "%s: failed reg 0x%x, val 0x%x\n", __func__, reg, val); return ret; } /* To set specific bits in the register, a clear-mask is given (to be AND-ed), and then the value-mask (to be OR-ed). */ static inline void ad9389b_wr_and_or(struct v4l2_subdev *sd, u8 reg, u8 clr_mask, u8 val_mask) { ad9389b_wr(sd, reg, (ad9389b_rd(sd, reg) & clr_mask) | val_mask); } static void ad9389b_edid_rd(struct v4l2_subdev *sd, u16 len, u8 *buf) { struct ad9389b_state *state = get_ad9389b_state(sd); int i; v4l2_dbg(1, debug, sd, "%s:\n", __func__); for (i = 0; i < len; i++) buf[i] = i2c_smbus_read_byte_data(state->edid_i2c_client, i); } static inline bool ad9389b_have_hotplug(struct v4l2_subdev *sd) { return ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT; } static inline bool ad9389b_have_rx_sense(struct v4l2_subdev *sd) { return ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT; } static void ad9389b_csc_conversion_mode(struct v4l2_subdev *sd, u8 mode) { ad9389b_wr_and_or(sd, 0x17, 0xe7, (mode & 0x3)<<3); ad9389b_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5); } static void ad9389b_csc_coeff(struct v4l2_subdev *sd, u16 A1, u16 A2, u16 A3, u16 A4, u16 B1, u16 B2, u16 B3, u16 B4, u16 C1, u16 C2, u16 C3, u16 C4) { /* A */ ad9389b_wr_and_or(sd, 0x18, 0xe0, A1>>8); ad9389b_wr(sd, 0x19, A1); ad9389b_wr_and_or(sd, 0x1A, 0xe0, A2>>8); ad9389b_wr(sd, 0x1B, A2); ad9389b_wr_and_or(sd, 0x1c, 0xe0, A3>>8); ad9389b_wr(sd, 0x1d, A3); ad9389b_wr_and_or(sd, 0x1e, 0xe0, A4>>8); ad9389b_wr(sd, 0x1f, A4); /* B */ ad9389b_wr_and_or(sd, 0x20, 0xe0, B1>>8); ad9389b_wr(sd, 0x21, B1); ad9389b_wr_and_or(sd, 0x22, 0xe0, B2>>8); ad9389b_wr(sd, 0x23, B2); ad9389b_wr_and_or(sd, 0x24, 0xe0, B3>>8); ad9389b_wr(sd, 0x25, B3); ad9389b_wr_and_or(sd, 0x26, 0xe0, B4>>8); ad9389b_wr(sd, 0x27, B4); /* C */ ad9389b_wr_and_or(sd, 0x28, 0xe0, C1>>8); ad9389b_wr(sd, 0x29, C1); ad9389b_wr_and_or(sd, 0x2A, 0xe0, C2>>8); ad9389b_wr(sd, 0x2B, C2); ad9389b_wr_and_or(sd, 0x2C, 0xe0, C3>>8); ad9389b_wr(sd, 0x2D, C3); ad9389b_wr_and_or(sd, 0x2E, 0xe0, C4>>8); ad9389b_wr(sd, 0x2F, C4); } static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable) { if (enable) { u8 csc_mode = 0; ad9389b_csc_conversion_mode(sd, csc_mode); ad9389b_csc_coeff(sd, 4096-564, 0, 0, 256, 0, 4096-564, 0, 256, 0, 0, 4096-564, 256); /* enable CSC */ ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x1); /* AVI infoframe: Limited range RGB (16-235) */ ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x02); } else { /* disable CSC */ ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x0); /* AVI infoframe: Full range RGB (0-255) */ ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x04); } } static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); if (state->dv_timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { /* CE format, not IT */ ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x00); } else { /* IT format */ ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x40); } } static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl) { struct ad9389b_state *state = get_ad9389b_state(sd); switch (ctrl->val) { case V4L2_DV_RGB_RANGE_AUTO: /* automatic */ if (state->dv_timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { /* CE format, RGB limited range (16-235) */ ad9389b_csc_rgb_full2limit(sd, true); } else { /* not CE format, RGB full range (0-255) */ ad9389b_csc_rgb_full2limit(sd, false); } break; case V4L2_DV_RGB_RANGE_LIMITED: /* RGB limited range (16-235) */ ad9389b_csc_rgb_full2limit(sd, true); break; case V4L2_DV_RGB_RANGE_FULL: /* RGB full range (0-255) */ ad9389b_csc_rgb_full2limit(sd, false); break; default: return -EINVAL; } return 0; } static void ad9389b_set_manual_pll_gear(struct v4l2_subdev *sd, u32 pixelclock) { u8 gear; /* Workaround for TMDS PLL problem * The TMDS PLL in AD9389b change gear when the chip is heated above a * certain temperature. The output is disabled when the PLL change gear * so the monitor has to lock on the signal again. A workaround for * this is to use the manual PLL gears. This is a solution from Analog * Devices that is not documented in the datasheets. * 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear * * The pixel frequency ranges are based on readout of the gear the * automatic gearing selects for different pixel clocks * (read from 0x9e [3:1]). */ if (pixelclock > 140000000) gear = 0xc0; /* 4th gear */ else if (pixelclock > 117000000) gear = 0xb0; /* 3rd gear */ else if (pixelclock > 87000000) gear = 0xa0; /* 2nd gear */ else if (pixelclock > 60000000) gear = 0x90; /* 1st gear */ else gear = 0x80; /* 0th gear */ ad9389b_wr_and_or(sd, 0x98, 0x0f, gear); } /* ------------------------------ CTRL OPS ------------------------------ */ static int ad9389b_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct ad9389b_state *state = get_ad9389b_state(sd); v4l2_dbg(1, debug, sd, "%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val); if (state->hdmi_mode_ctrl == ctrl) { /* Set HDMI or DVI-D */ ad9389b_wr_and_or(sd, 0xaf, 0xfd, ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00); return 0; } if (state->rgb_quantization_range_ctrl == ctrl) return ad9389b_set_rgb_quantization_mode(sd, ctrl); return -EINVAL; } static const struct v4l2_ctrl_ops ad9389b_ctrl_ops = { .s_ctrl = ad9389b_s_ctrl, }; /* ---------------------------- CORE OPS ------------------------------------------- */ #ifdef CONFIG_VIDEO_ADV_DEBUG static int ad9389b_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { reg->val = ad9389b_rd(sd, reg->reg & 0xff); reg->size = 1; return 0; } static int ad9389b_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { ad9389b_wr(sd, reg->reg & 0xff, reg->val & 0xff); return 0; } #endif static int ad9389b_log_status(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); struct ad9389b_state_edid *edid = &state->edid; static const char * const states[] = { "in reset", "reading EDID", "idle", "initializing HDCP", "HDCP enabled", "initializing HDCP repeater", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F" }; static const char * const errors[] = { "no error", "bad receiver BKSV", "Ri mismatch", "Pj mismatch", "i2c error", "timed out", "max repeater cascade exceeded", "hash check failed", "too many devices", "9", "A", "B", "C", "D", "E", "F" }; u8 manual_gear; v4l2_info(sd, "chip revision %d\n", state->chip_revision); v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off"); v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n", (ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT) ? "detected" : "no", (ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT) ? "detected" : "no", edid->segments ? "found" : "no", edid->blocks); v4l2_info(sd, "%s output %s\n", (ad9389b_rd(sd, 0xaf) & 0x02) ? "HDMI" : "DVI-D", (ad9389b_rd(sd, 0xa1) & 0x3c) ? "disabled" : "enabled"); v4l2_info(sd, "ad9389b: %s\n", (ad9389b_rd(sd, 0xb8) & 0x40) ? "encrypted" : "no encryption"); v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n", states[ad9389b_rd(sd, 0xc8) & 0xf], errors[ad9389b_rd(sd, 0xc8) >> 4], state->edid_detect_counter, ad9389b_rd(sd, 0x94), ad9389b_rd(sd, 0x96)); manual_gear = ad9389b_rd(sd, 0x98) & 0x80; v4l2_info(sd, "ad9389b: RGB quantization: %s range\n", ad9389b_rd(sd, 0x3b) & 0x01 ? "limited" : "full"); v4l2_info(sd, "ad9389b: %s gear %d\n", manual_gear ? "manual" : "automatic", manual_gear ? ((ad9389b_rd(sd, 0x98) & 0x70) >> 4) : ((ad9389b_rd(sd, 0x9e) & 0x0e) >> 1)); if (ad9389b_rd(sd, 0xaf) & 0x02) { /* HDMI only */ u8 manual_cts = ad9389b_rd(sd, 0x0a) & 0x80; u32 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 | ad9389b_rd(sd, 0x02) << 8 | ad9389b_rd(sd, 0x03); u8 vic_detect = ad9389b_rd(sd, 0x3e) >> 2; u8 vic_sent = ad9389b_rd(sd, 0x3d) & 0x3f; u32 CTS; if (manual_cts) CTS = (ad9389b_rd(sd, 0x07) & 0xf) << 16 | ad9389b_rd(sd, 0x08) << 8 | ad9389b_rd(sd, 0x09); else CTS = (ad9389b_rd(sd, 0x04) & 0xf) << 16 | ad9389b_rd(sd, 0x05) << 8 | ad9389b_rd(sd, 0x06); N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 | ad9389b_rd(sd, 0x02) << 8 | ad9389b_rd(sd, 0x03); v4l2_info(sd, "ad9389b: CTS %s mode: N %d, CTS %d\n", manual_cts ? "manual" : "automatic", N, CTS); v4l2_info(sd, "ad9389b: VIC: detected %d, sent %d\n", vic_detect, vic_sent); } if (state->dv_timings.type == V4L2_DV_BT_656_1120) v4l2_print_dv_timings(sd->name, "timings: ", &state->dv_timings, false); else v4l2_info(sd, "no timings set\n"); return 0; } /* Power up/down ad9389b */ static int ad9389b_s_power(struct v4l2_subdev *sd, int on) { struct ad9389b_state *state = get_ad9389b_state(sd); struct ad9389b_platform_data *pdata = &state->pdata; const int retries = 20; int i; v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off"); state->power_on = on; if (!on) { /* Power down */ ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40); return true; } /* Power up */ /* The ad9389b does not always come up immediately. Retry multiple times. */ for (i = 0; i < retries; i++) { ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x0); if ((ad9389b_rd(sd, 0x41) & 0x40) == 0) break; ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40); msleep(10); } if (i == retries) { v4l2_dbg(1, debug, sd, "failed to powerup the ad9389b\n"); ad9389b_s_power(sd, 0); return false; } if (i > 1) v4l2_dbg(1, debug, sd, "needed %d retries to powerup the ad9389b\n", i); /* Select chip: AD9389B */ ad9389b_wr_and_or(sd, 0xba, 0xef, 0x10); /* Reserved registers that must be set according to REF_01 p. 11*/ ad9389b_wr_and_or(sd, 0x98, 0xf0, 0x07); ad9389b_wr(sd, 0x9c, 0x38); ad9389b_wr_and_or(sd, 0x9d, 0xfc, 0x01); /* Differential output drive strength */ if (pdata->diff_data_drive_strength > 0) ad9389b_wr(sd, 0xa2, pdata->diff_data_drive_strength); else ad9389b_wr(sd, 0xa2, 0x87); if (pdata->diff_clk_drive_strength > 0) ad9389b_wr(sd, 0xa3, pdata->diff_clk_drive_strength); else ad9389b_wr(sd, 0xa3, 0x87); ad9389b_wr(sd, 0x0a, 0x01); ad9389b_wr(sd, 0xbb, 0xff); /* Set number of attempts to read the EDID */ ad9389b_wr(sd, 0xc9, 0xf); return true; } /* Enable interrupts */ static void ad9389b_set_isr(struct v4l2_subdev *sd, bool enable) { u8 irqs = MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT; u8 irqs_rd; int retries = 100; /* The datasheet says that the EDID ready interrupt should be disabled if there is no hotplug. */ if (!enable) irqs = 0; else if (ad9389b_have_hotplug(sd)) irqs |= MASK_AD9389B_EDID_RDY_INT; /* * This i2c write can fail (approx. 1 in 1000 writes). But it * is essential that this register is correct, so retry it * multiple times. * * Note that the i2c write does not report an error, but the readback * clearly shows the wrong value. */ do { ad9389b_wr(sd, 0x94, irqs); irqs_rd = ad9389b_rd(sd, 0x94); } while (retries-- && irqs_rd != irqs); if (irqs_rd != irqs) v4l2_err(sd, "Could not set interrupts: hw failure?\n"); } /* Interrupt handler */ static int ad9389b_isr(struct v4l2_subdev *sd, u32 status, bool *handled) { u8 irq_status; /* disable interrupts to prevent a race condition */ ad9389b_set_isr(sd, false); irq_status = ad9389b_rd(sd, 0x96); /* clear detected interrupts */ ad9389b_wr(sd, 0x96, irq_status); /* enable interrupts */ ad9389b_set_isr(sd, true); v4l2_dbg(1, debug, sd, "%s: irq_status 0x%x\n", __func__, irq_status); if (irq_status & (MASK_AD9389B_HPD_INT)) ad9389b_check_monitor_present_status(sd); if (irq_status & MASK_AD9389B_EDID_RDY_INT) ad9389b_check_edid_status(sd); *handled = true; return 0; } static const struct v4l2_subdev_core_ops ad9389b_core_ops = { .log_status = ad9389b_log_status, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = ad9389b_g_register, .s_register = ad9389b_s_register, #endif .s_power = ad9389b_s_power, .interrupt_service_routine = ad9389b_isr, }; /* ------------------------------ VIDEO OPS ------------------------------ */ /* Enable/disable ad9389b output */ static int ad9389b_s_stream(struct v4l2_subdev *sd, int enable) { v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); ad9389b_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c)); if (enable) { ad9389b_check_monitor_present_status(sd); } else { ad9389b_s_power(sd, 0); } return 0; } static const struct v4l2_dv_timings_cap ad9389b_timings_cap = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; static int ad9389b_s_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct ad9389b_state *state = get_ad9389b_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); /* quick sanity check */ if (!v4l2_valid_dv_timings(timings, &ad9389b_timings_cap, NULL, NULL)) return -EINVAL; /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings if the format is one of the CEA or DMT timings. */ v4l2_find_dv_timings_cap(timings, &ad9389b_timings_cap, 0, NULL, NULL); timings->bt.flags &= ~V4L2_DV_FL_REDUCED_FPS; /* save timings */ state->dv_timings = *timings; /* update quantization range based on new dv_timings */ ad9389b_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl); /* update PLL gear based on new dv_timings */ if (state->pdata.tmds_pll_gear == AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC) ad9389b_set_manual_pll_gear(sd, (u32)timings->bt.pixelclock); /* update AVI infoframe */ ad9389b_set_IT_content_AVI_InfoFrame(sd); return 0; } static int ad9389b_g_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct ad9389b_state *state = get_ad9389b_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (!timings) return -EINVAL; *timings = state->dv_timings; return 0; } static int ad9389b_enum_dv_timings(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings) { if (timings->pad != 0) return -EINVAL; return v4l2_enum_dv_timings_cap(timings, &ad9389b_timings_cap, NULL, NULL); } static int ad9389b_dv_timings_cap(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap) { if (cap->pad != 0) return -EINVAL; *cap = ad9389b_timings_cap; return 0; } static const struct v4l2_subdev_video_ops ad9389b_video_ops = { .s_stream = ad9389b_s_stream, .s_dv_timings = ad9389b_s_dv_timings, .g_dv_timings = ad9389b_g_dv_timings, }; /* ------------------------------ PAD OPS ------------------------------ */ static int ad9389b_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) { struct ad9389b_state *state = get_ad9389b_state(sd); if (edid->pad != 0) return -EINVAL; if (edid->blocks == 0 || edid->blocks > 256) return -EINVAL; if (!state->edid.segments) { v4l2_dbg(1, debug, sd, "EDID segment 0 not found\n"); return -ENODATA; } if (edid->start_block >= state->edid.segments * 2) return -E2BIG; if (edid->blocks + edid->start_block >= state->edid.segments * 2) edid->blocks = state->edid.segments * 2 - edid->start_block; memcpy(edid->edid, &state->edid.data[edid->start_block * 128], 128 * edid->blocks); return 0; } static const struct v4l2_subdev_pad_ops ad9389b_pad_ops = { .get_edid = ad9389b_get_edid, .enum_dv_timings = ad9389b_enum_dv_timings, .dv_timings_cap = ad9389b_dv_timings_cap, }; /* ------------------------------ AUDIO OPS ------------------------------ */ static int ad9389b_s_audio_stream(struct v4l2_subdev *sd, int enable) { v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); if (enable) ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x80); else ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x40); return 0; } static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { u32 N; switch (freq) { case 32000: N = 4096; break; case 44100: N = 6272; break; case 48000: N = 6144; break; case 88200: N = 12544; break; case 96000: N = 12288; break; case 176400: N = 25088; break; case 192000: N = 24576; break; default: return -EINVAL; } /* Set N (used with CTS to regenerate the audio clock) */ ad9389b_wr(sd, 0x01, (N >> 16) & 0xf); ad9389b_wr(sd, 0x02, (N >> 8) & 0xff); ad9389b_wr(sd, 0x03, N & 0xff); return 0; } static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq) { u32 i2s_sf; switch (freq) { case 32000: i2s_sf = 0x30; break; case 44100: i2s_sf = 0x00; break; case 48000: i2s_sf = 0x20; break; case 88200: i2s_sf = 0x80; break; case 96000: i2s_sf = 0xa0; break; case 176400: i2s_sf = 0xc0; break; case 192000: i2s_sf = 0xe0; break; default: return -EINVAL; } /* Set sampling frequency for I2S audio to 48 kHz */ ad9389b_wr_and_or(sd, 0x15, 0xf, i2s_sf); return 0; } static int ad9389b_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { /* TODO based on input/output/config */ /* TODO See datasheet "Programmers guide" p. 39-40 */ /* Only 2 channels in use for application */ ad9389b_wr_and_or(sd, 0x50, 0x1f, 0x20); /* Speaker mapping */ ad9389b_wr(sd, 0x51, 0x00); /* TODO Where should this be placed? */ /* 16 bit audio word length */ ad9389b_wr_and_or(sd, 0x14, 0xf0, 0x02); return 0; } static const struct v4l2_subdev_audio_ops ad9389b_audio_ops = { .s_stream = ad9389b_s_audio_stream, .s_clock_freq = ad9389b_s_clock_freq, .s_i2s_clock_freq = ad9389b_s_i2s_clock_freq, .s_routing = ad9389b_s_routing, }; /* --------------------- SUBDEV OPS --------------------------------------- */ static const struct v4l2_subdev_ops ad9389b_ops = { .core = &ad9389b_core_ops, .video = &ad9389b_video_ops, .audio = &ad9389b_audio_ops, .pad = &ad9389b_pad_ops, }; /* ----------------------------------------------------------------------- */ static void ad9389b_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd, int segment, u8 *buf) { int i, j; if (debug < lvl) return; v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment); for (i = 0; i < 256; i += 16) { u8 b[128]; u8 *bp = b; if (i == 128) v4l2_dbg(lvl, debug, sd, "\n"); for (j = i; j < i + 16; j++) { sprintf(bp, "0x%02x, ", buf[j]); bp += 6; } bp[0] = '\0'; v4l2_dbg(lvl, debug, sd, "%s\n", b); } } static void ad9389b_edid_handler(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct ad9389b_state *state = container_of(dwork, struct ad9389b_state, edid_handler); struct v4l2_subdev *sd = &state->sd; struct ad9389b_edid_detect ed; v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (ad9389b_check_edid_status(sd)) { /* Return if we received the EDID. */ return; } if (ad9389b_have_hotplug(sd)) { /* We must retry reading the EDID several times, it is possible * that initially the EDID couldn't be read due to i2c errors * (DVI connectors are particularly prone to this problem). */ if (state->edid.read_retries) { state->edid.read_retries--; v4l2_dbg(1, debug, sd, "%s: edid read failed\n", __func__); ad9389b_s_power(sd, false); ad9389b_s_power(sd, true); schedule_delayed_work(&state->edid_handler, EDID_DELAY); return; } } /* We failed to read the EDID, so send an event for this. */ ed.present = false; ed.segment = ad9389b_rd(sd, 0xc4); v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed); v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__); } static void ad9389b_audio_setup(struct v4l2_subdev *sd) { v4l2_dbg(1, debug, sd, "%s\n", __func__); ad9389b_s_i2s_clock_freq(sd, 48000); ad9389b_s_clock_freq(sd, 48000); ad9389b_s_routing(sd, 0, 0, 0); } /* Initial setup of AD9389b */ /* Configure hdmi transmitter. */ static void ad9389b_setup(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); v4l2_dbg(1, debug, sd, "%s\n", __func__); /* Input format: RGB 4:4:4 */ ad9389b_wr_and_or(sd, 0x15, 0xf1, 0x0); /* Output format: RGB 4:4:4 */ ad9389b_wr_and_or(sd, 0x16, 0x3f, 0x0); /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion, Aspect ratio: 16:9 */ ad9389b_wr_and_or(sd, 0x17, 0xf9, 0x06); /* Output format: RGB 4:4:4, Active Format Information is valid. */ ad9389b_wr_and_or(sd, 0x45, 0xc7, 0x08); /* Underscanned */ ad9389b_wr_and_or(sd, 0x46, 0x3f, 0x80); /* Setup video format */ ad9389b_wr(sd, 0x3c, 0x0); /* Active format aspect ratio: same as picure. */ ad9389b_wr(sd, 0x47, 0x80); /* No encryption */ ad9389b_wr_and_or(sd, 0xaf, 0xef, 0x0); /* Positive clk edge capture for input video clock */ ad9389b_wr_and_or(sd, 0xba, 0x1f, 0x60); ad9389b_audio_setup(sd); v4l2_ctrl_handler_setup(&state->hdl); ad9389b_set_IT_content_AVI_InfoFrame(sd); } static void ad9389b_notify_monitor_detect(struct v4l2_subdev *sd) { struct ad9389b_monitor_detect mdt; struct ad9389b_state *state = get_ad9389b_state(sd); mdt.present = state->have_monitor; v4l2_subdev_notify(sd, AD9389B_MONITOR_DETECT, (void *)&mdt); } static void ad9389b_update_monitor_present_status(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); /* read hotplug and rx-sense state */ u8 status = ad9389b_rd(sd, 0x42); v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n", __func__, status, status & MASK_AD9389B_HPD_DETECT ? ", hotplug" : "", status & MASK_AD9389B_MSEN_DETECT ? ", rx-sense" : ""); if (status & MASK_AD9389B_HPD_DETECT) { v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__); state->have_monitor = true; if (!ad9389b_s_power(sd, true)) { v4l2_dbg(1, debug, sd, "%s: monitor detected, powerup failed\n", __func__); return; } ad9389b_setup(sd); ad9389b_notify_monitor_detect(sd); state->edid.read_retries = EDID_MAX_RETRIES; schedule_delayed_work(&state->edid_handler, EDID_DELAY); } else if (!(status & MASK_AD9389B_HPD_DETECT)) { v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__); state->have_monitor = false; ad9389b_notify_monitor_detect(sd); ad9389b_s_power(sd, false); memset(&state->edid, 0, sizeof(struct ad9389b_state_edid)); } /* update read only ctrls */ v4l2_ctrl_s_ctrl(state->hotplug_ctrl, ad9389b_have_hotplug(sd) ? 0x1 : 0x0); v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, ad9389b_have_rx_sense(sd) ? 0x1 : 0x0); v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0); /* update with setting from ctrls */ ad9389b_s_ctrl(state->rgb_quantization_range_ctrl); ad9389b_s_ctrl(state->hdmi_mode_ctrl); } static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); int retry = 0; ad9389b_update_monitor_present_status(sd); /* * Rapid toggling of the hotplug may leave the chip powered off, * even if we think it is on. In that case reset and power up again. */ while (state->power_on && (ad9389b_rd(sd, 0x41) & 0x40)) { if (++retry > 5) { v4l2_err(sd, "retried %d times, give up\n", retry); return; } v4l2_dbg(1, debug, sd, "%s: reset and re-check status (%d)\n", __func__, retry); ad9389b_notify_monitor_detect(sd); cancel_delayed_work_sync(&state->edid_handler); memset(&state->edid, 0, sizeof(struct ad9389b_state_edid)); ad9389b_s_power(sd, false); ad9389b_update_monitor_present_status(sd); } } static bool edid_block_verify_crc(u8 *edid_block) { u8 sum = 0; int i; for (i = 0; i < 128; i++) sum += edid_block[i]; return sum == 0; } static bool edid_verify_crc(struct v4l2_subdev *sd, u32 segment) { struct ad9389b_state *state = get_ad9389b_state(sd); u32 blocks = state->edid.blocks; u8 *data = state->edid.data; if (edid_block_verify_crc(&data[segment * 256])) { if ((segment + 1) * 2 <= blocks) return edid_block_verify_crc(&data[segment * 256 + 128]); return true; } return false; } static bool edid_verify_header(struct v4l2_subdev *sd, u32 segment) { static const u8 hdmi_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; struct ad9389b_state *state = get_ad9389b_state(sd); u8 *data = state->edid.data; int i; if (segment) return true; for (i = 0; i < ARRAY_SIZE(hdmi_header); i++) if (data[i] != hdmi_header[i]) return false; return true; } static bool ad9389b_check_edid_status(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); struct ad9389b_edid_detect ed; int segment; u8 edidRdy = ad9389b_rd(sd, 0xc5); v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n", __func__, EDID_MAX_RETRIES - state->edid.read_retries); if (!(edidRdy & MASK_AD9389B_EDID_RDY)) return false; segment = ad9389b_rd(sd, 0xc4); if (segment >= EDID_MAX_SEGM) { v4l2_err(sd, "edid segment number too big\n"); return false; } v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment); ad9389b_edid_rd(sd, 256, &state->edid.data[segment * 256]); ad9389b_dbg_dump_edid(2, debug, sd, segment, &state->edid.data[segment * 256]); if (segment == 0) { state->edid.blocks = state->edid.data[0x7e] + 1; v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n", __func__, state->edid.blocks); } if (!edid_verify_crc(sd, segment) || !edid_verify_header(sd, segment)) { /* edid crc error, force reread of edid segment */ v4l2_err(sd, "%s: edid crc or header error\n", __func__); ad9389b_s_power(sd, false); ad9389b_s_power(sd, true); return false; } /* one more segment read ok */ state->edid.segments = segment + 1; if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) { /* Request next EDID segment */ v4l2_dbg(1, debug, sd, "%s: request segment %d\n", __func__, state->edid.segments); ad9389b_wr(sd, 0xc9, 0xf); ad9389b_wr(sd, 0xc4, state->edid.segments); state->edid.read_retries = EDID_MAX_RETRIES; schedule_delayed_work(&state->edid_handler, EDID_DELAY); return false; } /* report when we have all segments but report only for segment 0 */ ed.present = true; ed.segment = 0; v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed); state->edid_detect_counter++; v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0); return ed.present; } /* ----------------------------------------------------------------------- */ static void ad9389b_init_setup(struct v4l2_subdev *sd) { struct ad9389b_state *state = get_ad9389b_state(sd); struct ad9389b_state_edid *edid = &state->edid; v4l2_dbg(1, debug, sd, "%s\n", __func__); /* clear all interrupts */ ad9389b_wr(sd, 0x96, 0xff); memset(edid, 0, sizeof(struct ad9389b_state_edid)); state->have_monitor = false; ad9389b_set_isr(sd, false); } static int ad9389b_probe(struct i2c_client *client, const struct i2c_device_id *id) { const struct v4l2_dv_timings dv1080p60 = V4L2_DV_BT_CEA_1920X1080P60; struct ad9389b_state *state; struct ad9389b_platform_data *pdata = client->dev.platform_data; struct v4l2_ctrl_handler *hdl; struct v4l2_subdev *sd; int err = -EIO; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; v4l_dbg(1, debug, client, "detecting ad9389b client on address 0x%x\n", client->addr << 1); state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; /* Platform data */ if (pdata == NULL) { v4l_err(client, "No platform data!\n"); return -ENODEV; } memcpy(&state->pdata, pdata, sizeof(state->pdata)); sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &ad9389b_ops); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; hdl = &state->hdl; v4l2_ctrl_handler_init(hdl, 5); state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops, V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI, 0, V4L2_DV_TX_MODE_DVI_D); state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0); state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0); state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0); state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops, V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); sd->ctrl_handler = hdl; if (hdl->error) { err = hdl->error; goto err_hdl; } state->pad.flags = MEDIA_PAD_FL_SINK; sd->entity.function = MEDIA_ENT_F_DV_ENCODER; err = media_entity_pads_init(&sd->entity, 1, &state->pad); if (err) goto err_hdl; state->chip_revision = ad9389b_rd(sd, 0x0); if (state->chip_revision != 2) { v4l2_err(sd, "chip_revision %d != 2\n", state->chip_revision); err = -EIO; goto err_entity; } v4l2_dbg(1, debug, sd, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n", ad9389b_rd(sd, 0x41), state->chip_revision); state->edid_i2c_client = i2c_new_dummy(client->adapter, (0x7e>>1)); if (state->edid_i2c_client == NULL) { v4l2_err(sd, "failed to register edid i2c client\n"); err = -ENOMEM; goto err_entity; } INIT_DELAYED_WORK(&state->edid_handler, ad9389b_edid_handler); state->dv_timings = dv1080p60; ad9389b_init_setup(sd); ad9389b_set_isr(sd, true); v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); return 0; err_entity: media_entity_cleanup(&sd->entity); err_hdl: v4l2_ctrl_handler_free(&state->hdl); return err; } /* ----------------------------------------------------------------------- */ static int ad9389b_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ad9389b_state *state = get_ad9389b_state(sd); state->chip_revision = -1; v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); ad9389b_s_stream(sd, false); ad9389b_s_audio_stream(sd, false); ad9389b_init_setup(sd); cancel_delayed_work_sync(&state->edid_handler); i2c_unregister_device(state->edid_i2c_client); v4l2_device_unregister_subdev(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); return 0; } /* ----------------------------------------------------------------------- */ static const struct i2c_device_id ad9389b_id[] = { { "ad9389b", 0 }, { "ad9889b", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, ad9389b_id); static struct i2c_driver ad9389b_driver = { .driver = { .name = "ad9389b", }, .probe = ad9389b_probe, .remove = ad9389b_remove, .id_table = ad9389b_id, }; module_i2c_driver(ad9389b_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1