Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adrian Hunter | 4372 | 48.08% | 56 | 38.36% |
Pierre Ossman | 1849 | 20.33% | 11 | 7.53% |
Matthias Kraemer | 552 | 6.07% | 1 | 0.68% |
Shyam Sundar S K | 407 | 4.48% | 1 | 0.68% |
Nico Pitre | 347 | 3.82% | 2 | 1.37% |
Andy Shevchenko | 245 | 2.69% | 10 | 6.85% |
Zach Brown | 191 | 2.10% | 2 | 1.37% |
Takashi Iwai | 147 | 1.62% | 3 | 2.05% |
Zongshun (Vincent) Wan | 137 | 1.51% | 2 | 1.37% |
Maxim Levitsky | 103 | 1.13% | 1 | 0.68% |
Daniel Kurtz | 88 | 0.97% | 1 | 0.68% |
David Cohen | 63 | 0.69% | 2 | 1.37% |
Alan Cox | 60 | 0.66% | 2 | 1.37% |
Adam Lee | 49 | 0.54% | 3 | 2.05% |
Micky Ching | 46 | 0.51% | 2 | 1.37% |
Harald Welte | 43 | 0.47% | 1 | 0.68% |
Alexander Stein | 42 | 0.46% | 1 | 0.68% |
Jennifer Li | 36 | 0.40% | 1 | 0.68% |
Rajat Jain | 32 | 0.35% | 1 | 0.68% |
Kyle Roeschley | 32 | 0.35% | 1 | 0.68% |
Major Lee | 32 | 0.35% | 1 | 0.68% |
Xiaochen Shen | 23 | 0.25% | 1 | 0.68% |
David E. Box | 19 | 0.21% | 1 | 0.68% |
Russell King | 16 | 0.18% | 4 | 2.74% |
Dan Carpenter | 16 | 0.18% | 1 | 0.68% |
Manuel Lauss | 14 | 0.15% | 1 | 0.68% |
Ulf Hansson | 13 | 0.14% | 2 | 1.37% |
Derek Browne | 13 | 0.14% | 1 | 0.68% |
Gao, Yunpeng | 11 | 0.12% | 2 | 1.37% |
Atul Garg | 9 | 0.10% | 1 | 0.68% |
Prabu Thangamuthu | 9 | 0.10% | 1 | 0.68% |
Aaron Lu | 8 | 0.09% | 1 | 0.68% |
Peter Griffin | 8 | 0.09% | 1 | 0.68% |
Chris Ball | 8 | 0.09% | 1 | 0.68% |
Maurice Petallo | 7 | 0.08% | 2 | 1.37% |
Axel Lin | 5 | 0.05% | 1 | 0.68% |
Vasily Khoruzhick | 4 | 0.04% | 1 | 0.68% |
Jacob jun Pan | 4 | 0.04% | 1 | 0.68% |
Tejun Heo | 3 | 0.03% | 1 | 0.68% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.68% |
Michał Mirosław | 3 | 0.03% | 1 | 0.68% |
Sergei Shtylyov | 3 | 0.03% | 1 | 0.68% |
Sachin Kamat | 2 | 0.02% | 1 | 0.68% |
Ameya Palande | 2 | 0.02% | 1 | 0.68% |
Azhar Shaikh | 2 | 0.02% | 1 | 0.68% |
Andres Salomon | 2 | 0.02% | 1 | 0.68% |
Geliang Tang | 2 | 0.02% | 1 | 0.68% |
Daniel Drake | 2 | 0.02% | 1 | 0.68% |
Madhvapathi Sriram | 2 | 0.02% | 1 | 0.68% |
Pablo Castillo | 2 | 0.02% | 1 | 0.68% |
kbuild test robot | 1 | 0.01% | 1 | 0.68% |
Lars-Peter Clausen | 1 | 0.01% | 1 | 0.68% |
Julia Lawall | 1 | 0.01% | 1 | 0.68% |
Richard Röjfors | 1 | 0.01% | 1 | 0.68% |
Rafael J. Wysocki | 1 | 0.01% | 1 | 0.68% |
Colin Ian King | 1 | 0.01% | 1 | 0.68% |
Total | 9094 | 146 |
/* linux/drivers/mmc/host/sdhci-pci.c - SDHCI on PCI bus interface * * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * Thanks to the following companies for their support: * * - JMicron (hardware and technical support) */ #include <linux/bitfield.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/scatterlist.h> #include <linux/io.h> #include <linux/gpio.h> #include <linux/pm_runtime.h> #include <linux/mmc/slot-gpio.h> #include <linux/mmc/sdhci-pci-data.h> #include <linux/acpi.h> #include "cqhci.h" #include "sdhci.h" #include "sdhci-pci.h" static void sdhci_pci_hw_reset(struct sdhci_host *host); #ifdef CONFIG_PM_SLEEP static int sdhci_pci_init_wakeup(struct sdhci_pci_chip *chip) { mmc_pm_flag_t pm_flags = 0; bool cap_cd_wake = false; int i; for (i = 0; i < chip->num_slots; i++) { struct sdhci_pci_slot *slot = chip->slots[i]; if (slot) { pm_flags |= slot->host->mmc->pm_flags; if (slot->host->mmc->caps & MMC_CAP_CD_WAKE) cap_cd_wake = true; } } if ((pm_flags & MMC_PM_KEEP_POWER) && (pm_flags & MMC_PM_WAKE_SDIO_IRQ)) return device_wakeup_enable(&chip->pdev->dev); else if (!cap_cd_wake) return device_wakeup_disable(&chip->pdev->dev); return 0; } static int sdhci_pci_suspend_host(struct sdhci_pci_chip *chip) { int i, ret; sdhci_pci_init_wakeup(chip); for (i = 0; i < chip->num_slots; i++) { struct sdhci_pci_slot *slot = chip->slots[i]; struct sdhci_host *host; if (!slot) continue; host = slot->host; if (chip->pm_retune && host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); ret = sdhci_suspend_host(host); if (ret) goto err_pci_suspend; if (device_may_wakeup(&chip->pdev->dev)) mmc_gpio_set_cd_wake(host->mmc, true); } return 0; err_pci_suspend: while (--i >= 0) sdhci_resume_host(chip->slots[i]->host); return ret; } int sdhci_pci_resume_host(struct sdhci_pci_chip *chip) { struct sdhci_pci_slot *slot; int i, ret; for (i = 0; i < chip->num_slots; i++) { slot = chip->slots[i]; if (!slot) continue; ret = sdhci_resume_host(slot->host); if (ret) return ret; mmc_gpio_set_cd_wake(slot->host->mmc, false); } return 0; } static int sdhci_cqhci_suspend(struct sdhci_pci_chip *chip) { int ret; ret = cqhci_suspend(chip->slots[0]->host->mmc); if (ret) return ret; return sdhci_pci_suspend_host(chip); } static int sdhci_cqhci_resume(struct sdhci_pci_chip *chip) { int ret; ret = sdhci_pci_resume_host(chip); if (ret) return ret; return cqhci_resume(chip->slots[0]->host->mmc); } #endif #ifdef CONFIG_PM static int sdhci_pci_runtime_suspend_host(struct sdhci_pci_chip *chip) { struct sdhci_pci_slot *slot; struct sdhci_host *host; int i, ret; for (i = 0; i < chip->num_slots; i++) { slot = chip->slots[i]; if (!slot) continue; host = slot->host; ret = sdhci_runtime_suspend_host(host); if (ret) goto err_pci_runtime_suspend; if (chip->rpm_retune && host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); } return 0; err_pci_runtime_suspend: while (--i >= 0) sdhci_runtime_resume_host(chip->slots[i]->host); return ret; } static int sdhci_pci_runtime_resume_host(struct sdhci_pci_chip *chip) { struct sdhci_pci_slot *slot; int i, ret; for (i = 0; i < chip->num_slots; i++) { slot = chip->slots[i]; if (!slot) continue; ret = sdhci_runtime_resume_host(slot->host); if (ret) return ret; } return 0; } static int sdhci_cqhci_runtime_suspend(struct sdhci_pci_chip *chip) { int ret; ret = cqhci_suspend(chip->slots[0]->host->mmc); if (ret) return ret; return sdhci_pci_runtime_suspend_host(chip); } static int sdhci_cqhci_runtime_resume(struct sdhci_pci_chip *chip) { int ret; ret = sdhci_pci_runtime_resume_host(chip); if (ret) return ret; return cqhci_resume(chip->slots[0]->host->mmc); } #endif static u32 sdhci_cqhci_irq(struct sdhci_host *host, u32 intmask) { int cmd_error = 0; int data_error = 0; if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) return intmask; cqhci_irq(host->mmc, intmask, cmd_error, data_error); return 0; } static void sdhci_pci_dumpregs(struct mmc_host *mmc) { sdhci_dumpregs(mmc_priv(mmc)); } /*****************************************************************************\ * * * Hardware specific quirk handling * * * \*****************************************************************************/ static int ricoh_probe(struct sdhci_pci_chip *chip) { if (chip->pdev->subsystem_vendor == PCI_VENDOR_ID_SAMSUNG || chip->pdev->subsystem_vendor == PCI_VENDOR_ID_SONY) chip->quirks |= SDHCI_QUIRK_NO_CARD_NO_RESET; return 0; } static int ricoh_mmc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->caps = ((0x21 << SDHCI_TIMEOUT_CLK_SHIFT) & SDHCI_TIMEOUT_CLK_MASK) | ((0x21 << SDHCI_CLOCK_BASE_SHIFT) & SDHCI_CLOCK_BASE_MASK) | SDHCI_TIMEOUT_CLK_UNIT | SDHCI_CAN_VDD_330 | SDHCI_CAN_DO_HISPD | SDHCI_CAN_DO_SDMA; return 0; } #ifdef CONFIG_PM_SLEEP static int ricoh_mmc_resume(struct sdhci_pci_chip *chip) { /* Apply a delay to allow controller to settle */ /* Otherwise it becomes confused if card state changed during suspend */ msleep(500); return sdhci_pci_resume_host(chip); } #endif static const struct sdhci_pci_fixes sdhci_ricoh = { .probe = ricoh_probe, .quirks = SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_FORCE_DMA | SDHCI_QUIRK_CLOCK_BEFORE_RESET, }; static const struct sdhci_pci_fixes sdhci_ricoh_mmc = { .probe_slot = ricoh_mmc_probe_slot, #ifdef CONFIG_PM_SLEEP .resume = ricoh_mmc_resume, #endif .quirks = SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_CLOCK_BEFORE_RESET | SDHCI_QUIRK_NO_CARD_NO_RESET | SDHCI_QUIRK_MISSING_CAPS }; static const struct sdhci_pci_fixes sdhci_ene_712 = { .quirks = SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_BROKEN_DMA, }; static const struct sdhci_pci_fixes sdhci_ene_714 = { .quirks = SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS | SDHCI_QUIRK_BROKEN_DMA, }; static const struct sdhci_pci_fixes sdhci_cafe = { .quirks = SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER | SDHCI_QUIRK_NO_BUSY_IRQ | SDHCI_QUIRK_BROKEN_CARD_DETECTION | SDHCI_QUIRK_BROKEN_TIMEOUT_VAL, }; static const struct sdhci_pci_fixes sdhci_intel_qrk = { .quirks = SDHCI_QUIRK_NO_HISPD_BIT, }; static int mrst_hc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA; return 0; } /* * ADMA operation is disabled for Moorestown platform due to * hardware bugs. */ static int mrst_hc_probe(struct sdhci_pci_chip *chip) { /* * slots number is fixed here for MRST as SDIO3/5 are never used and * have hardware bugs. */ chip->num_slots = 1; return 0; } static int pch_hc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA; return 0; } #ifdef CONFIG_PM static irqreturn_t sdhci_pci_sd_cd(int irq, void *dev_id) { struct sdhci_pci_slot *slot = dev_id; struct sdhci_host *host = slot->host; mmc_detect_change(host->mmc, msecs_to_jiffies(200)); return IRQ_HANDLED; } static void sdhci_pci_add_own_cd(struct sdhci_pci_slot *slot) { int err, irq, gpio = slot->cd_gpio; slot->cd_gpio = -EINVAL; slot->cd_irq = -EINVAL; if (!gpio_is_valid(gpio)) return; err = devm_gpio_request(&slot->chip->pdev->dev, gpio, "sd_cd"); if (err < 0) goto out; err = gpio_direction_input(gpio); if (err < 0) goto out_free; irq = gpio_to_irq(gpio); if (irq < 0) goto out_free; err = request_irq(irq, sdhci_pci_sd_cd, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "sd_cd", slot); if (err) goto out_free; slot->cd_gpio = gpio; slot->cd_irq = irq; return; out_free: devm_gpio_free(&slot->chip->pdev->dev, gpio); out: dev_warn(&slot->chip->pdev->dev, "failed to setup card detect wake up\n"); } static void sdhci_pci_remove_own_cd(struct sdhci_pci_slot *slot) { if (slot->cd_irq >= 0) free_irq(slot->cd_irq, slot); } #else static inline void sdhci_pci_add_own_cd(struct sdhci_pci_slot *slot) { } static inline void sdhci_pci_remove_own_cd(struct sdhci_pci_slot *slot) { } #endif static int mfd_emmc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE; slot->host->mmc->caps2 |= MMC_CAP2_BOOTPART_NOACC; return 0; } static int mfd_sdio_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_POWER_OFF_CARD | MMC_CAP_NONREMOVABLE; return 0; } static const struct sdhci_pci_fixes sdhci_intel_mrst_hc0 = { .quirks = SDHCI_QUIRK_BROKEN_ADMA | SDHCI_QUIRK_NO_HISPD_BIT, .probe_slot = mrst_hc_probe_slot, }; static const struct sdhci_pci_fixes sdhci_intel_mrst_hc1_hc2 = { .quirks = SDHCI_QUIRK_BROKEN_ADMA | SDHCI_QUIRK_NO_HISPD_BIT, .probe = mrst_hc_probe, }; static const struct sdhci_pci_fixes sdhci_intel_mfd_sd = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .allow_runtime_pm = true, .own_cd_for_runtime_pm = true, }; static const struct sdhci_pci_fixes sdhci_intel_mfd_sdio = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON, .allow_runtime_pm = true, .probe_slot = mfd_sdio_probe_slot, }; static const struct sdhci_pci_fixes sdhci_intel_mfd_emmc = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .allow_runtime_pm = true, .probe_slot = mfd_emmc_probe_slot, }; static const struct sdhci_pci_fixes sdhci_intel_pch_sdio = { .quirks = SDHCI_QUIRK_BROKEN_ADMA, .probe_slot = pch_hc_probe_slot, }; enum { INTEL_DSM_FNS = 0, INTEL_DSM_V18_SWITCH = 3, INTEL_DSM_V33_SWITCH = 4, INTEL_DSM_DRV_STRENGTH = 9, INTEL_DSM_D3_RETUNE = 10, }; struct intel_host { u32 dsm_fns; int drv_strength; bool d3_retune; bool rpm_retune_ok; u32 glk_rx_ctrl1; u32 glk_tun_val; }; static const guid_t intel_dsm_guid = GUID_INIT(0xF6C13EA5, 0x65CD, 0x461F, 0xAB, 0x7A, 0x29, 0xF7, 0xE8, 0xD5, 0xBD, 0x61); static int __intel_dsm(struct intel_host *intel_host, struct device *dev, unsigned int fn, u32 *result) { union acpi_object *obj; int err = 0; size_t len; obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &intel_dsm_guid, 0, fn, NULL); if (!obj) return -EOPNOTSUPP; if (obj->type != ACPI_TYPE_BUFFER || obj->buffer.length < 1) { err = -EINVAL; goto out; } len = min_t(size_t, obj->buffer.length, 4); *result = 0; memcpy(result, obj->buffer.pointer, len); out: ACPI_FREE(obj); return err; } static int intel_dsm(struct intel_host *intel_host, struct device *dev, unsigned int fn, u32 *result) { if (fn > 31 || !(intel_host->dsm_fns & (1 << fn))) return -EOPNOTSUPP; return __intel_dsm(intel_host, dev, fn, result); } static void intel_dsm_init(struct intel_host *intel_host, struct device *dev, struct mmc_host *mmc) { int err; u32 val; intel_host->d3_retune = true; err = __intel_dsm(intel_host, dev, INTEL_DSM_FNS, &intel_host->dsm_fns); if (err) { pr_debug("%s: DSM not supported, error %d\n", mmc_hostname(mmc), err); return; } pr_debug("%s: DSM function mask %#x\n", mmc_hostname(mmc), intel_host->dsm_fns); err = intel_dsm(intel_host, dev, INTEL_DSM_DRV_STRENGTH, &val); intel_host->drv_strength = err ? 0 : val; err = intel_dsm(intel_host, dev, INTEL_DSM_D3_RETUNE, &val); intel_host->d3_retune = err ? true : !!val; } static void sdhci_pci_int_hw_reset(struct sdhci_host *host) { u8 reg; reg = sdhci_readb(host, SDHCI_POWER_CONTROL); reg |= 0x10; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); /* For eMMC, minimum is 1us but give it 9us for good measure */ udelay(9); reg &= ~0x10; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); /* For eMMC, minimum is 200us but give it 300us for good measure */ usleep_range(300, 1000); } static int intel_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, int host_drv, int card_drv, int *drv_type) { struct sdhci_host *host = mmc_priv(card->host); struct sdhci_pci_slot *slot = sdhci_priv(host); struct intel_host *intel_host = sdhci_pci_priv(slot); return intel_host->drv_strength; } static int bxt_get_cd(struct mmc_host *mmc) { int gpio_cd = mmc_gpio_get_cd(mmc); struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; int ret = 0; if (!gpio_cd) return 0; spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) goto out; ret = !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); out: spin_unlock_irqrestore(&host->lock, flags); return ret; } #define SDHCI_INTEL_PWR_TIMEOUT_CNT 20 #define SDHCI_INTEL_PWR_TIMEOUT_UDELAY 100 static void sdhci_intel_set_power(struct sdhci_host *host, unsigned char mode, unsigned short vdd) { int cntr; u8 reg; sdhci_set_power(host, mode, vdd); if (mode == MMC_POWER_OFF) return; /* * Bus power might not enable after D3 -> D0 transition due to the * present state not yet having propagated. Retry for up to 2ms. */ for (cntr = 0; cntr < SDHCI_INTEL_PWR_TIMEOUT_CNT; cntr++) { reg = sdhci_readb(host, SDHCI_POWER_CONTROL); if (reg & SDHCI_POWER_ON) break; udelay(SDHCI_INTEL_PWR_TIMEOUT_UDELAY); reg |= SDHCI_POWER_ON; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); } } #define INTEL_HS400_ES_REG 0x78 #define INTEL_HS400_ES_BIT BIT(0) static void intel_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); u32 val; val = sdhci_readl(host, INTEL_HS400_ES_REG); if (ios->enhanced_strobe) val |= INTEL_HS400_ES_BIT; else val &= ~INTEL_HS400_ES_BIT; sdhci_writel(host, val, INTEL_HS400_ES_REG); } static int intel_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct device *dev = mmc_dev(mmc); struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pci_slot *slot = sdhci_priv(host); struct intel_host *intel_host = sdhci_pci_priv(slot); unsigned int fn; u32 result = 0; int err; err = sdhci_start_signal_voltage_switch(mmc, ios); if (err) return err; switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: fn = INTEL_DSM_V33_SWITCH; break; case MMC_SIGNAL_VOLTAGE_180: fn = INTEL_DSM_V18_SWITCH; break; default: return 0; } err = intel_dsm(intel_host, dev, fn, &result); pr_debug("%s: %s DSM fn %u error %d result %u\n", mmc_hostname(mmc), __func__, fn, err, result); return 0; } static const struct sdhci_ops sdhci_intel_byt_ops = { .set_clock = sdhci_set_clock, .set_power = sdhci_intel_set_power, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .hw_reset = sdhci_pci_hw_reset, }; static const struct sdhci_ops sdhci_intel_glk_ops = { .set_clock = sdhci_set_clock, .set_power = sdhci_intel_set_power, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .hw_reset = sdhci_pci_hw_reset, .irq = sdhci_cqhci_irq, }; static void byt_read_dsm(struct sdhci_pci_slot *slot) { struct intel_host *intel_host = sdhci_pci_priv(slot); struct device *dev = &slot->chip->pdev->dev; struct mmc_host *mmc = slot->host->mmc; intel_dsm_init(intel_host, dev, mmc); slot->chip->rpm_retune = intel_host->d3_retune; } static int intel_execute_tuning(struct mmc_host *mmc, u32 opcode) { int err = sdhci_execute_tuning(mmc, opcode); struct sdhci_host *host = mmc_priv(mmc); if (err) return err; /* * Tuning can leave the IP in an active state (Buffer Read Enable bit * set) which prevents the entry to low power states (i.e. S0i3). Data * reset will clear it. */ sdhci_reset(host, SDHCI_RESET_DATA); return 0; } static void byt_probe_slot(struct sdhci_pci_slot *slot) { struct mmc_host_ops *ops = &slot->host->mmc_host_ops; byt_read_dsm(slot); ops->execute_tuning = intel_execute_tuning; ops->start_signal_voltage_switch = intel_start_signal_voltage_switch; } static int byt_emmc_probe_slot(struct sdhci_pci_slot *slot) { byt_probe_slot(slot); slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE | MMC_CAP_HW_RESET | MMC_CAP_1_8V_DDR | MMC_CAP_CMD_DURING_TFR | MMC_CAP_WAIT_WHILE_BUSY; slot->hw_reset = sdhci_pci_int_hw_reset; if (slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_BSW_EMMC) slot->host->timeout_clk = 1000; /* 1000 kHz i.e. 1 MHz */ slot->host->mmc_host_ops.select_drive_strength = intel_select_drive_strength; return 0; } static int glk_emmc_probe_slot(struct sdhci_pci_slot *slot) { int ret = byt_emmc_probe_slot(slot); slot->host->mmc->caps2 |= MMC_CAP2_CQE; if (slot->chip->pdev->device != PCI_DEVICE_ID_INTEL_GLK_EMMC) { slot->host->mmc->caps2 |= MMC_CAP2_HS400_ES, slot->host->mmc_host_ops.hs400_enhanced_strobe = intel_hs400_enhanced_strobe; slot->host->mmc->caps2 |= MMC_CAP2_CQE_DCMD; } return ret; } static const struct cqhci_host_ops glk_cqhci_ops = { .enable = sdhci_cqe_enable, .disable = sdhci_cqe_disable, .dumpregs = sdhci_pci_dumpregs, }; static int glk_emmc_add_host(struct sdhci_pci_slot *slot) { struct device *dev = &slot->chip->pdev->dev; struct sdhci_host *host = slot->host; struct cqhci_host *cq_host; bool dma64; int ret; ret = sdhci_setup_host(host); if (ret) return ret; cq_host = devm_kzalloc(dev, sizeof(*cq_host), GFP_KERNEL); if (!cq_host) { ret = -ENOMEM; goto cleanup; } cq_host->mmio = host->ioaddr + 0x200; cq_host->quirks |= CQHCI_QUIRK_SHORT_TXFR_DESC_SZ; cq_host->ops = &glk_cqhci_ops; dma64 = host->flags & SDHCI_USE_64_BIT_DMA; if (dma64) cq_host->caps |= CQHCI_TASK_DESC_SZ_128; ret = cqhci_init(cq_host, host->mmc, dma64); if (ret) goto cleanup; ret = __sdhci_add_host(host); if (ret) goto cleanup; return 0; cleanup: sdhci_cleanup_host(host); return ret; } #ifdef CONFIG_PM #define GLK_RX_CTRL1 0x834 #define GLK_TUN_VAL 0x840 #define GLK_PATH_PLL GENMASK(13, 8) #define GLK_DLY GENMASK(6, 0) /* Workaround firmware failing to restore the tuning value */ static void glk_rpm_retune_wa(struct sdhci_pci_chip *chip, bool susp) { struct sdhci_pci_slot *slot = chip->slots[0]; struct intel_host *intel_host = sdhci_pci_priv(slot); struct sdhci_host *host = slot->host; u32 glk_rx_ctrl1; u32 glk_tun_val; u32 dly; if (intel_host->rpm_retune_ok || !mmc_can_retune(host->mmc)) return; glk_rx_ctrl1 = sdhci_readl(host, GLK_RX_CTRL1); glk_tun_val = sdhci_readl(host, GLK_TUN_VAL); if (susp) { intel_host->glk_rx_ctrl1 = glk_rx_ctrl1; intel_host->glk_tun_val = glk_tun_val; return; } if (!intel_host->glk_tun_val) return; if (glk_rx_ctrl1 != intel_host->glk_rx_ctrl1) { intel_host->rpm_retune_ok = true; return; } dly = FIELD_PREP(GLK_DLY, FIELD_GET(GLK_PATH_PLL, glk_rx_ctrl1) + (intel_host->glk_tun_val << 1)); if (dly == FIELD_GET(GLK_DLY, glk_rx_ctrl1)) return; glk_rx_ctrl1 = (glk_rx_ctrl1 & ~GLK_DLY) | dly; sdhci_writel(host, glk_rx_ctrl1, GLK_RX_CTRL1); intel_host->rpm_retune_ok = true; chip->rpm_retune = true; mmc_retune_needed(host->mmc); pr_info("%s: Requiring re-tune after rpm resume", mmc_hostname(host->mmc)); } static void glk_rpm_retune_chk(struct sdhci_pci_chip *chip, bool susp) { if (chip->pdev->device == PCI_DEVICE_ID_INTEL_GLK_EMMC && !chip->rpm_retune) glk_rpm_retune_wa(chip, susp); } static int glk_runtime_suspend(struct sdhci_pci_chip *chip) { glk_rpm_retune_chk(chip, true); return sdhci_cqhci_runtime_suspend(chip); } static int glk_runtime_resume(struct sdhci_pci_chip *chip) { glk_rpm_retune_chk(chip, false); return sdhci_cqhci_runtime_resume(chip); } #endif #ifdef CONFIG_ACPI static int ni_set_max_freq(struct sdhci_pci_slot *slot) { acpi_status status; unsigned long long max_freq; status = acpi_evaluate_integer(ACPI_HANDLE(&slot->chip->pdev->dev), "MXFQ", NULL, &max_freq); if (ACPI_FAILURE(status)) { dev_err(&slot->chip->pdev->dev, "MXFQ not found in acpi table\n"); return -EINVAL; } slot->host->mmc->f_max = max_freq * 1000000; return 0; } #else static inline int ni_set_max_freq(struct sdhci_pci_slot *slot) { return 0; } #endif static int ni_byt_sdio_probe_slot(struct sdhci_pci_slot *slot) { int err; byt_probe_slot(slot); err = ni_set_max_freq(slot); if (err) return err; slot->host->mmc->caps |= MMC_CAP_POWER_OFF_CARD | MMC_CAP_NONREMOVABLE | MMC_CAP_WAIT_WHILE_BUSY; return 0; } static int byt_sdio_probe_slot(struct sdhci_pci_slot *slot) { byt_probe_slot(slot); slot->host->mmc->caps |= MMC_CAP_POWER_OFF_CARD | MMC_CAP_NONREMOVABLE | MMC_CAP_WAIT_WHILE_BUSY; return 0; } static int byt_sd_probe_slot(struct sdhci_pci_slot *slot) { byt_probe_slot(slot); slot->host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_AGGRESSIVE_PM | MMC_CAP_CD_WAKE; slot->cd_idx = 0; slot->cd_override_level = true; if (slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_BXT_SD || slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_BXTM_SD || slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_APL_SD || slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_GLK_SD) slot->host->mmc_host_ops.get_cd = bxt_get_cd; if (slot->chip->pdev->subsystem_vendor == PCI_VENDOR_ID_NI && slot->chip->pdev->subsystem_device == PCI_SUBDEVICE_ID_NI_78E3) slot->host->mmc->caps2 |= MMC_CAP2_AVOID_3_3V; return 0; } static const struct sdhci_pci_fixes sdhci_intel_byt_emmc = { .allow_runtime_pm = true, .probe_slot = byt_emmc_probe_slot, .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 | SDHCI_QUIRK2_STOP_WITH_TC, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_intel_glk_emmc = { .allow_runtime_pm = true, .probe_slot = glk_emmc_probe_slot, .add_host = glk_emmc_add_host, #ifdef CONFIG_PM_SLEEP .suspend = sdhci_cqhci_suspend, .resume = sdhci_cqhci_resume, #endif #ifdef CONFIG_PM .runtime_suspend = glk_runtime_suspend, .runtime_resume = glk_runtime_resume, #endif .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 | SDHCI_QUIRK2_STOP_WITH_TC, .ops = &sdhci_intel_glk_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_ni_byt_sdio = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .allow_runtime_pm = true, .probe_slot = ni_byt_sdio_probe_slot, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_intel_byt_sdio = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .allow_runtime_pm = true, .probe_slot = byt_sdio_probe_slot, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_intel_byt_sd = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON | SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_STOP_WITH_TC, .allow_runtime_pm = true, .own_cd_for_runtime_pm = true, .probe_slot = byt_sd_probe_slot, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; /* Define Host controllers for Intel Merrifield platform */ #define INTEL_MRFLD_EMMC_0 0 #define INTEL_MRFLD_EMMC_1 1 #define INTEL_MRFLD_SD 2 #define INTEL_MRFLD_SDIO 3 #ifdef CONFIG_ACPI static void intel_mrfld_mmc_fix_up_power_slot(struct sdhci_pci_slot *slot) { struct acpi_device *device, *child; device = ACPI_COMPANION(&slot->chip->pdev->dev); if (!device) return; acpi_device_fix_up_power(device); list_for_each_entry(child, &device->children, node) if (child->status.present && child->status.enabled) acpi_device_fix_up_power(child); } #else static inline void intel_mrfld_mmc_fix_up_power_slot(struct sdhci_pci_slot *slot) {} #endif static int intel_mrfld_mmc_probe_slot(struct sdhci_pci_slot *slot) { unsigned int func = PCI_FUNC(slot->chip->pdev->devfn); switch (func) { case INTEL_MRFLD_EMMC_0: case INTEL_MRFLD_EMMC_1: slot->host->mmc->caps |= MMC_CAP_NONREMOVABLE | MMC_CAP_8_BIT_DATA | MMC_CAP_1_8V_DDR; break; case INTEL_MRFLD_SD: slot->host->quirks2 |= SDHCI_QUIRK2_NO_1_8_V; break; case INTEL_MRFLD_SDIO: /* Advertise 2.0v for compatibility with the SDIO card's OCR */ slot->host->ocr_mask = MMC_VDD_20_21 | MMC_VDD_165_195; slot->host->mmc->caps |= MMC_CAP_NONREMOVABLE | MMC_CAP_POWER_OFF_CARD; break; default: return -ENODEV; } intel_mrfld_mmc_fix_up_power_slot(slot); return 0; } static const struct sdhci_pci_fixes sdhci_intel_mrfld_mmc = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_BROKEN_HS200 | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .allow_runtime_pm = true, .probe_slot = intel_mrfld_mmc_probe_slot, }; static int jmicron_pmos(struct sdhci_pci_chip *chip, int on) { u8 scratch; int ret; ret = pci_read_config_byte(chip->pdev, 0xAE, &scratch); if (ret) return ret; /* * Turn PMOS on [bit 0], set over current detection to 2.4 V * [bit 1:2] and enable over current debouncing [bit 6]. */ if (on) scratch |= 0x47; else scratch &= ~0x47; return pci_write_config_byte(chip->pdev, 0xAE, scratch); } static int jmicron_probe(struct sdhci_pci_chip *chip) { int ret; u16 mmcdev = 0; if (chip->pdev->revision == 0) { chip->quirks |= SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_32BIT_DMA_SIZE | SDHCI_QUIRK_32BIT_ADMA_SIZE | SDHCI_QUIRK_RESET_AFTER_REQUEST | SDHCI_QUIRK_BROKEN_SMALL_PIO; } /* * JMicron chips can have two interfaces to the same hardware * in order to work around limitations in Microsoft's driver. * We need to make sure we only bind to one of them. * * This code assumes two things: * * 1. The PCI code adds subfunctions in order. * * 2. The MMC interface has a lower subfunction number * than the SD interface. */ if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_SD) mmcdev = PCI_DEVICE_ID_JMICRON_JMB38X_MMC; else if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_SD) mmcdev = PCI_DEVICE_ID_JMICRON_JMB388_ESD; if (mmcdev) { struct pci_dev *sd_dev; sd_dev = NULL; while ((sd_dev = pci_get_device(PCI_VENDOR_ID_JMICRON, mmcdev, sd_dev)) != NULL) { if ((PCI_SLOT(chip->pdev->devfn) == PCI_SLOT(sd_dev->devfn)) && (chip->pdev->bus == sd_dev->bus)) break; } if (sd_dev) { pci_dev_put(sd_dev); dev_info(&chip->pdev->dev, "Refusing to bind to " "secondary interface.\n"); return -ENODEV; } } /* * JMicron chips need a bit of a nudge to enable the power * output pins. */ ret = jmicron_pmos(chip, 1); if (ret) { dev_err(&chip->pdev->dev, "Failure enabling card power\n"); return ret; } /* quirk for unsable RO-detection on JM388 chips */ if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_SD || chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) chip->quirks |= SDHCI_QUIRK_UNSTABLE_RO_DETECT; return 0; } static void jmicron_enable_mmc(struct sdhci_host *host, int on) { u8 scratch; scratch = readb(host->ioaddr + 0xC0); if (on) scratch |= 0x01; else scratch &= ~0x01; writeb(scratch, host->ioaddr + 0xC0); } static int jmicron_probe_slot(struct sdhci_pci_slot *slot) { if (slot->chip->pdev->revision == 0) { u16 version; version = readl(slot->host->ioaddr + SDHCI_HOST_VERSION); version = (version & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT; /* * Older versions of the chip have lots of nasty glitches * in the ADMA engine. It's best just to avoid it * completely. */ if (version < 0xAC) slot->host->quirks |= SDHCI_QUIRK_BROKEN_ADMA; } /* JM388 MMC doesn't support 1.8V while SD supports it */ if (slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) { slot->host->ocr_avail_sd = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_29_30 | MMC_VDD_30_31 | MMC_VDD_165_195; /* allow 1.8V */ slot->host->ocr_avail_mmc = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_29_30 | MMC_VDD_30_31; /* no 1.8V for MMC */ } /* * The secondary interface requires a bit set to get the * interrupts. */ if (slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) jmicron_enable_mmc(slot->host, 1); slot->host->mmc->caps |= MMC_CAP_BUS_WIDTH_TEST; return 0; } static void jmicron_remove_slot(struct sdhci_pci_slot *slot, int dead) { if (dead) return; if (slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) jmicron_enable_mmc(slot->host, 0); } #ifdef CONFIG_PM_SLEEP static int jmicron_suspend(struct sdhci_pci_chip *chip) { int i, ret; ret = sdhci_pci_suspend_host(chip); if (ret) return ret; if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) { for (i = 0; i < chip->num_slots; i++) jmicron_enable_mmc(chip->slots[i]->host, 0); } return 0; } static int jmicron_resume(struct sdhci_pci_chip *chip) { int ret, i; if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) { for (i = 0; i < chip->num_slots; i++) jmicron_enable_mmc(chip->slots[i]->host, 1); } ret = jmicron_pmos(chip, 1); if (ret) { dev_err(&chip->pdev->dev, "Failure enabling card power\n"); return ret; } return sdhci_pci_resume_host(chip); } #endif static const struct sdhci_pci_fixes sdhci_o2 = { .probe = sdhci_pci_o2_probe, .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD, .probe_slot = sdhci_pci_o2_probe_slot, #ifdef CONFIG_PM_SLEEP .resume = sdhci_pci_o2_resume, #endif }; static const struct sdhci_pci_fixes sdhci_jmicron = { .probe = jmicron_probe, .probe_slot = jmicron_probe_slot, .remove_slot = jmicron_remove_slot, #ifdef CONFIG_PM_SLEEP .suspend = jmicron_suspend, .resume = jmicron_resume, #endif }; /* SysKonnect CardBus2SDIO extra registers */ #define SYSKT_CTRL 0x200 #define SYSKT_RDFIFO_STAT 0x204 #define SYSKT_WRFIFO_STAT 0x208 #define SYSKT_POWER_DATA 0x20c #define SYSKT_POWER_330 0xef #define SYSKT_POWER_300 0xf8 #define SYSKT_POWER_184 0xcc #define SYSKT_POWER_CMD 0x20d #define SYSKT_POWER_START (1 << 7) #define SYSKT_POWER_STATUS 0x20e #define SYSKT_POWER_STATUS_OK (1 << 0) #define SYSKT_BOARD_REV 0x210 #define SYSKT_CHIP_REV 0x211 #define SYSKT_CONF_DATA 0x212 #define SYSKT_CONF_DATA_1V8 (1 << 2) #define SYSKT_CONF_DATA_2V5 (1 << 1) #define SYSKT_CONF_DATA_3V3 (1 << 0) static int syskt_probe(struct sdhci_pci_chip *chip) { if ((chip->pdev->class & 0x0000FF) == PCI_SDHCI_IFVENDOR) { chip->pdev->class &= ~0x0000FF; chip->pdev->class |= PCI_SDHCI_IFDMA; } return 0; } static int syskt_probe_slot(struct sdhci_pci_slot *slot) { int tm, ps; u8 board_rev = readb(slot->host->ioaddr + SYSKT_BOARD_REV); u8 chip_rev = readb(slot->host->ioaddr + SYSKT_CHIP_REV); dev_info(&slot->chip->pdev->dev, "SysKonnect CardBus2SDIO, " "board rev %d.%d, chip rev %d.%d\n", board_rev >> 4, board_rev & 0xf, chip_rev >> 4, chip_rev & 0xf); if (chip_rev >= 0x20) slot->host->quirks |= SDHCI_QUIRK_FORCE_DMA; writeb(SYSKT_POWER_330, slot->host->ioaddr + SYSKT_POWER_DATA); writeb(SYSKT_POWER_START, slot->host->ioaddr + SYSKT_POWER_CMD); udelay(50); tm = 10; /* Wait max 1 ms */ do { ps = readw(slot->host->ioaddr + SYSKT_POWER_STATUS); if (ps & SYSKT_POWER_STATUS_OK) break; udelay(100); } while (--tm); if (!tm) { dev_err(&slot->chip->pdev->dev, "power regulator never stabilized"); writeb(0, slot->host->ioaddr + SYSKT_POWER_CMD); return -ENODEV; } return 0; } static const struct sdhci_pci_fixes sdhci_syskt = { .quirks = SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER, .probe = syskt_probe, .probe_slot = syskt_probe_slot, }; static int via_probe(struct sdhci_pci_chip *chip) { if (chip->pdev->revision == 0x10) chip->quirks |= SDHCI_QUIRK_DELAY_AFTER_POWER; return 0; } static const struct sdhci_pci_fixes sdhci_via = { .probe = via_probe, }; static int rtsx_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps2 |= MMC_CAP2_HS200; return 0; } static const struct sdhci_pci_fixes sdhci_rtsx = { .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_BROKEN_64_BIT_DMA | SDHCI_QUIRK2_BROKEN_DDR50, .probe_slot = rtsx_probe_slot, }; /*AMD chipset generation*/ enum amd_chipset_gen { AMD_CHIPSET_BEFORE_ML, AMD_CHIPSET_CZ, AMD_CHIPSET_NL, AMD_CHIPSET_UNKNOWN, }; /* AMD registers */ #define AMD_SD_AUTO_PATTERN 0xB8 #define AMD_MSLEEP_DURATION 4 #define AMD_SD_MISC_CONTROL 0xD0 #define AMD_MAX_TUNE_VALUE 0x0B #define AMD_AUTO_TUNE_SEL 0x10800 #define AMD_FIFO_PTR 0x30 #define AMD_BIT_MASK 0x1F static void amd_tuning_reset(struct sdhci_host *host) { unsigned int val; val = sdhci_readw(host, SDHCI_HOST_CONTROL2); val |= SDHCI_CTRL_PRESET_VAL_ENABLE | SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, val, SDHCI_HOST_CONTROL2); val = sdhci_readw(host, SDHCI_HOST_CONTROL2); val &= ~SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, val, SDHCI_HOST_CONTROL2); } static void amd_config_tuning_phase(struct pci_dev *pdev, u8 phase) { unsigned int val; pci_read_config_dword(pdev, AMD_SD_AUTO_PATTERN, &val); val &= ~AMD_BIT_MASK; val |= (AMD_AUTO_TUNE_SEL | (phase << 1)); pci_write_config_dword(pdev, AMD_SD_AUTO_PATTERN, val); } static void amd_enable_manual_tuning(struct pci_dev *pdev) { unsigned int val; pci_read_config_dword(pdev, AMD_SD_MISC_CONTROL, &val); val |= AMD_FIFO_PTR; pci_write_config_dword(pdev, AMD_SD_MISC_CONTROL, val); } static int amd_execute_tuning_hs200(struct sdhci_host *host, u32 opcode) { struct sdhci_pci_slot *slot = sdhci_priv(host); struct pci_dev *pdev = slot->chip->pdev; u8 valid_win = 0; u8 valid_win_max = 0; u8 valid_win_end = 0; u8 ctrl, tune_around; amd_tuning_reset(host); for (tune_around = 0; tune_around < 12; tune_around++) { amd_config_tuning_phase(pdev, tune_around); if (mmc_send_tuning(host->mmc, opcode, NULL)) { valid_win = 0; msleep(AMD_MSLEEP_DURATION); ctrl = SDHCI_RESET_CMD | SDHCI_RESET_DATA; sdhci_writeb(host, ctrl, SDHCI_SOFTWARE_RESET); } else if (++valid_win > valid_win_max) { valid_win_max = valid_win; valid_win_end = tune_around; } } if (!valid_win_max) { dev_err(&pdev->dev, "no tuning point found\n"); return -EIO; } amd_config_tuning_phase(pdev, valid_win_end - valid_win_max / 2); amd_enable_manual_tuning(pdev); host->mmc->retune_period = 0; return 0; } static int amd_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); /* AMD requires custom HS200 tuning */ if (host->timing == MMC_TIMING_MMC_HS200) return amd_execute_tuning_hs200(host, opcode); /* Otherwise perform standard SDHCI tuning */ return sdhci_execute_tuning(mmc, opcode); } static int amd_probe_slot(struct sdhci_pci_slot *slot) { struct mmc_host_ops *ops = &slot->host->mmc_host_ops; ops->execute_tuning = amd_execute_tuning; return 0; } static int amd_probe(struct sdhci_pci_chip *chip) { struct pci_dev *smbus_dev; enum amd_chipset_gen gen; smbus_dev = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_HUDSON2_SMBUS, NULL); if (smbus_dev) { gen = AMD_CHIPSET_BEFORE_ML; } else { smbus_dev = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_KERNCZ_SMBUS, NULL); if (smbus_dev) { if (smbus_dev->revision < 0x51) gen = AMD_CHIPSET_CZ; else gen = AMD_CHIPSET_NL; } else { gen = AMD_CHIPSET_UNKNOWN; } } if (gen == AMD_CHIPSET_BEFORE_ML || gen == AMD_CHIPSET_CZ) chip->quirks2 |= SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD; return 0; } static const struct sdhci_ops amd_sdhci_pci_ops = { .set_clock = sdhci_set_clock, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, }; static const struct sdhci_pci_fixes sdhci_amd = { .probe = amd_probe, .ops = &amd_sdhci_pci_ops, .probe_slot = amd_probe_slot, }; static const struct pci_device_id pci_ids[] = { SDHCI_PCI_DEVICE(RICOH, R5C822, ricoh), SDHCI_PCI_DEVICE(RICOH, R5C843, ricoh_mmc), SDHCI_PCI_DEVICE(RICOH, R5CE822, ricoh_mmc), SDHCI_PCI_DEVICE(RICOH, R5CE823, ricoh_mmc), SDHCI_PCI_DEVICE(ENE, CB712_SD, ene_712), SDHCI_PCI_DEVICE(ENE, CB712_SD_2, ene_712), SDHCI_PCI_DEVICE(ENE, CB714_SD, ene_714), SDHCI_PCI_DEVICE(ENE, CB714_SD_2, ene_714), SDHCI_PCI_DEVICE(MARVELL, 88ALP01_SD, cafe), SDHCI_PCI_DEVICE(JMICRON, JMB38X_SD, jmicron), SDHCI_PCI_DEVICE(JMICRON, JMB38X_MMC, jmicron), SDHCI_PCI_DEVICE(JMICRON, JMB388_SD, jmicron), SDHCI_PCI_DEVICE(JMICRON, JMB388_ESD, jmicron), SDHCI_PCI_DEVICE(SYSKONNECT, 8000, syskt), SDHCI_PCI_DEVICE(VIA, 95D0, via), SDHCI_PCI_DEVICE(REALTEK, 5250, rtsx), SDHCI_PCI_DEVICE(INTEL, QRK_SD, intel_qrk), SDHCI_PCI_DEVICE(INTEL, MRST_SD0, intel_mrst_hc0), SDHCI_PCI_DEVICE(INTEL, MRST_SD1, intel_mrst_hc1_hc2), SDHCI_PCI_DEVICE(INTEL, MRST_SD2, intel_mrst_hc1_hc2), SDHCI_PCI_DEVICE(INTEL, MFD_SD, intel_mfd_sd), SDHCI_PCI_DEVICE(INTEL, MFD_SDIO1, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, MFD_SDIO2, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, MFD_EMMC0, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, MFD_EMMC1, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, PCH_SDIO0, intel_pch_sdio), SDHCI_PCI_DEVICE(INTEL, PCH_SDIO1, intel_pch_sdio), SDHCI_PCI_DEVICE(INTEL, BYT_EMMC, intel_byt_emmc), SDHCI_PCI_SUBDEVICE(INTEL, BYT_SDIO, NI, 7884, ni_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BYT_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BYT_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, BYT_EMMC2, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BSW_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BSW_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BSW_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CLV_SDIO0, intel_mfd_sd), SDHCI_PCI_DEVICE(INTEL, CLV_SDIO1, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, CLV_SDIO2, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, CLV_EMMC0, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, CLV_EMMC1, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, MRFLD_MMC, intel_mrfld_mmc), SDHCI_PCI_DEVICE(INTEL, SPT_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, SPT_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, SPT_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, DNV_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, CDF_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, BXT_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BXT_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BXT_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, BXTM_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BXTM_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BXTM_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, APL_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, APL_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, APL_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, GLK_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, GLK_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, GLK_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CNP_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, CNP_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CNPH_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, ICP_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, ICP_SD, intel_byt_sd), SDHCI_PCI_DEVICE(O2, 8120, o2), SDHCI_PCI_DEVICE(O2, 8220, o2), SDHCI_PCI_DEVICE(O2, 8221, o2), SDHCI_PCI_DEVICE(O2, 8320, o2), SDHCI_PCI_DEVICE(O2, 8321, o2), SDHCI_PCI_DEVICE(O2, FUJIN2, o2), SDHCI_PCI_DEVICE(O2, SDS0, o2), SDHCI_PCI_DEVICE(O2, SDS1, o2), SDHCI_PCI_DEVICE(O2, SEABIRD0, o2), SDHCI_PCI_DEVICE(O2, SEABIRD1, o2), SDHCI_PCI_DEVICE(ARASAN, PHY_EMMC, arasan), SDHCI_PCI_DEVICE(SYNOPSYS, DWC_MSHC, snps), SDHCI_PCI_DEVICE_CLASS(AMD, SYSTEM_SDHCI, PCI_CLASS_MASK, amd), /* Generic SD host controller */ {PCI_DEVICE_CLASS(SYSTEM_SDHCI, PCI_CLASS_MASK)}, { /* end: all zeroes */ }, }; MODULE_DEVICE_TABLE(pci, pci_ids); /*****************************************************************************\ * * * SDHCI core callbacks * * * \*****************************************************************************/ int sdhci_pci_enable_dma(struct sdhci_host *host) { struct sdhci_pci_slot *slot; struct pci_dev *pdev; slot = sdhci_priv(host); pdev = slot->chip->pdev; if (((pdev->class & 0xFFFF00) == (PCI_CLASS_SYSTEM_SDHCI << 8)) && ((pdev->class & 0x0000FF) != PCI_SDHCI_IFDMA) && (host->flags & SDHCI_USE_SDMA)) { dev_warn(&pdev->dev, "Will use DMA mode even though HW " "doesn't fully claim to support it.\n"); } pci_set_master(pdev); return 0; } static void sdhci_pci_gpio_hw_reset(struct sdhci_host *host) { struct sdhci_pci_slot *slot = sdhci_priv(host); int rst_n_gpio = slot->rst_n_gpio; if (!gpio_is_valid(rst_n_gpio)) return; gpio_set_value_cansleep(rst_n_gpio, 0); /* For eMMC, minimum is 1us but give it 10us for good measure */ udelay(10); gpio_set_value_cansleep(rst_n_gpio, 1); /* For eMMC, minimum is 200us but give it 300us for good measure */ usleep_range(300, 1000); } static void sdhci_pci_hw_reset(struct sdhci_host *host) { struct sdhci_pci_slot *slot = sdhci_priv(host); if (slot->hw_reset) slot->hw_reset(host); } static const struct sdhci_ops sdhci_pci_ops = { .set_clock = sdhci_set_clock, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .hw_reset = sdhci_pci_hw_reset, }; /*****************************************************************************\ * * * Suspend/resume * * * \*****************************************************************************/ #ifdef CONFIG_PM_SLEEP static int sdhci_pci_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct sdhci_pci_chip *chip = pci_get_drvdata(pdev); if (!chip) return 0; if (chip->fixes && chip->fixes->suspend) return chip->fixes->suspend(chip); return sdhci_pci_suspend_host(chip); } static int sdhci_pci_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct sdhci_pci_chip *chip = pci_get_drvdata(pdev); if (!chip) return 0; if (chip->fixes && chip->fixes->resume) return chip->fixes->resume(chip); return sdhci_pci_resume_host(chip); } #endif #ifdef CONFIG_PM static int sdhci_pci_runtime_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct sdhci_pci_chip *chip = pci_get_drvdata(pdev); if (!chip) return 0; if (chip->fixes && chip->fixes->runtime_suspend) return chip->fixes->runtime_suspend(chip); return sdhci_pci_runtime_suspend_host(chip); } static int sdhci_pci_runtime_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct sdhci_pci_chip *chip = pci_get_drvdata(pdev); if (!chip) return 0; if (chip->fixes && chip->fixes->runtime_resume) return chip->fixes->runtime_resume(chip); return sdhci_pci_runtime_resume_host(chip); } #endif static const struct dev_pm_ops sdhci_pci_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sdhci_pci_suspend, sdhci_pci_resume) SET_RUNTIME_PM_OPS(sdhci_pci_runtime_suspend, sdhci_pci_runtime_resume, NULL) }; /*****************************************************************************\ * * * Device probing/removal * * * \*****************************************************************************/ static struct sdhci_pci_slot *sdhci_pci_probe_slot( struct pci_dev *pdev, struct sdhci_pci_chip *chip, int first_bar, int slotno) { struct sdhci_pci_slot *slot; struct sdhci_host *host; int ret, bar = first_bar + slotno; size_t priv_size = chip->fixes ? chip->fixes->priv_size : 0; if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "BAR %d is not iomem. Aborting.\n", bar); return ERR_PTR(-ENODEV); } if (pci_resource_len(pdev, bar) < 0x100) { dev_err(&pdev->dev, "Invalid iomem size. You may " "experience problems.\n"); } if ((pdev->class & 0x0000FF) == PCI_SDHCI_IFVENDOR) { dev_err(&pdev->dev, "Vendor specific interface. Aborting.\n"); return ERR_PTR(-ENODEV); } if ((pdev->class & 0x0000FF) > PCI_SDHCI_IFVENDOR) { dev_err(&pdev->dev, "Unknown interface. Aborting.\n"); return ERR_PTR(-ENODEV); } host = sdhci_alloc_host(&pdev->dev, sizeof(*slot) + priv_size); if (IS_ERR(host)) { dev_err(&pdev->dev, "cannot allocate host\n"); return ERR_CAST(host); } slot = sdhci_priv(host); slot->chip = chip; slot->host = host; slot->rst_n_gpio = -EINVAL; slot->cd_gpio = -EINVAL; slot->cd_idx = -1; /* Retrieve platform data if there is any */ if (*sdhci_pci_get_data) slot->data = sdhci_pci_get_data(pdev, slotno); if (slot->data) { if (slot->data->setup) { ret = slot->data->setup(slot->data); if (ret) { dev_err(&pdev->dev, "platform setup failed\n"); goto free; } } slot->rst_n_gpio = slot->data->rst_n_gpio; slot->cd_gpio = slot->data->cd_gpio; } host->hw_name = "PCI"; host->ops = chip->fixes && chip->fixes->ops ? chip->fixes->ops : &sdhci_pci_ops; host->quirks = chip->quirks; host->quirks2 = chip->quirks2; host->irq = pdev->irq; ret = pcim_iomap_regions(pdev, BIT(bar), mmc_hostname(host->mmc)); if (ret) { dev_err(&pdev->dev, "cannot request region\n"); goto cleanup; } host->ioaddr = pcim_iomap_table(pdev)[bar]; if (chip->fixes && chip->fixes->probe_slot) { ret = chip->fixes->probe_slot(slot); if (ret) goto cleanup; } if (gpio_is_valid(slot->rst_n_gpio)) { if (!devm_gpio_request(&pdev->dev, slot->rst_n_gpio, "eMMC_reset")) { gpio_direction_output(slot->rst_n_gpio, 1); slot->host->mmc->caps |= MMC_CAP_HW_RESET; slot->hw_reset = sdhci_pci_gpio_hw_reset; } else { dev_warn(&pdev->dev, "failed to request rst_n_gpio\n"); slot->rst_n_gpio = -EINVAL; } } host->mmc->pm_caps = MMC_PM_KEEP_POWER; host->mmc->slotno = slotno; host->mmc->caps2 |= MMC_CAP2_NO_PRESCAN_POWERUP; if (device_can_wakeup(&pdev->dev)) host->mmc->pm_caps |= MMC_PM_WAKE_SDIO_IRQ; if (host->mmc->caps & MMC_CAP_CD_WAKE) device_init_wakeup(&pdev->dev, true); if (slot->cd_idx >= 0) { ret = mmc_gpiod_request_cd(host->mmc, "cd", slot->cd_idx, slot->cd_override_level, 0, NULL); if (ret && ret != -EPROBE_DEFER) ret = mmc_gpiod_request_cd(host->mmc, NULL, slot->cd_idx, slot->cd_override_level, 0, NULL); if (ret == -EPROBE_DEFER) goto remove; if (ret) { dev_warn(&pdev->dev, "failed to setup card detect gpio\n"); slot->cd_idx = -1; } } if (chip->fixes && chip->fixes->add_host) ret = chip->fixes->add_host(slot); else ret = sdhci_add_host(host); if (ret) goto remove; sdhci_pci_add_own_cd(slot); /* * Check if the chip needs a separate GPIO for card detect to wake up * from runtime suspend. If it is not there, don't allow runtime PM. * Note sdhci_pci_add_own_cd() sets slot->cd_gpio to -EINVAL on failure. */ if (chip->fixes && chip->fixes->own_cd_for_runtime_pm && !gpio_is_valid(slot->cd_gpio) && slot->cd_idx < 0) chip->allow_runtime_pm = false; return slot; remove: if (chip->fixes && chip->fixes->remove_slot) chip->fixes->remove_slot(slot, 0); cleanup: if (slot->data && slot->data->cleanup) slot->data->cleanup(slot->data); free: sdhci_free_host(host); return ERR_PTR(ret); } static void sdhci_pci_remove_slot(struct sdhci_pci_slot *slot) { int dead; u32 scratch; sdhci_pci_remove_own_cd(slot); dead = 0; scratch = readl(slot->host->ioaddr + SDHCI_INT_STATUS); if (scratch == (u32)-1) dead = 1; sdhci_remove_host(slot->host, dead); if (slot->chip->fixes && slot->chip->fixes->remove_slot) slot->chip->fixes->remove_slot(slot, dead); if (slot->data && slot->data->cleanup) slot->data->cleanup(slot->data); sdhci_free_host(slot->host); } static void sdhci_pci_runtime_pm_allow(struct device *dev) { pm_suspend_ignore_children(dev, 1); pm_runtime_set_autosuspend_delay(dev, 50); pm_runtime_use_autosuspend(dev); pm_runtime_allow(dev); /* Stay active until mmc core scans for a card */ pm_runtime_put_noidle(dev); } static void sdhci_pci_runtime_pm_forbid(struct device *dev) { pm_runtime_forbid(dev); pm_runtime_get_noresume(dev); } static int sdhci_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct sdhci_pci_chip *chip; struct sdhci_pci_slot *slot; u8 slots, first_bar; int ret, i; BUG_ON(pdev == NULL); BUG_ON(ent == NULL); dev_info(&pdev->dev, "SDHCI controller found [%04x:%04x] (rev %x)\n", (int)pdev->vendor, (int)pdev->device, (int)pdev->revision); ret = pci_read_config_byte(pdev, PCI_SLOT_INFO, &slots); if (ret) return ret; slots = PCI_SLOT_INFO_SLOTS(slots) + 1; dev_dbg(&pdev->dev, "found %d slot(s)\n", slots); if (slots == 0) return -ENODEV; BUG_ON(slots > MAX_SLOTS); ret = pci_read_config_byte(pdev, PCI_SLOT_INFO, &first_bar); if (ret) return ret; first_bar &= PCI_SLOT_INFO_FIRST_BAR_MASK; if (first_bar > 5) { dev_err(&pdev->dev, "Invalid first BAR. Aborting.\n"); return -ENODEV; } ret = pcim_enable_device(pdev); if (ret) return ret; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->pdev = pdev; chip->fixes = (const struct sdhci_pci_fixes *)ent->driver_data; if (chip->fixes) { chip->quirks = chip->fixes->quirks; chip->quirks2 = chip->fixes->quirks2; chip->allow_runtime_pm = chip->fixes->allow_runtime_pm; } chip->num_slots = slots; chip->pm_retune = true; chip->rpm_retune = true; pci_set_drvdata(pdev, chip); if (chip->fixes && chip->fixes->probe) { ret = chip->fixes->probe(chip); if (ret) return ret; } slots = chip->num_slots; /* Quirk may have changed this */ for (i = 0; i < slots; i++) { slot = sdhci_pci_probe_slot(pdev, chip, first_bar, i); if (IS_ERR(slot)) { for (i--; i >= 0; i--) sdhci_pci_remove_slot(chip->slots[i]); return PTR_ERR(slot); } chip->slots[i] = slot; } if (chip->allow_runtime_pm) sdhci_pci_runtime_pm_allow(&pdev->dev); return 0; } static void sdhci_pci_remove(struct pci_dev *pdev) { int i; struct sdhci_pci_chip *chip = pci_get_drvdata(pdev); if (chip->allow_runtime_pm) sdhci_pci_runtime_pm_forbid(&pdev->dev); for (i = 0; i < chip->num_slots; i++) sdhci_pci_remove_slot(chip->slots[i]); } static struct pci_driver sdhci_driver = { .name = "sdhci-pci", .id_table = pci_ids, .probe = sdhci_pci_probe, .remove = sdhci_pci_remove, .driver = { .pm = &sdhci_pci_pm_ops }, }; module_pci_driver(sdhci_driver); MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>"); MODULE_DESCRIPTION("Secure Digital Host Controller Interface PCI driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1