Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sudeep Dutt | 8849 | 99.72% | 1 | 25.00% |
Geliang Tang | 11 | 0.12% | 1 | 25.00% |
Michal Hocko | 7 | 0.08% | 1 | 25.00% |
Eric Biggers | 7 | 0.08% | 1 | 25.00% |
Total | 8874 | 4 |
/* * Intel MIC Platform Software Stack (MPSS) * * Copyright(c) 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Intel SCIF driver. * */ #include "scif_main.h" #include "scif_map.h" /* * struct scif_dma_comp_cb - SCIF DMA completion callback * * @dma_completion_func: DMA completion callback * @cb_cookie: DMA completion callback cookie * @temp_buf: Temporary buffer * @temp_buf_to_free: Temporary buffer to be freed * @is_cache: Is a kmem_cache allocated buffer * @dst_offset: Destination registration offset * @dst_window: Destination registration window * @len: Length of the temp buffer * @temp_phys: DMA address of the temp buffer * @sdev: The SCIF device * @header_padding: padding for cache line alignment */ struct scif_dma_comp_cb { void (*dma_completion_func)(void *cookie); void *cb_cookie; u8 *temp_buf; u8 *temp_buf_to_free; bool is_cache; s64 dst_offset; struct scif_window *dst_window; size_t len; dma_addr_t temp_phys; struct scif_dev *sdev; int header_padding; }; /** * struct scif_copy_work - Work for DMA copy * * @src_offset: Starting source offset * @dst_offset: Starting destination offset * @src_window: Starting src registered window * @dst_window: Starting dst registered window * @loopback: true if this is a loopback DMA transfer * @len: Length of the transfer * @comp_cb: DMA copy completion callback * @remote_dev: The remote SCIF peer device * @fence_type: polling or interrupt based * @ordered: is this a tail byte ordered DMA transfer */ struct scif_copy_work { s64 src_offset; s64 dst_offset; struct scif_window *src_window; struct scif_window *dst_window; int loopback; size_t len; struct scif_dma_comp_cb *comp_cb; struct scif_dev *remote_dev; int fence_type; bool ordered; }; /** * scif_reserve_dma_chan: * @ep: Endpoint Descriptor. * * This routine reserves a DMA channel for a particular * endpoint. All DMA transfers for an endpoint are always * programmed on the same DMA channel. */ int scif_reserve_dma_chan(struct scif_endpt *ep) { int err = 0; struct scif_dev *scifdev; struct scif_hw_dev *sdev; struct dma_chan *chan; /* Loopback DMAs are not supported on the management node */ if (!scif_info.nodeid && scifdev_self(ep->remote_dev)) return 0; if (scif_info.nodeid) scifdev = &scif_dev[0]; else scifdev = ep->remote_dev; sdev = scifdev->sdev; if (!sdev->num_dma_ch) return -ENODEV; chan = sdev->dma_ch[scifdev->dma_ch_idx]; scifdev->dma_ch_idx = (scifdev->dma_ch_idx + 1) % sdev->num_dma_ch; mutex_lock(&ep->rma_info.rma_lock); ep->rma_info.dma_chan = chan; mutex_unlock(&ep->rma_info.rma_lock); return err; } #ifdef CONFIG_MMU_NOTIFIER /** * scif_rma_destroy_tcw: * * This routine destroys temporary cached windows */ static void __scif_rma_destroy_tcw(struct scif_mmu_notif *mmn, u64 start, u64 len) { struct list_head *item, *tmp; struct scif_window *window; u64 start_va, end_va; u64 end = start + len; if (end <= start) return; list_for_each_safe(item, tmp, &mmn->tc_reg_list) { window = list_entry(item, struct scif_window, list); if (!len) break; start_va = window->va_for_temp; end_va = start_va + (window->nr_pages << PAGE_SHIFT); if (start < start_va && end <= start_va) break; if (start >= end_va) continue; __scif_rma_destroy_tcw_helper(window); } } static void scif_rma_destroy_tcw(struct scif_mmu_notif *mmn, u64 start, u64 len) { struct scif_endpt *ep = mmn->ep; spin_lock(&ep->rma_info.tc_lock); __scif_rma_destroy_tcw(mmn, start, len); spin_unlock(&ep->rma_info.tc_lock); } static void scif_rma_destroy_tcw_ep(struct scif_endpt *ep) { struct list_head *item, *tmp; struct scif_mmu_notif *mmn; list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) { mmn = list_entry(item, struct scif_mmu_notif, list); scif_rma_destroy_tcw(mmn, 0, ULONG_MAX); } } static void __scif_rma_destroy_tcw_ep(struct scif_endpt *ep) { struct list_head *item, *tmp; struct scif_mmu_notif *mmn; spin_lock(&ep->rma_info.tc_lock); list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) { mmn = list_entry(item, struct scif_mmu_notif, list); __scif_rma_destroy_tcw(mmn, 0, ULONG_MAX); } spin_unlock(&ep->rma_info.tc_lock); } static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes) { if ((cur_bytes >> PAGE_SHIFT) > scif_info.rma_tc_limit) return false; if ((atomic_read(&ep->rma_info.tcw_total_pages) + (cur_bytes >> PAGE_SHIFT)) > scif_info.rma_tc_limit) { dev_info(scif_info.mdev.this_device, "%s %d total=%d, current=%zu reached max\n", __func__, __LINE__, atomic_read(&ep->rma_info.tcw_total_pages), (1 + (cur_bytes >> PAGE_SHIFT))); scif_rma_destroy_tcw_invalid(); __scif_rma_destroy_tcw_ep(ep); } return true; } static void scif_mmu_notifier_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct scif_mmu_notif *mmn; mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier); scif_rma_destroy_tcw(mmn, 0, ULONG_MAX); schedule_work(&scif_info.misc_work); } static int scif_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long start, unsigned long end, bool blockable) { struct scif_mmu_notif *mmn; mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier); scif_rma_destroy_tcw(mmn, start, end - start); return 0; } static void scif_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long start, unsigned long end) { /* * Nothing to do here, everything needed was done in * invalidate_range_start. */ } static const struct mmu_notifier_ops scif_mmu_notifier_ops = { .release = scif_mmu_notifier_release, .clear_flush_young = NULL, .invalidate_range_start = scif_mmu_notifier_invalidate_range_start, .invalidate_range_end = scif_mmu_notifier_invalidate_range_end}; static void scif_ep_unregister_mmu_notifier(struct scif_endpt *ep) { struct scif_endpt_rma_info *rma = &ep->rma_info; struct scif_mmu_notif *mmn = NULL; struct list_head *item, *tmp; mutex_lock(&ep->rma_info.mmn_lock); list_for_each_safe(item, tmp, &rma->mmn_list) { mmn = list_entry(item, struct scif_mmu_notif, list); mmu_notifier_unregister(&mmn->ep_mmu_notifier, mmn->mm); list_del(item); kfree(mmn); } mutex_unlock(&ep->rma_info.mmn_lock); } static void scif_init_mmu_notifier(struct scif_mmu_notif *mmn, struct mm_struct *mm, struct scif_endpt *ep) { mmn->ep = ep; mmn->mm = mm; mmn->ep_mmu_notifier.ops = &scif_mmu_notifier_ops; INIT_LIST_HEAD(&mmn->list); INIT_LIST_HEAD(&mmn->tc_reg_list); } static struct scif_mmu_notif * scif_find_mmu_notifier(struct mm_struct *mm, struct scif_endpt_rma_info *rma) { struct scif_mmu_notif *mmn; list_for_each_entry(mmn, &rma->mmn_list, list) if (mmn->mm == mm) return mmn; return NULL; } static struct scif_mmu_notif * scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep) { struct scif_mmu_notif *mmn = kzalloc(sizeof(*mmn), GFP_KERNEL); if (!mmn) return ERR_PTR(-ENOMEM); scif_init_mmu_notifier(mmn, current->mm, ep); if (mmu_notifier_register(&mmn->ep_mmu_notifier, current->mm)) { kfree(mmn); return ERR_PTR(-EBUSY); } list_add(&mmn->list, &ep->rma_info.mmn_list); return mmn; } /* * Called from the misc thread to destroy temporary cached windows and * unregister the MMU notifier for the SCIF endpoint. */ void scif_mmu_notif_handler(struct work_struct *work) { struct list_head *pos, *tmpq; struct scif_endpt *ep; restart: scif_rma_destroy_tcw_invalid(); spin_lock(&scif_info.rmalock); list_for_each_safe(pos, tmpq, &scif_info.mmu_notif_cleanup) { ep = list_entry(pos, struct scif_endpt, mmu_list); list_del(&ep->mmu_list); spin_unlock(&scif_info.rmalock); scif_rma_destroy_tcw_ep(ep); scif_ep_unregister_mmu_notifier(ep); goto restart; } spin_unlock(&scif_info.rmalock); } static bool scif_is_set_reg_cache(int flags) { return !!(flags & SCIF_RMA_USECACHE); } #else static struct scif_mmu_notif * scif_find_mmu_notifier(struct mm_struct *mm, struct scif_endpt_rma_info *rma) { return NULL; } static struct scif_mmu_notif * scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep) { return NULL; } void scif_mmu_notif_handler(struct work_struct *work) { } static bool scif_is_set_reg_cache(int flags) { return false; } static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes) { return false; } #endif /** * scif_register_temp: * @epd: End Point Descriptor. * @addr: virtual address to/from which to copy * @len: length of range to copy * @out_offset: computed offset returned by reference. * @out_window: allocated registered window returned by reference. * * Create a temporary registered window. The peer will not know about this * window. This API is used for scif_vreadfrom()/scif_vwriteto() API's. */ static int scif_register_temp(scif_epd_t epd, unsigned long addr, size_t len, int prot, off_t *out_offset, struct scif_window **out_window) { struct scif_endpt *ep = (struct scif_endpt *)epd; int err; scif_pinned_pages_t pinned_pages; size_t aligned_len; aligned_len = ALIGN(len, PAGE_SIZE); err = __scif_pin_pages((void *)(addr & PAGE_MASK), aligned_len, &prot, 0, &pinned_pages); if (err) return err; pinned_pages->prot = prot; /* Compute the offset for this registration */ err = scif_get_window_offset(ep, 0, 0, aligned_len >> PAGE_SHIFT, (s64 *)out_offset); if (err) goto error_unpin; /* Allocate and prepare self registration window */ *out_window = scif_create_window(ep, aligned_len >> PAGE_SHIFT, *out_offset, true); if (!*out_window) { scif_free_window_offset(ep, NULL, *out_offset); err = -ENOMEM; goto error_unpin; } (*out_window)->pinned_pages = pinned_pages; (*out_window)->nr_pages = pinned_pages->nr_pages; (*out_window)->prot = pinned_pages->prot; (*out_window)->va_for_temp = addr & PAGE_MASK; err = scif_map_window(ep->remote_dev, *out_window); if (err) { /* Something went wrong! Rollback */ scif_destroy_window(ep, *out_window); *out_window = NULL; } else { *out_offset |= (addr - (*out_window)->va_for_temp); } return err; error_unpin: if (err) dev_err(&ep->remote_dev->sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); scif_unpin_pages(pinned_pages); return err; } #define SCIF_DMA_TO (3 * HZ) /* * scif_sync_dma - Program a DMA without an interrupt descriptor * * @dev - The address of the pointer to the device instance used * for DMA registration. * @chan - DMA channel to be used. * @sync_wait: Wait for DMA to complete? * * Return 0 on success and -errno on error. */ static int scif_sync_dma(struct scif_hw_dev *sdev, struct dma_chan *chan, bool sync_wait) { int err = 0; struct dma_async_tx_descriptor *tx = NULL; enum dma_ctrl_flags flags = DMA_PREP_FENCE; dma_cookie_t cookie; struct dma_device *ddev; if (!chan) { err = -EIO; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); return err; } ddev = chan->device; tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags); if (!tx) { err = -ENOMEM; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); goto release; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { err = -ENOMEM; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); goto release; } if (!sync_wait) { dma_async_issue_pending(chan); } else { if (dma_sync_wait(chan, cookie) == DMA_COMPLETE) { err = 0; } else { err = -EIO; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); } } release: return err; } static void scif_dma_callback(void *arg) { struct completion *done = (struct completion *)arg; complete(done); } #define SCIF_DMA_SYNC_WAIT true #define SCIF_DMA_POLL BIT(0) #define SCIF_DMA_INTR BIT(1) /* * scif_async_dma - Program a DMA with an interrupt descriptor * * @dev - The address of the pointer to the device instance used * for DMA registration. * @chan - DMA channel to be used. * Return 0 on success and -errno on error. */ static int scif_async_dma(struct scif_hw_dev *sdev, struct dma_chan *chan) { int err = 0; struct dma_device *ddev; struct dma_async_tx_descriptor *tx = NULL; enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE; DECLARE_COMPLETION_ONSTACK(done_wait); dma_cookie_t cookie; enum dma_status status; if (!chan) { err = -EIO; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); return err; } ddev = chan->device; tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags); if (!tx) { err = -ENOMEM; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); goto release; } reinit_completion(&done_wait); tx->callback = scif_dma_callback; tx->callback_param = &done_wait; cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { err = -ENOMEM; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); goto release; } dma_async_issue_pending(chan); err = wait_for_completion_timeout(&done_wait, SCIF_DMA_TO); if (!err) { err = -EIO; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); goto release; } err = 0; status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); if (status != DMA_COMPLETE) { err = -EIO; dev_err(&sdev->dev, "%s %d err %d\n", __func__, __LINE__, err); goto release; } release: return err; } /* * scif_drain_dma_poll - Drain all outstanding DMA operations for a particular * DMA channel via polling. * * @sdev - The SCIF device * @chan - DMA channel * Return 0 on success and -errno on error. */ static int scif_drain_dma_poll(struct scif_hw_dev *sdev, struct dma_chan *chan) { if (!chan) return -EINVAL; return scif_sync_dma(sdev, chan, SCIF_DMA_SYNC_WAIT); } /* * scif_drain_dma_intr - Drain all outstanding DMA operations for a particular * DMA channel via interrupt based blocking wait. * * @sdev - The SCIF device * @chan - DMA channel * Return 0 on success and -errno on error. */ int scif_drain_dma_intr(struct scif_hw_dev *sdev, struct dma_chan *chan) { if (!chan) return -EINVAL; return scif_async_dma(sdev, chan); } /** * scif_rma_destroy_windows: * * This routine destroys all windows queued for cleanup */ void scif_rma_destroy_windows(void) { struct list_head *item, *tmp; struct scif_window *window; struct scif_endpt *ep; struct dma_chan *chan; might_sleep(); restart: spin_lock(&scif_info.rmalock); list_for_each_safe(item, tmp, &scif_info.rma) { window = list_entry(item, struct scif_window, list); ep = (struct scif_endpt *)window->ep; chan = ep->rma_info.dma_chan; list_del_init(&window->list); spin_unlock(&scif_info.rmalock); if (!chan || !scifdev_alive(ep) || !scif_drain_dma_intr(ep->remote_dev->sdev, ep->rma_info.dma_chan)) /* Remove window from global list */ window->unreg_state = OP_COMPLETED; else dev_warn(&ep->remote_dev->sdev->dev, "DMA engine hung?\n"); if (window->unreg_state == OP_COMPLETED) { if (window->type == SCIF_WINDOW_SELF) scif_destroy_window(ep, window); else scif_destroy_remote_window(window); atomic_dec(&ep->rma_info.tw_refcount); } goto restart; } spin_unlock(&scif_info.rmalock); } /** * scif_rma_destroy_tcw: * * This routine destroys temporary cached registered windows * which have been queued for cleanup. */ void scif_rma_destroy_tcw_invalid(void) { struct list_head *item, *tmp; struct scif_window *window; struct scif_endpt *ep; struct dma_chan *chan; might_sleep(); restart: spin_lock(&scif_info.rmalock); list_for_each_safe(item, tmp, &scif_info.rma_tc) { window = list_entry(item, struct scif_window, list); ep = (struct scif_endpt *)window->ep; chan = ep->rma_info.dma_chan; list_del_init(&window->list); spin_unlock(&scif_info.rmalock); mutex_lock(&ep->rma_info.rma_lock); if (!chan || !scifdev_alive(ep) || !scif_drain_dma_intr(ep->remote_dev->sdev, ep->rma_info.dma_chan)) { atomic_sub(window->nr_pages, &ep->rma_info.tcw_total_pages); scif_destroy_window(ep, window); atomic_dec(&ep->rma_info.tcw_refcount); } else { dev_warn(&ep->remote_dev->sdev->dev, "DMA engine hung?\n"); } mutex_unlock(&ep->rma_info.rma_lock); goto restart; } spin_unlock(&scif_info.rmalock); } static inline void *_get_local_va(off_t off, struct scif_window *window, size_t len) { int page_nr = (off - window->offset) >> PAGE_SHIFT; off_t page_off = off & ~PAGE_MASK; void *va = NULL; if (window->type == SCIF_WINDOW_SELF) { struct page **pages = window->pinned_pages->pages; va = page_address(pages[page_nr]) + page_off; } return va; } static inline void *ioremap_remote(off_t off, struct scif_window *window, size_t len, struct scif_dev *dev, struct scif_window_iter *iter) { dma_addr_t phys = scif_off_to_dma_addr(window, off, NULL, iter); /* * If the DMA address is not card relative then we need the DMA * addresses to be an offset into the bar. The aperture base was already * added so subtract it here since scif_ioremap is going to add it again */ if (!scifdev_self(dev) && window->type == SCIF_WINDOW_PEER && dev->sdev->aper && !dev->sdev->card_rel_da) phys = phys - dev->sdev->aper->pa; return scif_ioremap(phys, len, dev); } static inline void iounmap_remote(void *virt, size_t size, struct scif_copy_work *work) { scif_iounmap(virt, size, work->remote_dev); } /* * Takes care of ordering issue caused by * 1. Hardware: Only in the case of cpu copy from mgmt node to card * because of WC memory. * 2. Software: If memcpy reorders copy instructions for optimization. * This could happen at both mgmt node and card. */ static inline void scif_ordered_memcpy_toio(char *dst, const char *src, size_t count) { if (!count) return; memcpy_toio((void __iomem __force *)dst, src, --count); /* Order the last byte with the previous stores */ wmb(); *(dst + count) = *(src + count); } static inline void scif_unaligned_cpy_toio(char *dst, const char *src, size_t count, bool ordered) { if (ordered) scif_ordered_memcpy_toio(dst, src, count); else memcpy_toio((void __iomem __force *)dst, src, count); } static inline void scif_ordered_memcpy_fromio(char *dst, const char *src, size_t count) { if (!count) return; memcpy_fromio(dst, (void __iomem __force *)src, --count); /* Order the last byte with the previous loads */ rmb(); *(dst + count) = *(src + count); } static inline void scif_unaligned_cpy_fromio(char *dst, const char *src, size_t count, bool ordered) { if (ordered) scif_ordered_memcpy_fromio(dst, src, count); else memcpy_fromio(dst, (void __iomem __force *)src, count); } #define SCIF_RMA_ERROR_CODE (~(dma_addr_t)0x0) /* * scif_off_to_dma_addr: * Obtain the dma_addr given the window and the offset. * @window: Registered window. * @off: Window offset. * @nr_bytes: Return the number of contiguous bytes till next DMA addr index. * @index: Return the index of the dma_addr array found. * @start_off: start offset of index of the dma addr array found. * The nr_bytes provides the callee an estimate of the maximum possible * DMA xfer possible while the index/start_off provide faster lookups * for the next iteration. */ dma_addr_t scif_off_to_dma_addr(struct scif_window *window, s64 off, size_t *nr_bytes, struct scif_window_iter *iter) { int i, page_nr; s64 start, end; off_t page_off; if (window->nr_pages == window->nr_contig_chunks) { page_nr = (off - window->offset) >> PAGE_SHIFT; page_off = off & ~PAGE_MASK; if (nr_bytes) *nr_bytes = PAGE_SIZE - page_off; return window->dma_addr[page_nr] | page_off; } if (iter) { i = iter->index; start = iter->offset; } else { i = 0; start = window->offset; } for (; i < window->nr_contig_chunks; i++) { end = start + (window->num_pages[i] << PAGE_SHIFT); if (off >= start && off < end) { if (iter) { iter->index = i; iter->offset = start; } if (nr_bytes) *nr_bytes = end - off; return (window->dma_addr[i] + (off - start)); } start += (window->num_pages[i] << PAGE_SHIFT); } dev_err(scif_info.mdev.this_device, "%s %d BUG. Addr not found? window %p off 0x%llx\n", __func__, __LINE__, window, off); return SCIF_RMA_ERROR_CODE; } /* * Copy between rma window and temporary buffer */ static void scif_rma_local_cpu_copy(s64 offset, struct scif_window *window, u8 *temp, size_t rem_len, bool to_temp) { void *window_virt; size_t loop_len; int offset_in_page; s64 end_offset; offset_in_page = offset & ~PAGE_MASK; loop_len = PAGE_SIZE - offset_in_page; if (rem_len < loop_len) loop_len = rem_len; window_virt = _get_local_va(offset, window, loop_len); if (!window_virt) return; if (to_temp) memcpy(temp, window_virt, loop_len); else memcpy(window_virt, temp, loop_len); offset += loop_len; temp += loop_len; rem_len -= loop_len; end_offset = window->offset + (window->nr_pages << PAGE_SHIFT); while (rem_len) { if (offset == end_offset) { window = list_next_entry(window, list); end_offset = window->offset + (window->nr_pages << PAGE_SHIFT); } loop_len = min(PAGE_SIZE, rem_len); window_virt = _get_local_va(offset, window, loop_len); if (!window_virt) return; if (to_temp) memcpy(temp, window_virt, loop_len); else memcpy(window_virt, temp, loop_len); offset += loop_len; temp += loop_len; rem_len -= loop_len; } } /** * scif_rma_completion_cb: * @data: RMA cookie * * RMA interrupt completion callback. */ static void scif_rma_completion_cb(void *data) { struct scif_dma_comp_cb *comp_cb = data; /* Free DMA Completion CB. */ if (comp_cb->dst_window) scif_rma_local_cpu_copy(comp_cb->dst_offset, comp_cb->dst_window, comp_cb->temp_buf + comp_cb->header_padding, comp_cb->len, false); scif_unmap_single(comp_cb->temp_phys, comp_cb->sdev, SCIF_KMEM_UNALIGNED_BUF_SIZE); if (comp_cb->is_cache) kmem_cache_free(unaligned_cache, comp_cb->temp_buf_to_free); else kfree(comp_cb->temp_buf_to_free); } /* Copies between temporary buffer and offsets provided in work */ static int scif_rma_list_dma_copy_unaligned(struct scif_copy_work *work, u8 *temp, struct dma_chan *chan, bool src_local) { struct scif_dma_comp_cb *comp_cb = work->comp_cb; dma_addr_t window_dma_addr, temp_dma_addr; dma_addr_t temp_phys = comp_cb->temp_phys; size_t loop_len, nr_contig_bytes = 0, remaining_len = work->len; int offset_in_ca, ret = 0; s64 end_offset, offset; struct scif_window *window; void *window_virt_addr; size_t tail_len; struct dma_async_tx_descriptor *tx; struct dma_device *dev = chan->device; dma_cookie_t cookie; if (src_local) { offset = work->dst_offset; window = work->dst_window; } else { offset = work->src_offset; window = work->src_window; } offset_in_ca = offset & (L1_CACHE_BYTES - 1); if (offset_in_ca) { loop_len = L1_CACHE_BYTES - offset_in_ca; loop_len = min(loop_len, remaining_len); window_virt_addr = ioremap_remote(offset, window, loop_len, work->remote_dev, NULL); if (!window_virt_addr) return -ENOMEM; if (src_local) scif_unaligned_cpy_toio(window_virt_addr, temp, loop_len, work->ordered && !(remaining_len - loop_len)); else scif_unaligned_cpy_fromio(temp, window_virt_addr, loop_len, work->ordered && !(remaining_len - loop_len)); iounmap_remote(window_virt_addr, loop_len, work); offset += loop_len; temp += loop_len; temp_phys += loop_len; remaining_len -= loop_len; } offset_in_ca = offset & ~PAGE_MASK; end_offset = window->offset + (window->nr_pages << PAGE_SHIFT); tail_len = remaining_len & (L1_CACHE_BYTES - 1); remaining_len -= tail_len; while (remaining_len) { if (offset == end_offset) { window = list_next_entry(window, list); end_offset = window->offset + (window->nr_pages << PAGE_SHIFT); } if (scif_is_mgmt_node()) temp_dma_addr = temp_phys; else /* Fix if we ever enable IOMMU on the card */ temp_dma_addr = (dma_addr_t)virt_to_phys(temp); window_dma_addr = scif_off_to_dma_addr(window, offset, &nr_contig_bytes, NULL); loop_len = min(nr_contig_bytes, remaining_len); if (src_local) { if (work->ordered && !tail_len && !(remaining_len - loop_len) && loop_len != L1_CACHE_BYTES) { /* * Break up the last chunk of the transfer into * two steps. if there is no tail to guarantee * DMA ordering. SCIF_DMA_POLLING inserts * a status update descriptor in step 1 which * acts as a double sided synchronization fence * for the DMA engine to ensure that the last * cache line in step 2 is updated last. */ /* Step 1) DMA: Body Length - L1_CACHE_BYTES. */ tx = dev->device_prep_dma_memcpy(chan, window_dma_addr, temp_dma_addr, loop_len - L1_CACHE_BYTES, DMA_PREP_FENCE); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); offset += (loop_len - L1_CACHE_BYTES); temp_dma_addr += (loop_len - L1_CACHE_BYTES); window_dma_addr += (loop_len - L1_CACHE_BYTES); remaining_len -= (loop_len - L1_CACHE_BYTES); loop_len = remaining_len; /* Step 2) DMA: L1_CACHE_BYTES */ tx = dev->device_prep_dma_memcpy(chan, window_dma_addr, temp_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); } else { tx = dev->device_prep_dma_memcpy(chan, window_dma_addr, temp_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); } } else { tx = dev->device_prep_dma_memcpy(chan, temp_dma_addr, window_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); } offset += loop_len; temp += loop_len; temp_phys += loop_len; remaining_len -= loop_len; offset_in_ca = 0; } if (tail_len) { if (offset == end_offset) { window = list_next_entry(window, list); end_offset = window->offset + (window->nr_pages << PAGE_SHIFT); } window_virt_addr = ioremap_remote(offset, window, tail_len, work->remote_dev, NULL); if (!window_virt_addr) return -ENOMEM; /* * The CPU copy for the tail bytes must be initiated only once * previous DMA transfers for this endpoint have completed * to guarantee ordering. */ if (work->ordered) { struct scif_dev *rdev = work->remote_dev; ret = scif_drain_dma_intr(rdev->sdev, chan); if (ret) return ret; } if (src_local) scif_unaligned_cpy_toio(window_virt_addr, temp, tail_len, work->ordered); else scif_unaligned_cpy_fromio(temp, window_virt_addr, tail_len, work->ordered); iounmap_remote(window_virt_addr, tail_len, work); } tx = dev->device_prep_dma_memcpy(chan, 0, 0, 0, DMA_PREP_INTERRUPT); if (!tx) { ret = -ENOMEM; return ret; } tx->callback = &scif_rma_completion_cb; tx->callback_param = comp_cb; cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; return ret; } dma_async_issue_pending(chan); return 0; err: dev_err(scif_info.mdev.this_device, "%s %d Desc Prog Failed ret %d\n", __func__, __LINE__, ret); return ret; } /* * _scif_rma_list_dma_copy_aligned: * * Traverse all the windows and perform DMA copy. */ static int _scif_rma_list_dma_copy_aligned(struct scif_copy_work *work, struct dma_chan *chan) { dma_addr_t src_dma_addr, dst_dma_addr; size_t loop_len, remaining_len, src_contig_bytes = 0; size_t dst_contig_bytes = 0; struct scif_window_iter src_win_iter; struct scif_window_iter dst_win_iter; s64 end_src_offset, end_dst_offset; struct scif_window *src_window = work->src_window; struct scif_window *dst_window = work->dst_window; s64 src_offset = work->src_offset, dst_offset = work->dst_offset; int ret = 0; struct dma_async_tx_descriptor *tx; struct dma_device *dev = chan->device; dma_cookie_t cookie; remaining_len = work->len; scif_init_window_iter(src_window, &src_win_iter); scif_init_window_iter(dst_window, &dst_win_iter); end_src_offset = src_window->offset + (src_window->nr_pages << PAGE_SHIFT); end_dst_offset = dst_window->offset + (dst_window->nr_pages << PAGE_SHIFT); while (remaining_len) { if (src_offset == end_src_offset) { src_window = list_next_entry(src_window, list); end_src_offset = src_window->offset + (src_window->nr_pages << PAGE_SHIFT); scif_init_window_iter(src_window, &src_win_iter); } if (dst_offset == end_dst_offset) { dst_window = list_next_entry(dst_window, list); end_dst_offset = dst_window->offset + (dst_window->nr_pages << PAGE_SHIFT); scif_init_window_iter(dst_window, &dst_win_iter); } /* compute dma addresses for transfer */ src_dma_addr = scif_off_to_dma_addr(src_window, src_offset, &src_contig_bytes, &src_win_iter); dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset, &dst_contig_bytes, &dst_win_iter); loop_len = min(src_contig_bytes, dst_contig_bytes); loop_len = min(loop_len, remaining_len); if (work->ordered && !(remaining_len - loop_len)) { /* * Break up the last chunk of the transfer into two * steps to ensure that the last byte in step 2 is * updated last. */ /* Step 1) DMA: Body Length - 1 */ tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr, src_dma_addr, loop_len - 1, DMA_PREP_FENCE); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } src_offset += (loop_len - 1); dst_offset += (loop_len - 1); src_dma_addr += (loop_len - 1); dst_dma_addr += (loop_len - 1); remaining_len -= (loop_len - 1); loop_len = remaining_len; /* Step 2) DMA: 1 BYTES */ tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr, src_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); } else { tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr, src_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } } src_offset += loop_len; dst_offset += loop_len; remaining_len -= loop_len; } return ret; err: dev_err(scif_info.mdev.this_device, "%s %d Desc Prog Failed ret %d\n", __func__, __LINE__, ret); return ret; } /* * scif_rma_list_dma_copy_aligned: * * Traverse all the windows and perform DMA copy. */ static int scif_rma_list_dma_copy_aligned(struct scif_copy_work *work, struct dma_chan *chan) { dma_addr_t src_dma_addr, dst_dma_addr; size_t loop_len, remaining_len, tail_len, src_contig_bytes = 0; size_t dst_contig_bytes = 0; int src_cache_off; s64 end_src_offset, end_dst_offset; struct scif_window_iter src_win_iter; struct scif_window_iter dst_win_iter; void *src_virt, *dst_virt; struct scif_window *src_window = work->src_window; struct scif_window *dst_window = work->dst_window; s64 src_offset = work->src_offset, dst_offset = work->dst_offset; int ret = 0; struct dma_async_tx_descriptor *tx; struct dma_device *dev = chan->device; dma_cookie_t cookie; remaining_len = work->len; scif_init_window_iter(src_window, &src_win_iter); scif_init_window_iter(dst_window, &dst_win_iter); src_cache_off = src_offset & (L1_CACHE_BYTES - 1); if (src_cache_off != 0) { /* Head */ loop_len = L1_CACHE_BYTES - src_cache_off; loop_len = min(loop_len, remaining_len); src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset); dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset); if (src_window->type == SCIF_WINDOW_SELF) src_virt = _get_local_va(src_offset, src_window, loop_len); else src_virt = ioremap_remote(src_offset, src_window, loop_len, work->remote_dev, NULL); if (!src_virt) return -ENOMEM; if (dst_window->type == SCIF_WINDOW_SELF) dst_virt = _get_local_va(dst_offset, dst_window, loop_len); else dst_virt = ioremap_remote(dst_offset, dst_window, loop_len, work->remote_dev, NULL); if (!dst_virt) { if (src_window->type != SCIF_WINDOW_SELF) iounmap_remote(src_virt, loop_len, work); return -ENOMEM; } if (src_window->type == SCIF_WINDOW_SELF) scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len, remaining_len == loop_len ? work->ordered : false); else scif_unaligned_cpy_fromio(dst_virt, src_virt, loop_len, remaining_len == loop_len ? work->ordered : false); if (src_window->type != SCIF_WINDOW_SELF) iounmap_remote(src_virt, loop_len, work); if (dst_window->type != SCIF_WINDOW_SELF) iounmap_remote(dst_virt, loop_len, work); src_offset += loop_len; dst_offset += loop_len; remaining_len -= loop_len; } end_src_offset = src_window->offset + (src_window->nr_pages << PAGE_SHIFT); end_dst_offset = dst_window->offset + (dst_window->nr_pages << PAGE_SHIFT); tail_len = remaining_len & (L1_CACHE_BYTES - 1); remaining_len -= tail_len; while (remaining_len) { if (src_offset == end_src_offset) { src_window = list_next_entry(src_window, list); end_src_offset = src_window->offset + (src_window->nr_pages << PAGE_SHIFT); scif_init_window_iter(src_window, &src_win_iter); } if (dst_offset == end_dst_offset) { dst_window = list_next_entry(dst_window, list); end_dst_offset = dst_window->offset + (dst_window->nr_pages << PAGE_SHIFT); scif_init_window_iter(dst_window, &dst_win_iter); } /* compute dma addresses for transfer */ src_dma_addr = scif_off_to_dma_addr(src_window, src_offset, &src_contig_bytes, &src_win_iter); dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset, &dst_contig_bytes, &dst_win_iter); loop_len = min(src_contig_bytes, dst_contig_bytes); loop_len = min(loop_len, remaining_len); if (work->ordered && !tail_len && !(remaining_len - loop_len)) { /* * Break up the last chunk of the transfer into two * steps. if there is no tail to gurantee DMA ordering. * Passing SCIF_DMA_POLLING inserts a status update * descriptor in step 1 which acts as a double sided * synchronization fence for the DMA engine to ensure * that the last cache line in step 2 is updated last. */ /* Step 1) DMA: Body Length - L1_CACHE_BYTES. */ tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr, src_dma_addr, loop_len - L1_CACHE_BYTES, DMA_PREP_FENCE); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); src_offset += (loop_len - L1_CACHE_BYTES); dst_offset += (loop_len - L1_CACHE_BYTES); src_dma_addr += (loop_len - L1_CACHE_BYTES); dst_dma_addr += (loop_len - L1_CACHE_BYTES); remaining_len -= (loop_len - L1_CACHE_BYTES); loop_len = remaining_len; /* Step 2) DMA: L1_CACHE_BYTES */ tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr, src_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); } else { tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr, src_dma_addr, loop_len, 0); if (!tx) { ret = -ENOMEM; goto err; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { ret = -ENOMEM; goto err; } dma_async_issue_pending(chan); } src_offset += loop_len; dst_offset += loop_len; remaining_len -= loop_len; } remaining_len = tail_len; if (remaining_len) { loop_len = remaining_len; if (src_offset == end_src_offset) src_window = list_next_entry(src_window, list); if (dst_offset == end_dst_offset) dst_window = list_next_entry(dst_window, list); src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset); dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset); /* * The CPU copy for the tail bytes must be initiated only once * previous DMA transfers for this endpoint have completed to * guarantee ordering. */ if (work->ordered) { struct scif_dev *rdev = work->remote_dev; ret = scif_drain_dma_poll(rdev->sdev, chan); if (ret) return ret; } if (src_window->type == SCIF_WINDOW_SELF) src_virt = _get_local_va(src_offset, src_window, loop_len); else src_virt = ioremap_remote(src_offset, src_window, loop_len, work->remote_dev, NULL); if (!src_virt) return -ENOMEM; if (dst_window->type == SCIF_WINDOW_SELF) dst_virt = _get_local_va(dst_offset, dst_window, loop_len); else dst_virt = ioremap_remote(dst_offset, dst_window, loop_len, work->remote_dev, NULL); if (!dst_virt) { if (src_window->type != SCIF_WINDOW_SELF) iounmap_remote(src_virt, loop_len, work); return -ENOMEM; } if (src_window->type == SCIF_WINDOW_SELF) scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len, work->ordered); else scif_unaligned_cpy_fromio(dst_virt, src_virt, loop_len, work->ordered); if (src_window->type != SCIF_WINDOW_SELF) iounmap_remote(src_virt, loop_len, work); if (dst_window->type != SCIF_WINDOW_SELF) iounmap_remote(dst_virt, loop_len, work); remaining_len -= loop_len; } return ret; err: dev_err(scif_info.mdev.this_device, "%s %d Desc Prog Failed ret %d\n", __func__, __LINE__, ret); return ret; } /* * scif_rma_list_cpu_copy: * * Traverse all the windows and perform CPU copy. */ static int scif_rma_list_cpu_copy(struct scif_copy_work *work) { void *src_virt, *dst_virt; size_t loop_len, remaining_len; int src_page_off, dst_page_off; s64 src_offset = work->src_offset, dst_offset = work->dst_offset; struct scif_window *src_window = work->src_window; struct scif_window *dst_window = work->dst_window; s64 end_src_offset, end_dst_offset; int ret = 0; struct scif_window_iter src_win_iter; struct scif_window_iter dst_win_iter; remaining_len = work->len; scif_init_window_iter(src_window, &src_win_iter); scif_init_window_iter(dst_window, &dst_win_iter); while (remaining_len) { src_page_off = src_offset & ~PAGE_MASK; dst_page_off = dst_offset & ~PAGE_MASK; loop_len = min(PAGE_SIZE - max(src_page_off, dst_page_off), remaining_len); if (src_window->type == SCIF_WINDOW_SELF) src_virt = _get_local_va(src_offset, src_window, loop_len); else src_virt = ioremap_remote(src_offset, src_window, loop_len, work->remote_dev, &src_win_iter); if (!src_virt) { ret = -ENOMEM; goto error; } if (dst_window->type == SCIF_WINDOW_SELF) dst_virt = _get_local_va(dst_offset, dst_window, loop_len); else dst_virt = ioremap_remote(dst_offset, dst_window, loop_len, work->remote_dev, &dst_win_iter); if (!dst_virt) { if (src_window->type == SCIF_WINDOW_PEER) iounmap_remote(src_virt, loop_len, work); ret = -ENOMEM; goto error; } if (work->loopback) { memcpy(dst_virt, src_virt, loop_len); } else { if (src_window->type == SCIF_WINDOW_SELF) memcpy_toio((void __iomem __force *)dst_virt, src_virt, loop_len); else memcpy_fromio(dst_virt, (void __iomem __force *)src_virt, loop_len); } if (src_window->type == SCIF_WINDOW_PEER) iounmap_remote(src_virt, loop_len, work); if (dst_window->type == SCIF_WINDOW_PEER) iounmap_remote(dst_virt, loop_len, work); src_offset += loop_len; dst_offset += loop_len; remaining_len -= loop_len; if (remaining_len) { end_src_offset = src_window->offset + (src_window->nr_pages << PAGE_SHIFT); end_dst_offset = dst_window->offset + (dst_window->nr_pages << PAGE_SHIFT); if (src_offset == end_src_offset) { src_window = list_next_entry(src_window, list); scif_init_window_iter(src_window, &src_win_iter); } if (dst_offset == end_dst_offset) { dst_window = list_next_entry(dst_window, list); scif_init_window_iter(dst_window, &dst_win_iter); } } } error: return ret; } static int scif_rma_list_dma_copy_wrapper(struct scif_endpt *epd, struct scif_copy_work *work, struct dma_chan *chan, off_t loffset) { int src_cache_off, dst_cache_off; s64 src_offset = work->src_offset, dst_offset = work->dst_offset; u8 *temp = NULL; bool src_local = true; struct scif_dma_comp_cb *comp_cb; int err; if (is_dma_copy_aligned(chan->device, 1, 1, 1)) return _scif_rma_list_dma_copy_aligned(work, chan); src_cache_off = src_offset & (L1_CACHE_BYTES - 1); dst_cache_off = dst_offset & (L1_CACHE_BYTES - 1); if (dst_cache_off == src_cache_off) return scif_rma_list_dma_copy_aligned(work, chan); if (work->loopback) return scif_rma_list_cpu_copy(work); src_local = work->src_window->type == SCIF_WINDOW_SELF; /* Allocate dma_completion cb */ comp_cb = kzalloc(sizeof(*comp_cb), GFP_KERNEL); if (!comp_cb) goto error; work->comp_cb = comp_cb; comp_cb->cb_cookie = comp_cb; comp_cb->dma_completion_func = &scif_rma_completion_cb; if (work->len + (L1_CACHE_BYTES << 1) < SCIF_KMEM_UNALIGNED_BUF_SIZE) { comp_cb->is_cache = false; /* Allocate padding bytes to align to a cache line */ temp = kmalloc(work->len + (L1_CACHE_BYTES << 1), GFP_KERNEL); if (!temp) goto free_comp_cb; comp_cb->temp_buf_to_free = temp; /* kmalloc(..) does not guarantee cache line alignment */ if (!IS_ALIGNED((u64)temp, L1_CACHE_BYTES)) temp = PTR_ALIGN(temp, L1_CACHE_BYTES); } else { comp_cb->is_cache = true; temp = kmem_cache_alloc(unaligned_cache, GFP_KERNEL); if (!temp) goto free_comp_cb; comp_cb->temp_buf_to_free = temp; } if (src_local) { temp += dst_cache_off; scif_rma_local_cpu_copy(work->src_offset, work->src_window, temp, work->len, true); } else { comp_cb->dst_window = work->dst_window; comp_cb->dst_offset = work->dst_offset; work->src_offset = work->src_offset - src_cache_off; comp_cb->len = work->len; work->len = ALIGN(work->len + src_cache_off, L1_CACHE_BYTES); comp_cb->header_padding = src_cache_off; } comp_cb->temp_buf = temp; err = scif_map_single(&comp_cb->temp_phys, temp, work->remote_dev, SCIF_KMEM_UNALIGNED_BUF_SIZE); if (err) goto free_temp_buf; comp_cb->sdev = work->remote_dev; if (scif_rma_list_dma_copy_unaligned(work, temp, chan, src_local) < 0) goto free_temp_buf; if (!src_local) work->fence_type = SCIF_DMA_INTR; return 0; free_temp_buf: if (comp_cb->is_cache) kmem_cache_free(unaligned_cache, comp_cb->temp_buf_to_free); else kfree(comp_cb->temp_buf_to_free); free_comp_cb: kfree(comp_cb); error: return -ENOMEM; } /** * scif_rma_copy: * @epd: end point descriptor. * @loffset: offset in local registered address space to/from which to copy * @addr: user virtual address to/from which to copy * @len: length of range to copy * @roffset: offset in remote registered address space to/from which to copy * @flags: flags * @dir: LOCAL->REMOTE or vice versa. * @last_chunk: true if this is the last chunk of a larger transfer * * Validate parameters, check if src/dst registered ranges requested for copy * are valid and initiate either CPU or DMA copy. */ static int scif_rma_copy(scif_epd_t epd, off_t loffset, unsigned long addr, size_t len, off_t roffset, int flags, enum scif_rma_dir dir, bool last_chunk) { struct scif_endpt *ep = (struct scif_endpt *)epd; struct scif_rma_req remote_req; struct scif_rma_req req; struct scif_window *local_window = NULL; struct scif_window *remote_window = NULL; struct scif_copy_work copy_work; bool loopback; int err = 0; struct dma_chan *chan; struct scif_mmu_notif *mmn = NULL; bool cache = false; struct device *spdev; err = scif_verify_epd(ep); if (err) return err; if (flags && !(flags & (SCIF_RMA_USECPU | SCIF_RMA_USECACHE | SCIF_RMA_SYNC | SCIF_RMA_ORDERED))) return -EINVAL; loopback = scifdev_self(ep->remote_dev) ? true : false; copy_work.fence_type = ((flags & SCIF_RMA_SYNC) && last_chunk) ? SCIF_DMA_POLL : 0; copy_work.ordered = !!((flags & SCIF_RMA_ORDERED) && last_chunk); /* Use CPU for Mgmt node <-> Mgmt node copies */ if (loopback && scif_is_mgmt_node()) { flags |= SCIF_RMA_USECPU; copy_work.fence_type = 0x0; } cache = scif_is_set_reg_cache(flags); remote_req.out_window = &remote_window; remote_req.offset = roffset; remote_req.nr_bytes = len; /* * If transfer is from local to remote then the remote window * must be writeable and vice versa. */ remote_req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_WRITE : VM_READ; remote_req.type = SCIF_WINDOW_PARTIAL; remote_req.head = &ep->rma_info.remote_reg_list; spdev = scif_get_peer_dev(ep->remote_dev); if (IS_ERR(spdev)) { err = PTR_ERR(spdev); return err; } if (addr && cache) { mutex_lock(&ep->rma_info.mmn_lock); mmn = scif_find_mmu_notifier(current->mm, &ep->rma_info); if (!mmn) mmn = scif_add_mmu_notifier(current->mm, ep); mutex_unlock(&ep->rma_info.mmn_lock); if (IS_ERR(mmn)) { scif_put_peer_dev(spdev); return PTR_ERR(mmn); } cache = cache && !scif_rma_tc_can_cache(ep, len); } mutex_lock(&ep->rma_info.rma_lock); if (addr) { req.out_window = &local_window; req.nr_bytes = ALIGN(len + (addr & ~PAGE_MASK), PAGE_SIZE); req.va_for_temp = addr & PAGE_MASK; req.prot = (dir == SCIF_LOCAL_TO_REMOTE ? VM_READ : VM_WRITE | VM_READ); /* Does a valid local window exist? */ if (mmn) { spin_lock(&ep->rma_info.tc_lock); req.head = &mmn->tc_reg_list; err = scif_query_tcw(ep, &req); spin_unlock(&ep->rma_info.tc_lock); } if (!mmn || err) { err = scif_register_temp(epd, req.va_for_temp, req.nr_bytes, req.prot, &loffset, &local_window); if (err) { mutex_unlock(&ep->rma_info.rma_lock); goto error; } if (!cache) goto skip_cache; atomic_inc(&ep->rma_info.tcw_refcount); atomic_add_return(local_window->nr_pages, &ep->rma_info.tcw_total_pages); if (mmn) { spin_lock(&ep->rma_info.tc_lock); scif_insert_tcw(local_window, &mmn->tc_reg_list); spin_unlock(&ep->rma_info.tc_lock); } } skip_cache: loffset = local_window->offset + (addr - local_window->va_for_temp); } else { req.out_window = &local_window; req.offset = loffset; /* * If transfer is from local to remote then the self window * must be readable and vice versa. */ req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_READ : VM_WRITE; req.nr_bytes = len; req.type = SCIF_WINDOW_PARTIAL; req.head = &ep->rma_info.reg_list; /* Does a valid local window exist? */ err = scif_query_window(&req); if (err) { mutex_unlock(&ep->rma_info.rma_lock); goto error; } } /* Does a valid remote window exist? */ err = scif_query_window(&remote_req); if (err) { mutex_unlock(&ep->rma_info.rma_lock); goto error; } /* * Prepare copy_work for submitting work to the DMA kernel thread * or CPU copy routine. */ copy_work.len = len; copy_work.loopback = loopback; copy_work.remote_dev = ep->remote_dev; if (dir == SCIF_LOCAL_TO_REMOTE) { copy_work.src_offset = loffset; copy_work.src_window = local_window; copy_work.dst_offset = roffset; copy_work.dst_window = remote_window; } else { copy_work.src_offset = roffset; copy_work.src_window = remote_window; copy_work.dst_offset = loffset; copy_work.dst_window = local_window; } if (flags & SCIF_RMA_USECPU) { scif_rma_list_cpu_copy(©_work); } else { chan = ep->rma_info.dma_chan; err = scif_rma_list_dma_copy_wrapper(epd, ©_work, chan, loffset); } if (addr && !cache) atomic_inc(&ep->rma_info.tw_refcount); mutex_unlock(&ep->rma_info.rma_lock); if (last_chunk) { struct scif_dev *rdev = ep->remote_dev; if (copy_work.fence_type == SCIF_DMA_POLL) err = scif_drain_dma_poll(rdev->sdev, ep->rma_info.dma_chan); else if (copy_work.fence_type == SCIF_DMA_INTR) err = scif_drain_dma_intr(rdev->sdev, ep->rma_info.dma_chan); } if (addr && !cache) scif_queue_for_cleanup(local_window, &scif_info.rma); scif_put_peer_dev(spdev); return err; error: if (err) { if (addr && local_window && !cache) scif_destroy_window(ep, local_window); dev_err(scif_info.mdev.this_device, "%s %d err %d len 0x%lx\n", __func__, __LINE__, err, len); } scif_put_peer_dev(spdev); return err; } int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len, off_t roffset, int flags) { int err; dev_dbg(scif_info.mdev.this_device, "SCIFAPI readfrom: ep %p loffset 0x%lx len 0x%lx offset 0x%lx flags 0x%x\n", epd, loffset, len, roffset, flags); if (scif_unaligned(loffset, roffset)) { while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) { err = scif_rma_copy(epd, loffset, 0x0, SCIF_MAX_UNALIGNED_BUF_SIZE, roffset, flags, SCIF_REMOTE_TO_LOCAL, false); if (err) goto readfrom_err; loffset += SCIF_MAX_UNALIGNED_BUF_SIZE; roffset += SCIF_MAX_UNALIGNED_BUF_SIZE; len -= SCIF_MAX_UNALIGNED_BUF_SIZE; } } err = scif_rma_copy(epd, loffset, 0x0, len, roffset, flags, SCIF_REMOTE_TO_LOCAL, true); readfrom_err: return err; } EXPORT_SYMBOL_GPL(scif_readfrom); int scif_writeto(scif_epd_t epd, off_t loffset, size_t len, off_t roffset, int flags) { int err; dev_dbg(scif_info.mdev.this_device, "SCIFAPI writeto: ep %p loffset 0x%lx len 0x%lx roffset 0x%lx flags 0x%x\n", epd, loffset, len, roffset, flags); if (scif_unaligned(loffset, roffset)) { while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) { err = scif_rma_copy(epd, loffset, 0x0, SCIF_MAX_UNALIGNED_BUF_SIZE, roffset, flags, SCIF_LOCAL_TO_REMOTE, false); if (err) goto writeto_err; loffset += SCIF_MAX_UNALIGNED_BUF_SIZE; roffset += SCIF_MAX_UNALIGNED_BUF_SIZE; len -= SCIF_MAX_UNALIGNED_BUF_SIZE; } } err = scif_rma_copy(epd, loffset, 0x0, len, roffset, flags, SCIF_LOCAL_TO_REMOTE, true); writeto_err: return err; } EXPORT_SYMBOL_GPL(scif_writeto); int scif_vreadfrom(scif_epd_t epd, void *addr, size_t len, off_t roffset, int flags) { int err; dev_dbg(scif_info.mdev.this_device, "SCIFAPI vreadfrom: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n", epd, addr, len, roffset, flags); if (scif_unaligned((off_t __force)addr, roffset)) { if (len > SCIF_MAX_UNALIGNED_BUF_SIZE) flags &= ~SCIF_RMA_USECACHE; while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) { err = scif_rma_copy(epd, 0, (u64)addr, SCIF_MAX_UNALIGNED_BUF_SIZE, roffset, flags, SCIF_REMOTE_TO_LOCAL, false); if (err) goto vreadfrom_err; addr += SCIF_MAX_UNALIGNED_BUF_SIZE; roffset += SCIF_MAX_UNALIGNED_BUF_SIZE; len -= SCIF_MAX_UNALIGNED_BUF_SIZE; } } err = scif_rma_copy(epd, 0, (u64)addr, len, roffset, flags, SCIF_REMOTE_TO_LOCAL, true); vreadfrom_err: return err; } EXPORT_SYMBOL_GPL(scif_vreadfrom); int scif_vwriteto(scif_epd_t epd, void *addr, size_t len, off_t roffset, int flags) { int err; dev_dbg(scif_info.mdev.this_device, "SCIFAPI vwriteto: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n", epd, addr, len, roffset, flags); if (scif_unaligned((off_t __force)addr, roffset)) { if (len > SCIF_MAX_UNALIGNED_BUF_SIZE) flags &= ~SCIF_RMA_USECACHE; while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) { err = scif_rma_copy(epd, 0, (u64)addr, SCIF_MAX_UNALIGNED_BUF_SIZE, roffset, flags, SCIF_LOCAL_TO_REMOTE, false); if (err) goto vwriteto_err; addr += SCIF_MAX_UNALIGNED_BUF_SIZE; roffset += SCIF_MAX_UNALIGNED_BUF_SIZE; len -= SCIF_MAX_UNALIGNED_BUF_SIZE; } } err = scif_rma_copy(epd, 0, (u64)addr, len, roffset, flags, SCIF_LOCAL_TO_REMOTE, true); vwriteto_err: return err; } EXPORT_SYMBOL_GPL(scif_vwriteto);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1