Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tiffany Lin | 2449 | 99.23% | 2 | 33.33% |
Kees Cook | 12 | 0.49% | 1 | 16.67% |
Julia Lawall | 3 | 0.12% | 1 | 16.67% |
Arnd Bergmann | 2 | 0.08% | 1 | 16.67% |
Mauro Carvalho Chehab | 2 | 0.08% | 1 | 16.67% |
Total | 2468 | 6 |
/* * Copyright (c) 2016 MediaTek Inc. * Author: Jungchang Tsao <jungchang.tsao@mediatek.com> * Daniel Hsiao <daniel.hsiao@mediatek.com> * PoChun Lin <pochun.lin@mediatek.com> * * This program is free software; you can redistribute it and/or * modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/slab.h> #include "../mtk_vcodec_drv.h" #include "../mtk_vcodec_util.h" #include "../mtk_vcodec_intr.h" #include "../mtk_vcodec_enc.h" #include "../mtk_vcodec_enc_pm.h" #include "../venc_drv_base.h" #include "../venc_ipi_msg.h" #include "../venc_vpu_if.h" #include "mtk_vpu.h" static const char h264_filler_marker[] = {0x0, 0x0, 0x0, 0x1, 0xc}; #define H264_FILLER_MARKER_SIZE ARRAY_SIZE(h264_filler_marker) #define VENC_PIC_BITSTREAM_BYTE_CNT 0x0098 /* * enum venc_h264_vpu_work_buf - h264 encoder buffer index */ enum venc_h264_vpu_work_buf { VENC_H264_VPU_WORK_BUF_RC_INFO, VENC_H264_VPU_WORK_BUF_RC_CODE, VENC_H264_VPU_WORK_BUF_REC_LUMA, VENC_H264_VPU_WORK_BUF_REC_CHROMA, VENC_H264_VPU_WORK_BUF_REF_LUMA, VENC_H264_VPU_WORK_BUF_REF_CHROMA, VENC_H264_VPU_WORK_BUF_MV_INFO_1, VENC_H264_VPU_WORK_BUF_MV_INFO_2, VENC_H264_VPU_WORK_BUF_SKIP_FRAME, VENC_H264_VPU_WORK_BUF_MAX, }; /* * enum venc_h264_bs_mode - for bs_mode argument in h264_enc_vpu_encode */ enum venc_h264_bs_mode { H264_BS_MODE_SPS, H264_BS_MODE_PPS, H264_BS_MODE_FRAME, }; /* * struct venc_h264_vpu_config - Structure for h264 encoder configuration * AP-W/R : AP is writer/reader on this item * VPU-W/R: VPU is write/reader on this item * @input_fourcc: input fourcc * @bitrate: target bitrate (in bps) * @pic_w: picture width. Picture size is visible stream resolution, in pixels, * to be used for display purposes; must be smaller or equal to buffer * size. * @pic_h: picture height * @buf_w: buffer width. Buffer size is stream resolution in pixels aligned to * hardware requirements. * @buf_h: buffer height * @gop_size: group of picture size (idr frame) * @intra_period: intra frame period * @framerate: frame rate in fps * @profile: as specified in standard * @level: as specified in standard * @wfd: WFD mode 1:on, 0:off */ struct venc_h264_vpu_config { u32 input_fourcc; u32 bitrate; u32 pic_w; u32 pic_h; u32 buf_w; u32 buf_h; u32 gop_size; u32 intra_period; u32 framerate; u32 profile; u32 level; u32 wfd; }; /* * struct venc_h264_vpu_buf - Structure for buffer information * AP-W/R : AP is writer/reader on this item * VPU-W/R: VPU is write/reader on this item * @iova: IO virtual address * @vpua: VPU side memory addr which is used by RC_CODE * @size: buffer size (in bytes) */ struct venc_h264_vpu_buf { u32 iova; u32 vpua; u32 size; }; /* * struct venc_h264_vsi - Structure for VPU driver control and info share * AP-W/R : AP is writer/reader on this item * VPU-W/R: VPU is write/reader on this item * This structure is allocated in VPU side and shared to AP side. * @config: h264 encoder configuration * @work_bufs: working buffer information in VPU side * The work_bufs here is for storing the 'size' info shared to AP side. * The similar item in struct venc_h264_inst is for memory allocation * in AP side. The AP driver will copy the 'size' from here to the one in * struct mtk_vcodec_mem, then invoke mtk_vcodec_mem_alloc to allocate * the buffer. After that, bypass the 'dma_addr' to the 'iova' field here for * register setting in VPU side. */ struct venc_h264_vsi { struct venc_h264_vpu_config config; struct venc_h264_vpu_buf work_bufs[VENC_H264_VPU_WORK_BUF_MAX]; }; /* * struct venc_h264_inst - h264 encoder AP driver instance * @hw_base: h264 encoder hardware register base * @work_bufs: working buffer * @pps_buf: buffer to store the pps bitstream * @work_buf_allocated: working buffer allocated flag * @frm_cnt: encoded frame count * @prepend_hdr: when the v4l2 layer send VENC_SET_PARAM_PREPEND_HEADER cmd * through h264_enc_set_param interface, it will set this flag and prepend the * sps/pps in h264_enc_encode function. * @vpu_inst: VPU instance to exchange information between AP and VPU * @vsi: driver structure allocated by VPU side and shared to AP side for * control and info share * @ctx: context for v4l2 layer integration */ struct venc_h264_inst { void __iomem *hw_base; struct mtk_vcodec_mem work_bufs[VENC_H264_VPU_WORK_BUF_MAX]; struct mtk_vcodec_mem pps_buf; bool work_buf_allocated; unsigned int frm_cnt; unsigned int prepend_hdr; struct venc_vpu_inst vpu_inst; struct venc_h264_vsi *vsi; struct mtk_vcodec_ctx *ctx; }; static inline u32 h264_read_reg(struct venc_h264_inst *inst, u32 addr) { return readl(inst->hw_base + addr); } static unsigned int h264_get_profile(struct venc_h264_inst *inst, unsigned int profile) { switch (profile) { case V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE: return 66; case V4L2_MPEG_VIDEO_H264_PROFILE_MAIN: return 77; case V4L2_MPEG_VIDEO_H264_PROFILE_HIGH: return 100; case V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_BASELINE: mtk_vcodec_err(inst, "unsupported CONSTRAINED_BASELINE"); return 0; case V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED: mtk_vcodec_err(inst, "unsupported EXTENDED"); return 0; default: mtk_vcodec_debug(inst, "unsupported profile %d", profile); return 100; } } static unsigned int h264_get_level(struct venc_h264_inst *inst, unsigned int level) { switch (level) { case V4L2_MPEG_VIDEO_H264_LEVEL_1B: mtk_vcodec_err(inst, "unsupported 1B"); return 0; case V4L2_MPEG_VIDEO_H264_LEVEL_1_0: return 10; case V4L2_MPEG_VIDEO_H264_LEVEL_1_1: return 11; case V4L2_MPEG_VIDEO_H264_LEVEL_1_2: return 12; case V4L2_MPEG_VIDEO_H264_LEVEL_1_3: return 13; case V4L2_MPEG_VIDEO_H264_LEVEL_2_0: return 20; case V4L2_MPEG_VIDEO_H264_LEVEL_2_1: return 21; case V4L2_MPEG_VIDEO_H264_LEVEL_2_2: return 22; case V4L2_MPEG_VIDEO_H264_LEVEL_3_0: return 30; case V4L2_MPEG_VIDEO_H264_LEVEL_3_1: return 31; case V4L2_MPEG_VIDEO_H264_LEVEL_3_2: return 32; case V4L2_MPEG_VIDEO_H264_LEVEL_4_0: return 40; case V4L2_MPEG_VIDEO_H264_LEVEL_4_1: return 41; case V4L2_MPEG_VIDEO_H264_LEVEL_4_2: return 42; default: mtk_vcodec_debug(inst, "unsupported level %d", level); return 31; } } static void h264_enc_free_work_buf(struct venc_h264_inst *inst) { int i; mtk_vcodec_debug_enter(inst); /* Except the SKIP_FRAME buffers, * other buffers need to be freed by AP. */ for (i = 0; i < VENC_H264_VPU_WORK_BUF_MAX; i++) { if (i != VENC_H264_VPU_WORK_BUF_SKIP_FRAME) mtk_vcodec_mem_free(inst->ctx, &inst->work_bufs[i]); } mtk_vcodec_mem_free(inst->ctx, &inst->pps_buf); mtk_vcodec_debug_leave(inst); } static int h264_enc_alloc_work_buf(struct venc_h264_inst *inst) { int i; int ret = 0; struct venc_h264_vpu_buf *wb = inst->vsi->work_bufs; mtk_vcodec_debug_enter(inst); for (i = 0; i < VENC_H264_VPU_WORK_BUF_MAX; i++) { /* * This 'wb' structure is set by VPU side and shared to AP for * buffer allocation and IO virtual addr mapping. For most of * the buffers, AP will allocate the buffer according to 'size' * field and store the IO virtual addr in 'iova' field. There * are two exceptions: * (1) RC_CODE buffer, it's pre-allocated in the VPU side, and * save the VPU addr in the 'vpua' field. The AP will translate * the VPU addr to the corresponding IO virtual addr and store * in 'iova' field for reg setting in VPU side. * (2) SKIP_FRAME buffer, it's pre-allocated in the VPU side, * and save the VPU addr in the 'vpua' field. The AP will * translate the VPU addr to the corresponding AP side virtual * address and do some memcpy access to move to bitstream buffer * assigned by v4l2 layer. */ inst->work_bufs[i].size = wb[i].size; if (i == VENC_H264_VPU_WORK_BUF_SKIP_FRAME) { inst->work_bufs[i].va = vpu_mapping_dm_addr( inst->vpu_inst.dev, wb[i].vpua); inst->work_bufs[i].dma_addr = 0; } else { ret = mtk_vcodec_mem_alloc(inst->ctx, &inst->work_bufs[i]); if (ret) { mtk_vcodec_err(inst, "cannot allocate buf %d", i); goto err_alloc; } /* * This RC_CODE is pre-allocated by VPU and saved in VPU * addr. So we need use memcpy to copy RC_CODE from VPU * addr into IO virtual addr in 'iova' field for reg * setting in VPU side. */ if (i == VENC_H264_VPU_WORK_BUF_RC_CODE) { void *tmp_va; tmp_va = vpu_mapping_dm_addr(inst->vpu_inst.dev, wb[i].vpua); memcpy(inst->work_bufs[i].va, tmp_va, wb[i].size); } } wb[i].iova = inst->work_bufs[i].dma_addr; mtk_vcodec_debug(inst, "work_buf[%d] va=0x%p iova=%pad size=%zu", i, inst->work_bufs[i].va, &inst->work_bufs[i].dma_addr, inst->work_bufs[i].size); } /* the pps_buf is used by AP side only */ inst->pps_buf.size = 128; ret = mtk_vcodec_mem_alloc(inst->ctx, &inst->pps_buf); if (ret) { mtk_vcodec_err(inst, "cannot allocate pps_buf"); goto err_alloc; } mtk_vcodec_debug_leave(inst); return ret; err_alloc: h264_enc_free_work_buf(inst); return ret; } static unsigned int h264_enc_wait_venc_done(struct venc_h264_inst *inst) { unsigned int irq_status = 0; struct mtk_vcodec_ctx *ctx = (struct mtk_vcodec_ctx *)inst->ctx; if (!mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED, WAIT_INTR_TIMEOUT_MS)) { irq_status = ctx->irq_status; mtk_vcodec_debug(inst, "irq_status %x <-", irq_status); } return irq_status; } static int h264_encode_sps(struct venc_h264_inst *inst, struct mtk_vcodec_mem *bs_buf, unsigned int *bs_size) { int ret = 0; unsigned int irq_status; mtk_vcodec_debug_enter(inst); ret = vpu_enc_encode(&inst->vpu_inst, H264_BS_MODE_SPS, NULL, bs_buf, bs_size); if (ret) return ret; irq_status = h264_enc_wait_venc_done(inst); if (irq_status != MTK_VENC_IRQ_STATUS_SPS) { mtk_vcodec_err(inst, "expect irq status %d", MTK_VENC_IRQ_STATUS_SPS); return -EINVAL; } *bs_size = h264_read_reg(inst, VENC_PIC_BITSTREAM_BYTE_CNT); mtk_vcodec_debug(inst, "bs size %d <-", *bs_size); return ret; } static int h264_encode_pps(struct venc_h264_inst *inst, struct mtk_vcodec_mem *bs_buf, unsigned int *bs_size) { int ret = 0; unsigned int irq_status; mtk_vcodec_debug_enter(inst); ret = vpu_enc_encode(&inst->vpu_inst, H264_BS_MODE_PPS, NULL, bs_buf, bs_size); if (ret) return ret; irq_status = h264_enc_wait_venc_done(inst); if (irq_status != MTK_VENC_IRQ_STATUS_PPS) { mtk_vcodec_err(inst, "expect irq status %d", MTK_VENC_IRQ_STATUS_PPS); return -EINVAL; } *bs_size = h264_read_reg(inst, VENC_PIC_BITSTREAM_BYTE_CNT); mtk_vcodec_debug(inst, "bs size %d <-", *bs_size); return ret; } static int h264_encode_header(struct venc_h264_inst *inst, struct mtk_vcodec_mem *bs_buf, unsigned int *bs_size) { int ret = 0; unsigned int bs_size_sps; unsigned int bs_size_pps; ret = h264_encode_sps(inst, bs_buf, &bs_size_sps); if (ret) return ret; ret = h264_encode_pps(inst, &inst->pps_buf, &bs_size_pps); if (ret) return ret; memcpy(bs_buf->va + bs_size_sps, inst->pps_buf.va, bs_size_pps); *bs_size = bs_size_sps + bs_size_pps; return ret; } static int h264_encode_frame(struct venc_h264_inst *inst, struct venc_frm_buf *frm_buf, struct mtk_vcodec_mem *bs_buf, unsigned int *bs_size) { int ret = 0; unsigned int irq_status; mtk_vcodec_debug_enter(inst); ret = vpu_enc_encode(&inst->vpu_inst, H264_BS_MODE_FRAME, frm_buf, bs_buf, bs_size); if (ret) return ret; /* * skip frame case: The skip frame buffer is composed by vpu side only, * it does not trigger the hw, so skip the wait interrupt operation. */ if (inst->vpu_inst.state == VEN_IPI_MSG_ENC_STATE_SKIP) { *bs_size = inst->vpu_inst.bs_size; memcpy(bs_buf->va, inst->work_bufs[VENC_H264_VPU_WORK_BUF_SKIP_FRAME].va, *bs_size); ++inst->frm_cnt; return ret; } irq_status = h264_enc_wait_venc_done(inst); if (irq_status != MTK_VENC_IRQ_STATUS_FRM) { mtk_vcodec_err(inst, "irq_status=%d failed", irq_status); return -EIO; } *bs_size = h264_read_reg(inst, VENC_PIC_BITSTREAM_BYTE_CNT); ++inst->frm_cnt; mtk_vcodec_debug(inst, "frm %d bs_size %d key_frm %d <-", inst->frm_cnt, *bs_size, inst->vpu_inst.is_key_frm); return ret; } static void h264_encode_filler(struct venc_h264_inst *inst, void *buf, int size) { unsigned char *p = buf; if (size < H264_FILLER_MARKER_SIZE) { mtk_vcodec_err(inst, "filler size too small %d", size); return; } memcpy(p, h264_filler_marker, ARRAY_SIZE(h264_filler_marker)); size -= H264_FILLER_MARKER_SIZE; p += H264_FILLER_MARKER_SIZE; memset(p, 0xff, size); } static int h264_enc_init(struct mtk_vcodec_ctx *ctx, unsigned long *handle) { int ret = 0; struct venc_h264_inst *inst; inst = kzalloc(sizeof(*inst), GFP_KERNEL); if (!inst) return -ENOMEM; inst->ctx = ctx; inst->vpu_inst.ctx = ctx; inst->vpu_inst.dev = ctx->dev->vpu_plat_dev; inst->vpu_inst.id = IPI_VENC_H264; inst->hw_base = mtk_vcodec_get_reg_addr(inst->ctx, VENC_SYS); mtk_vcodec_debug_enter(inst); ret = vpu_enc_init(&inst->vpu_inst); inst->vsi = (struct venc_h264_vsi *)inst->vpu_inst.vsi; mtk_vcodec_debug_leave(inst); if (ret) kfree(inst); else (*handle) = (unsigned long)inst; return ret; } static int h264_enc_encode(unsigned long handle, enum venc_start_opt opt, struct venc_frm_buf *frm_buf, struct mtk_vcodec_mem *bs_buf, struct venc_done_result *result) { int ret = 0; struct venc_h264_inst *inst = (struct venc_h264_inst *)handle; struct mtk_vcodec_ctx *ctx = inst->ctx; mtk_vcodec_debug(inst, "opt %d ->", opt); enable_irq(ctx->dev->enc_irq); switch (opt) { case VENC_START_OPT_ENCODE_SEQUENCE_HEADER: { unsigned int bs_size_hdr; ret = h264_encode_header(inst, bs_buf, &bs_size_hdr); if (ret) goto encode_err; result->bs_size = bs_size_hdr; result->is_key_frm = false; break; } case VENC_START_OPT_ENCODE_FRAME: { int hdr_sz; int hdr_sz_ext; int filler_sz = 0; const int bs_alignment = 128; struct mtk_vcodec_mem tmp_bs_buf; unsigned int bs_size_hdr; unsigned int bs_size_frm; if (!inst->prepend_hdr) { ret = h264_encode_frame(inst, frm_buf, bs_buf, &result->bs_size); if (ret) goto encode_err; result->is_key_frm = inst->vpu_inst.is_key_frm; break; } mtk_vcodec_debug(inst, "h264_encode_frame prepend SPS/PPS"); ret = h264_encode_header(inst, bs_buf, &bs_size_hdr); if (ret) goto encode_err; hdr_sz = bs_size_hdr; hdr_sz_ext = (hdr_sz & (bs_alignment - 1)); if (hdr_sz_ext) { filler_sz = bs_alignment - hdr_sz_ext; if (hdr_sz_ext + H264_FILLER_MARKER_SIZE > bs_alignment) filler_sz += bs_alignment; h264_encode_filler(inst, bs_buf->va + hdr_sz, filler_sz); } tmp_bs_buf.va = bs_buf->va + hdr_sz + filler_sz; tmp_bs_buf.dma_addr = bs_buf->dma_addr + hdr_sz + filler_sz; tmp_bs_buf.size = bs_buf->size - (hdr_sz + filler_sz); ret = h264_encode_frame(inst, frm_buf, &tmp_bs_buf, &bs_size_frm); if (ret) goto encode_err; result->bs_size = hdr_sz + filler_sz + bs_size_frm; mtk_vcodec_debug(inst, "hdr %d filler %d frame %d bs %d", hdr_sz, filler_sz, bs_size_frm, result->bs_size); inst->prepend_hdr = 0; result->is_key_frm = inst->vpu_inst.is_key_frm; break; } default: mtk_vcodec_err(inst, "venc_start_opt %d not supported", opt); ret = -EINVAL; break; } encode_err: disable_irq(ctx->dev->enc_irq); mtk_vcodec_debug(inst, "opt %d <-", opt); return ret; } static int h264_enc_set_param(unsigned long handle, enum venc_set_param_type type, struct venc_enc_param *enc_prm) { int ret = 0; struct venc_h264_inst *inst = (struct venc_h264_inst *)handle; mtk_vcodec_debug(inst, "->type=%d", type); switch (type) { case VENC_SET_PARAM_ENC: inst->vsi->config.input_fourcc = enc_prm->input_yuv_fmt; inst->vsi->config.bitrate = enc_prm->bitrate; inst->vsi->config.pic_w = enc_prm->width; inst->vsi->config.pic_h = enc_prm->height; inst->vsi->config.buf_w = enc_prm->buf_width; inst->vsi->config.buf_h = enc_prm->buf_height; inst->vsi->config.gop_size = enc_prm->gop_size; inst->vsi->config.framerate = enc_prm->frm_rate; inst->vsi->config.intra_period = enc_prm->intra_period; inst->vsi->config.profile = h264_get_profile(inst, enc_prm->h264_profile); inst->vsi->config.level = h264_get_level(inst, enc_prm->h264_level); inst->vsi->config.wfd = 0; ret = vpu_enc_set_param(&inst->vpu_inst, type, enc_prm); if (ret) break; if (inst->work_buf_allocated) { h264_enc_free_work_buf(inst); inst->work_buf_allocated = false; } ret = h264_enc_alloc_work_buf(inst); if (ret) break; inst->work_buf_allocated = true; break; case VENC_SET_PARAM_PREPEND_HEADER: inst->prepend_hdr = 1; mtk_vcodec_debug(inst, "set prepend header mode"); break; default: ret = vpu_enc_set_param(&inst->vpu_inst, type, enc_prm); break; } mtk_vcodec_debug_leave(inst); return ret; } static int h264_enc_deinit(unsigned long handle) { int ret = 0; struct venc_h264_inst *inst = (struct venc_h264_inst *)handle; mtk_vcodec_debug_enter(inst); ret = vpu_enc_deinit(&inst->vpu_inst); if (inst->work_buf_allocated) h264_enc_free_work_buf(inst); mtk_vcodec_debug_leave(inst); kfree(inst); return ret; } static const struct venc_common_if venc_h264_if = { .init = h264_enc_init, .encode = h264_enc_encode, .set_param = h264_enc_set_param, .deinit = h264_enc_deinit, }; const struct venc_common_if *get_h264_enc_comm_if(void); const struct venc_common_if *get_h264_enc_comm_if(void) { return &venc_h264_if; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1