Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 2389 | 97.03% | 11 | 73.33% |
Miquel Raynal | 40 | 1.62% | 1 | 6.67% |
Martin Blumenstingl | 26 | 1.06% | 2 | 13.33% |
Dan Carpenter | 7 | 0.28% | 1 | 6.67% |
Total | 2462 | 15 |
/* * Copyright (C) 2017 Free Electrons * Copyright (C) 2017 NextThing Co * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/sizes.h> #include <linux/slab.h> #include "internals.h" #define NAND_HYNIX_CMD_SET_PARAMS 0x36 #define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 #define NAND_HYNIX_1XNM_RR_REPEAT 8 /** * struct hynix_read_retry - read-retry data * @nregs: number of register to set when applying a new read-retry mode * @regs: register offsets (NAND chip dependent) * @values: array of values to set in registers. The array size is equal to * (nregs * nmodes) */ struct hynix_read_retry { int nregs; const u8 *regs; u8 values[0]; }; /** * struct hynix_nand - private Hynix NAND struct * @nand_technology: manufacturing process expressed in picometer * @read_retry: read-retry information */ struct hynix_nand { const struct hynix_read_retry *read_retry; }; /** * struct hynix_read_retry_otp - structure describing how the read-retry OTP * area * @nregs: number of hynix private registers to set before reading the reading * the OTP area * @regs: registers that should be configured * @values: values that should be set in regs * @page: the address to pass to the READ_PAGE command. Depends on the NAND * chip * @size: size of the read-retry OTP section */ struct hynix_read_retry_otp { int nregs; const u8 *regs; const u8 *values; int page; int size; }; static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) { u8 jedecid[5] = { }; int ret; ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); if (ret) return false; return !strncmp("JEDEC", jedecid, sizeof(jedecid)); } static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) { if (chip->exec_op) { struct nand_op_instr instrs[] = { NAND_OP_CMD(cmd, 0), }; struct nand_operation op = NAND_OPERATION(instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, cmd, -1, -1); return 0; } static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) { u16 column = ((u16)addr << 8) | addr; if (chip->exec_op) { struct nand_op_instr instrs[] = { NAND_OP_ADDR(1, &addr, 0), NAND_OP_8BIT_DATA_OUT(1, &val, 0), }; struct nand_operation op = NAND_OPERATION(instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1); chip->legacy.write_byte(chip, val); return 0; } static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) { struct hynix_nand *hynix = nand_get_manufacturer_data(chip); const u8 *values; int i, ret; values = hynix->read_retry->values + (retry_mode * hynix->read_retry->nregs); /* Enter 'Set Hynix Parameters' mode */ ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); if (ret) return ret; /* * Configure the NAND in the requested read-retry mode. * This is done by setting pre-defined values in internal NAND * registers. * * The set of registers is NAND specific, and the values are either * predefined or extracted from an OTP area on the NAND (values are * probably tweaked at production in this case). */ for (i = 0; i < hynix->read_retry->nregs; i++) { ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], values[i]); if (ret) return ret; } /* Apply the new settings. */ return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); } /** * hynix_get_majority - get the value that is occurring the most in a given * set of values * @in: the array of values to test * @repeat: the size of the in array * @out: pointer used to store the output value * * This function implements the 'majority check' logic that is supposed to * overcome the unreliability of MLC NANDs when reading the OTP area storing * the read-retry parameters. * * It's based on a pretty simple assumption: if we repeat the same value * several times and then take the one that is occurring the most, we should * find the correct value. * Let's hope this dummy algorithm prevents us from losing the read-retry * parameters. */ static int hynix_get_majority(const u8 *in, int repeat, u8 *out) { int i, j, half = repeat / 2; /* * We only test the first half of the in array because we must ensure * that the value is at least occurring repeat / 2 times. * * This loop is suboptimal since we may count the occurrences of the * same value several time, but we are doing that on small sets, which * makes it acceptable. */ for (i = 0; i < half; i++) { int cnt = 0; u8 val = in[i]; /* Count all values that are matching the one at index i. */ for (j = i + 1; j < repeat; j++) { if (in[j] == val) cnt++; } /* We found a value occurring more than repeat / 2. */ if (cnt > half) { *out = val; return 0; } } return -EIO; } static int hynix_read_rr_otp(struct nand_chip *chip, const struct hynix_read_retry_otp *info, void *buf) { int i, ret; ret = nand_reset_op(chip); if (ret) return ret; ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); if (ret) return ret; for (i = 0; i < info->nregs; i++) { ret = hynix_nand_reg_write_op(chip, info->regs[i], info->values[i]); if (ret) return ret; } ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); if (ret) return ret; /* Sequence to enter OTP mode? */ ret = hynix_nand_cmd_op(chip, 0x17); if (ret) return ret; ret = hynix_nand_cmd_op(chip, 0x4); if (ret) return ret; ret = hynix_nand_cmd_op(chip, 0x19); if (ret) return ret; /* Now read the page */ ret = nand_read_page_op(chip, info->page, 0, buf, info->size); if (ret) return ret; /* Put everything back to normal */ ret = nand_reset_op(chip); if (ret) return ret; ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); if (ret) return ret; ret = hynix_nand_reg_write_op(chip, 0x38, 0); if (ret) return ret; ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); if (ret) return ret; return nand_read_page_op(chip, 0, 0, NULL, 0); } #define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, int mode, int reg, bool inv, u8 *val) { u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; int val_offs = (mode * nregs) + reg; int set_size = nmodes * nregs; int i, ret; for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); tmp[i] = buf[val_offs + set_offs]; } ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); if (ret) return ret; if (inv) *val = ~*val; return 0; } static u8 hynix_1xnm_mlc_read_retry_regs[] = { 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf }; static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, const struct hynix_read_retry_otp *info) { struct hynix_nand *hynix = nand_get_manufacturer_data(chip); struct hynix_read_retry *rr = NULL; int ret, i, j; u8 nregs, nmodes; u8 *buf; buf = kmalloc(info->size, GFP_KERNEL); if (!buf) return -ENOMEM; ret = hynix_read_rr_otp(chip, info, buf); if (ret) goto out; ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, &nmodes); if (ret) goto out; ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, NAND_HYNIX_1XNM_RR_REPEAT, &nregs); if (ret) goto out; rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); if (!rr) { ret = -ENOMEM; goto out; } for (i = 0; i < nmodes; i++) { for (j = 0; j < nregs; j++) { u8 *val = rr->values + (i * nregs); ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, false, val); if (!ret) continue; ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, true, val); if (ret) goto out; } } rr->nregs = nregs; rr->regs = hynix_1xnm_mlc_read_retry_regs; hynix->read_retry = rr; chip->setup_read_retry = hynix_nand_setup_read_retry; chip->read_retries = nmodes; out: kfree(buf); if (ret) kfree(rr); return ret; } static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { { .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), .regs = hynix_mlc_1xnm_rr_otp_regs, .values = hynix_mlc_1xnm_rr_otp_values, .page = 0x21f, .size = 784 }, { .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), .regs = hynix_mlc_1xnm_rr_otp_regs, .values = hynix_mlc_1xnm_rr_otp_values, .page = 0x200, .size = 528, }, }; static int hynix_nand_rr_init(struct nand_chip *chip) { int i, ret = 0; bool valid_jedecid; valid_jedecid = hynix_nand_has_valid_jedecid(chip); /* * We only support read-retry for 1xnm NANDs, and those NANDs all * expose a valid JEDEC ID. */ if (valid_jedecid) { u8 nand_tech = chip->id.data[5] >> 4; /* 1xnm technology */ if (nand_tech == 4) { for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); i++) { /* * FIXME: Hynix recommend to copy the * read-retry OTP area into a normal page. */ ret = hynix_mlc_1xnm_rr_init(chip, hynix_mlc_1xnm_rr_otps); if (!ret) break; } } } if (ret) pr_warn("failed to initialize read-retry infrastructure"); return 0; } static void hynix_nand_extract_oobsize(struct nand_chip *chip, bool valid_jedecid) { struct mtd_info *mtd = nand_to_mtd(chip); u8 oobsize; oobsize = ((chip->id.data[3] >> 2) & 0x3) | ((chip->id.data[3] >> 4) & 0x4); if (valid_jedecid) { switch (oobsize) { case 0: mtd->oobsize = 2048; break; case 1: mtd->oobsize = 1664; break; case 2: mtd->oobsize = 1024; break; case 3: mtd->oobsize = 640; break; default: /* * We should never reach this case, but if that * happens, this probably means Hynix decided to use * a different extended ID format, and we should find * a way to support it. */ WARN(1, "Invalid OOB size"); break; } } else { switch (oobsize) { case 0: mtd->oobsize = 128; break; case 1: mtd->oobsize = 224; break; case 2: mtd->oobsize = 448; break; case 3: mtd->oobsize = 64; break; case 4: mtd->oobsize = 32; break; case 5: mtd->oobsize = 16; break; case 6: mtd->oobsize = 640; break; default: /* * We should never reach this case, but if that * happens, this probably means Hynix decided to use * a different extended ID format, and we should find * a way to support it. */ WARN(1, "Invalid OOB size"); break; } /* * The datasheet of H27UCG8T2BTR mentions that the "Redundant * Area Size" is encoded "per 8KB" (page size). This chip uses * a page size of 16KiB. The datasheet mentions an OOB size of * 1.280 bytes, but the OOB size encoded in the ID bytes (using * the existing logic above) is 640 bytes. * Update the OOB size for this chip by taking the value * determined above and scaling it to the actual page size (so * the actual OOB size for this chip is: 640 * 16k / 8k). */ if (chip->id.data[1] == 0xde) mtd->oobsize *= mtd->writesize / SZ_8K; } } static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, bool valid_jedecid) { u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; if (valid_jedecid) { /* Reference: H27UCG8T2E datasheet */ chip->ecc_step_ds = 1024; switch (ecc_level) { case 0: chip->ecc_step_ds = 0; chip->ecc_strength_ds = 0; break; case 1: chip->ecc_strength_ds = 4; break; case 2: chip->ecc_strength_ds = 24; break; case 3: chip->ecc_strength_ds = 32; break; case 4: chip->ecc_strength_ds = 40; break; case 5: chip->ecc_strength_ds = 50; break; case 6: chip->ecc_strength_ds = 60; break; default: /* * We should never reach this case, but if that * happens, this probably means Hynix decided to use * a different extended ID format, and we should find * a way to support it. */ WARN(1, "Invalid ECC requirements"); } } else { /* * The ECC requirements field meaning depends on the * NAND technology. */ u8 nand_tech = chip->id.data[5] & 0x7; if (nand_tech < 3) { /* > 26nm, reference: H27UBG8T2A datasheet */ if (ecc_level < 5) { chip->ecc_step_ds = 512; chip->ecc_strength_ds = 1 << ecc_level; } else if (ecc_level < 7) { if (ecc_level == 5) chip->ecc_step_ds = 2048; else chip->ecc_step_ds = 1024; chip->ecc_strength_ds = 24; } else { /* * We should never reach this case, but if that * happens, this probably means Hynix decided * to use a different extended ID format, and * we should find a way to support it. */ WARN(1, "Invalid ECC requirements"); } } else { /* <= 26nm, reference: H27UBG8T2B datasheet */ if (!ecc_level) { chip->ecc_step_ds = 0; chip->ecc_strength_ds = 0; } else if (ecc_level < 5) { chip->ecc_step_ds = 512; chip->ecc_strength_ds = 1 << (ecc_level - 1); } else { chip->ecc_step_ds = 1024; chip->ecc_strength_ds = 24 + (8 * (ecc_level - 5)); } } } } static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, bool valid_jedecid) { u8 nand_tech; /* We need scrambling on all TLC NANDs*/ if (chip->bits_per_cell > 2) chip->options |= NAND_NEED_SCRAMBLING; /* And on MLC NANDs with sub-3xnm process */ if (valid_jedecid) { nand_tech = chip->id.data[5] >> 4; /* < 3xnm */ if (nand_tech > 0) chip->options |= NAND_NEED_SCRAMBLING; } else { nand_tech = chip->id.data[5] & 0x7; /* < 32nm */ if (nand_tech > 2) chip->options |= NAND_NEED_SCRAMBLING; } } static void hynix_nand_decode_id(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); bool valid_jedecid; u8 tmp; /* * Exclude all SLC NANDs from this advanced detection scheme. * According to the ranges defined in several datasheets, it might * appear that even SLC NANDs could fall in this extended ID scheme. * If that the case rework the test to let SLC NANDs go through the * detection process. */ if (chip->id.len < 6 || nand_is_slc(chip)) { nand_decode_ext_id(chip); return; } /* Extract pagesize */ mtd->writesize = 2048 << (chip->id.data[3] & 0x03); tmp = (chip->id.data[3] >> 4) & 0x3; /* * When bit7 is set that means we start counting at 1MiB, otherwise * we start counting at 128KiB and shift this value the content of * ID[3][4:5]. * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in * this case the erasesize is set to 768KiB. */ if (chip->id.data[3] & 0x80) mtd->erasesize = SZ_1M << tmp; else if (tmp == 3) mtd->erasesize = SZ_512K + SZ_256K; else mtd->erasesize = SZ_128K << tmp; /* * Modern Toggle DDR NANDs have a valid JEDECID even though they are * not exposing a valid JEDEC parameter table. * These NANDs use a different NAND ID scheme. */ valid_jedecid = hynix_nand_has_valid_jedecid(chip); hynix_nand_extract_oobsize(chip, valid_jedecid); hynix_nand_extract_ecc_requirements(chip, valid_jedecid); hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); } static void hynix_nand_cleanup(struct nand_chip *chip) { struct hynix_nand *hynix = nand_get_manufacturer_data(chip); if (!hynix) return; kfree(hynix->read_retry); kfree(hynix); nand_set_manufacturer_data(chip, NULL); } static int hynix_nand_init(struct nand_chip *chip) { struct hynix_nand *hynix; int ret; if (!nand_is_slc(chip)) chip->bbt_options |= NAND_BBT_SCANLASTPAGE; else chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); if (!hynix) return -ENOMEM; nand_set_manufacturer_data(chip, hynix); ret = hynix_nand_rr_init(chip); if (ret) hynix_nand_cleanup(chip); return ret; } const struct nand_manufacturer_ops hynix_nand_manuf_ops = { .detect = hynix_nand_decode_id, .init = hynix_nand_init, .cleanup = hynix_nand_cleanup, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1