Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Einon | 16917 | 99.25% | 1 | 5.56% |
Andrew Lunn | 37 | 0.22% | 5 | 27.78% |
Philippe Reynes | 35 | 0.21% | 2 | 11.11% |
Jarod Wilson | 20 | 0.12% | 1 | 5.56% |
Kees Cook | 14 | 0.08% | 1 | 5.56% |
Nicholas Mc Guire | 6 | 0.04% | 1 | 5.56% |
Florian Westphal | 6 | 0.04% | 1 | 5.56% |
Eric Dumazet | 3 | 0.02% | 1 | 5.56% |
Allen Pais | 3 | 0.02% | 1 | 5.56% |
Johannes Berg | 1 | 0.01% | 1 | 5.56% |
Florian Fainelli | 1 | 0.01% | 1 | 5.56% |
Insu Yun | 1 | 0.01% | 1 | 5.56% |
Julia Lawall | 1 | 0.01% | 1 | 5.56% |
Total | 17045 | 18 |
/* Agere Systems Inc. * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs * * Copyright © 2005 Agere Systems Inc. * All rights reserved. * http://www.agere.com * * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com> * *------------------------------------------------------------------------------ * * SOFTWARE LICENSE * * This software is provided subject to the following terms and conditions, * which you should read carefully before using the software. Using this * software indicates your acceptance of these terms and conditions. If you do * not agree with these terms and conditions, do not use the software. * * Copyright © 2005 Agere Systems Inc. * All rights reserved. * * Redistribution and use in source or binary forms, with or without * modifications, are permitted provided that the following conditions are met: * * . Redistributions of source code must retain the above copyright notice, this * list of conditions and the following Disclaimer as comments in the code as * well as in the documentation and/or other materials provided with the * distribution. * * . Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following Disclaimer in the documentation * and/or other materials provided with the distribution. * * . Neither the name of Agere Systems Inc. nor the names of the contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Disclaimer * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/pci.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/ctype.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/in.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/io.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/ioport.h> #include <linux/crc32.h> #include <linux/random.h> #include <linux/phy.h> #include "et131x.h" MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>"); MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems"); /* EEPROM defines */ #define MAX_NUM_REGISTER_POLLS 1000 #define MAX_NUM_WRITE_RETRIES 2 /* MAC defines */ #define COUNTER_WRAP_16_BIT 0x10000 #define COUNTER_WRAP_12_BIT 0x1000 /* PCI defines */ #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */ #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */ /* ISR defines */ /* For interrupts, normal running is: * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt, * watchdog_interrupt & txdma_xfer_done * * In both cases, when flow control is enabled for either Tx or bi-direction, * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the * buffer rings are running low. */ #define INT_MASK_DISABLE 0xffffffff /* NOTE: Masking out MAC_STAT Interrupt for now... * #define INT_MASK_ENABLE 0xfff6bf17 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7 */ #define INT_MASK_ENABLE 0xfffebf17 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7 /* General defines */ /* Packet and header sizes */ #define NIC_MIN_PACKET_SIZE 60 /* Multicast list size */ #define NIC_MAX_MCAST_LIST 128 /* Supported Filters */ #define ET131X_PACKET_TYPE_DIRECTED 0x0001 #define ET131X_PACKET_TYPE_MULTICAST 0x0002 #define ET131X_PACKET_TYPE_BROADCAST 0x0004 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010 /* Tx Timeout */ #define ET131X_TX_TIMEOUT (1 * HZ) #define NIC_SEND_HANG_THRESHOLD 0 /* MP_ADAPTER flags */ #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008 /* MP_SHARED flags */ #define FMP_ADAPTER_LOWER_POWER 0x00200000 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000 /* Some offsets in PCI config space that are actually used. */ #define ET1310_PCI_MAC_ADDRESS 0xA4 #define ET1310_PCI_EEPROM_STATUS 0xB2 #define ET1310_PCI_ACK_NACK 0xC0 #define ET1310_PCI_REPLAY 0xC2 #define ET1310_PCI_L0L1LATENCY 0xCF /* PCI Product IDs */ #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */ #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */ /* Define order of magnitude converter */ #define NANO_IN_A_MICRO 1000 #define PARM_RX_NUM_BUFS_DEF 4 #define PARM_RX_TIME_INT_DEF 10 #define PARM_RX_MEM_END_DEF 0x2bc #define PARM_TX_TIME_INT_DEF 40 #define PARM_TX_NUM_BUFS_DEF 4 #define PARM_DMA_CACHE_DEF 0 /* RX defines */ #define FBR_CHUNKS 32 #define MAX_DESC_PER_RING_RX 1024 /* number of RFDs - default and min */ #define RFD_LOW_WATER_MARK 40 #define NIC_DEFAULT_NUM_RFD 1024 #define NUM_FBRS 2 #define MAX_PACKETS_HANDLED 256 #define ET131X_MIN_MTU 64 #define ET131X_MAX_MTU 9216 #define ALCATEL_MULTICAST_PKT 0x01000000 #define ALCATEL_BROADCAST_PKT 0x02000000 /* typedefs for Free Buffer Descriptors */ struct fbr_desc { u32 addr_lo; u32 addr_hi; u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */ }; /* Packet Status Ring Descriptors * * Word 0: * * top 16 bits are from the Alcatel Status Word as enumerated in * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2) * * 0: hp hash pass * 1: ipa IP checksum assist * 2: ipp IP checksum pass * 3: tcpa TCP checksum assist * 4: tcpp TCP checksum pass * 5: wol WOL Event * 6: rxmac_error RXMAC Error Indicator * 7: drop Drop packet * 8: ft Frame Truncated * 9: jp Jumbo Packet * 10: vp VLAN Packet * 11-15: unused * 16: asw_prev_pkt_dropped e.g. IFG too small on previous * 17: asw_RX_DV_event short receive event detected * 18: asw_false_carrier_event bad carrier since last good packet * 19: asw_code_err one or more nibbles signalled as errors * 20: asw_CRC_err CRC error * 21: asw_len_chk_err frame length field incorrect * 22: asw_too_long frame length > 1518 bytes * 23: asw_OK valid CRC + no code error * 24: asw_multicast has a multicast address * 25: asw_broadcast has a broadcast address * 26: asw_dribble_nibble spurious bits after EOP * 27: asw_control_frame is a control frame * 28: asw_pause_frame is a pause frame * 29: asw_unsupported_op unsupported OP code * 30: asw_VLAN_tag VLAN tag detected * 31: asw_long_evt Rx long event * * Word 1: * 0-15: length length in bytes * 16-25: bi Buffer Index * 26-27: ri Ring Index * 28-31: reserved */ struct pkt_stat_desc { u32 word0; u32 word1; }; /* Typedefs for the RX DMA status word */ /* rx status word 0 holds part of the status bits of the Rx DMA engine * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word * which contains the Free Buffer ring 0 and 1 available offset. * * bit 0-9 FBR1 offset * bit 10 Wrap flag for FBR1 * bit 16-25 FBR0 offset * bit 26 Wrap flag for FBR0 */ /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word * which contains the Packet Status Ring available offset. * * bit 0-15 reserved * bit 16-27 PSRoffset * bit 28 PSRwrap * bit 29-31 unused */ /* struct rx_status_block is a structure representing the status of the Rx * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020 */ struct rx_status_block { u32 word0; u32 word1; }; /* Structure for look-up table holding free buffer ring pointers, addresses * and state. */ struct fbr_lookup { void *virt[MAX_DESC_PER_RING_RX]; u32 bus_high[MAX_DESC_PER_RING_RX]; u32 bus_low[MAX_DESC_PER_RING_RX]; void *ring_virtaddr; dma_addr_t ring_physaddr; void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; u32 local_full; u32 num_entries; dma_addr_t buffsize; }; /* struct rx_ring is the structure representing the adaptor's local * reference(s) to the rings */ struct rx_ring { struct fbr_lookup *fbr[NUM_FBRS]; void *ps_ring_virtaddr; dma_addr_t ps_ring_physaddr; u32 local_psr_full; u32 psr_entries; struct rx_status_block *rx_status_block; dma_addr_t rx_status_bus; struct list_head recv_list; u32 num_ready_recv; u32 num_rfd; bool unfinished_receives; }; /* TX defines */ /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310 * * 0-15: length of packet * 16-27: VLAN tag * 28: VLAN CFI * 29-31: VLAN priority * * word 3 of the control bits in the Tx Descriptor ring for the ET-1310 * * 0: last packet in the sequence * 1: first packet in the sequence * 2: interrupt the processor when this pkt sent * 3: Control word - no packet data * 4: Issue half-duplex backpressure : XON/XOFF * 5: send pause frame * 6: Tx frame has error * 7: append CRC * 8: MAC override * 9: pad packet * 10: Packet is a Huge packet * 11: append VLAN tag * 12: IP checksum assist * 13: TCP checksum assist * 14: UDP checksum assist */ #define TXDESC_FLAG_LASTPKT 0x0001 #define TXDESC_FLAG_FIRSTPKT 0x0002 #define TXDESC_FLAG_INTPROC 0x0004 /* struct tx_desc represents each descriptor on the ring */ struct tx_desc { u32 addr_hi; u32 addr_lo; u32 len_vlan; /* control words how to xmit the */ u32 flags; /* data (detailed above) */ }; /* The status of the Tx DMA engine it sits in free memory, and is pointed to * by 0x101c / 0x1020. This is a DMA10 type */ /* TCB (Transmit Control Block: Host Side) */ struct tcb { struct tcb *next; /* Next entry in ring */ u32 count; /* Used to spot stuck/lost packets */ u32 stale; /* Used to spot stuck/lost packets */ struct sk_buff *skb; /* Network skb we are tied to */ u32 index; /* Ring indexes */ u32 index_start; }; /* Structure representing our local reference(s) to the ring */ struct tx_ring { /* TCB (Transmit Control Block) memory and lists */ struct tcb *tcb_ring; /* List of TCBs that are ready to be used */ struct tcb *tcb_qhead; struct tcb *tcb_qtail; /* list of TCBs that are currently being sent. */ struct tcb *send_head; struct tcb *send_tail; int used; /* The actual descriptor ring */ struct tx_desc *tx_desc_ring; dma_addr_t tx_desc_ring_pa; /* send_idx indicates where we last wrote to in the descriptor ring. */ u32 send_idx; /* The location of the write-back status block */ u32 *tx_status; dma_addr_t tx_status_pa; /* Packets since the last IRQ: used for interrupt coalescing */ int since_irq; }; /* Do not change these values: if changed, then change also in respective * TXdma and Rxdma engines */ #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */ #define NUM_TCB 64 /* These values are all superseded by registry entries to facilitate tuning. * Once the desired performance has been achieved, the optimal registry values * should be re-populated to these #defines: */ #define TX_ERROR_PERIOD 1000 #define LO_MARK_PERCENT_FOR_PSR 15 #define LO_MARK_PERCENT_FOR_RX 15 /* RFD (Receive Frame Descriptor) */ struct rfd { struct list_head list_node; struct sk_buff *skb; u32 len; /* total size of receive frame */ u16 bufferindex; u8 ringindex; }; /* Flow Control */ #define FLOW_BOTH 0 #define FLOW_TXONLY 1 #define FLOW_RXONLY 2 #define FLOW_NONE 3 /* Struct to define some device statistics */ struct ce_stats { u32 multicast_pkts_rcvd; u32 rcvd_pkts_dropped; u32 tx_underflows; u32 tx_collisions; u32 tx_excessive_collisions; u32 tx_first_collisions; u32 tx_late_collisions; u32 tx_max_pkt_errs; u32 tx_deferred; u32 rx_overflows; u32 rx_length_errs; u32 rx_align_errs; u32 rx_crc_errs; u32 rx_code_violations; u32 rx_other_errs; u32 interrupt_status; }; /* The private adapter structure */ struct et131x_adapter { struct net_device *netdev; struct pci_dev *pdev; struct mii_bus *mii_bus; struct napi_struct napi; /* Flags that indicate current state of the adapter */ u32 flags; /* local link state, to determine if a state change has occurred */ int link; /* Configuration */ u8 rom_addr[ETH_ALEN]; u8 addr[ETH_ALEN]; bool has_eeprom; u8 eeprom_data[2]; spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */ spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */ spinlock_t rcv_lock; /* protects the rx_ring receive list */ /* Packet Filter and look ahead size */ u32 packet_filter; /* multicast list */ u32 multicast_addr_count; u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN]; /* Pointer to the device's PCI register space */ struct address_map __iomem *regs; /* Registry parameters */ u8 wanted_flow; /* Flow we want for 802.3x flow control */ u32 registry_jumbo_packet; /* Max supported ethernet packet size */ /* Derived from the registry: */ u8 flow; /* flow control validated by the far-end */ /* Minimize init-time */ struct timer_list error_timer; /* variable putting the phy into coma mode when boot up with no cable * plugged in after 5 seconds */ u8 boot_coma; /* Tx Memory Variables */ struct tx_ring tx_ring; /* Rx Memory Variables */ struct rx_ring rx_ring; struct ce_stats stats; }; static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status) { u32 reg; int i; /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and * bits 7,1:0 both equal to 1, at least once after reset. * Subsequent operations need only to check that bits 1:0 are equal * to 1 prior to starting a single byte read/write */ for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) { if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®)) return -EIO; /* I2C idle and Phy Queue Avail both true */ if ((reg & 0x3000) == 0x3000) { if (status) *status = reg; return reg & 0xFF; } } return -ETIMEDOUT; } static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data) { struct pci_dev *pdev = adapter->pdev; int index = 0; int retries; int err = 0; int writeok = 0; u32 status; u32 val = 0; /* For an EEPROM, an I2C single byte write is defined as a START * condition followed by the device address, EEPROM address, one byte * of data and a STOP condition. The STOP condition will trigger the * EEPROM's internally timed write cycle to the nonvolatile memory. * All inputs are disabled during this write cycle and the EEPROM will * not respond to any access until the internal write is complete. */ err = eeprom_wait_ready(pdev, NULL); if (err < 0) return err; /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0, * and bits 1:0 both =0. Bit 5 should be set according to the * type of EEPROM being accessed (1=two byte addressing, 0=one * byte addressing). */ if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE)) return -EIO; /* Prepare EEPROM address for Step 3 */ for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) { if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) break; /* Write the data to the LBCIF Data Register (the I2C write * will begin). */ if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data)) break; /* Monitor bit 1:0 of the LBCIF Status Register. When bits * 1:0 are both equal to 1, the I2C write has completed and the * internal write cycle of the EEPROM is about to start. * (bits 1:0 = 01 is a legal state while waiting from both * equal to 1, but bits 1:0 = 10 is invalid and implies that * something is broken). */ err = eeprom_wait_ready(pdev, &status); if (err < 0) return 0; /* Check bit 3 of the LBCIF Status Register. If equal to 1, * an error has occurred.Don't break here if we are revision * 1, this is so we do a blind write for load bug. */ if ((status & LBCIF_STATUS_GENERAL_ERROR) && adapter->pdev->revision == 0) break; /* Check bit 2 of the LBCIF Status Register. If equal to 1 an * ACK error has occurred on the address phase of the write. * This could be due to an actual hardware failure or the * EEPROM may still be in its internal write cycle from a * previous write. This write operation was ignored and must be *repeated later. */ if (status & LBCIF_STATUS_ACK_ERROR) { /* This could be due to an actual hardware failure * or the EEPROM may still be in its internal write * cycle from a previous write. This write operation * was ignored and must be repeated later. */ udelay(10); continue; } writeok = 1; break; } udelay(10); while (1) { if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, LBCIF_CONTROL_LBCIF_ENABLE)) writeok = 0; /* Do read until internal ACK_ERROR goes away meaning write * completed */ do { pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr); do { pci_read_config_dword(pdev, LBCIF_DATA_REGISTER, &val); } while ((val & 0x00010000) == 0); } while (val & 0x00040000); if ((val & 0xFF00) != 0xC000 || index == 10000) break; index++; } return writeok ? 0 : -EIO; } static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata) { struct pci_dev *pdev = adapter->pdev; int err; u32 status; /* A single byte read is similar to the single byte write, with the * exception of the data flow: */ err = eeprom_wait_ready(pdev, NULL); if (err < 0) return err; /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0, * and bits 1:0 both =0. Bit 5 should be set according to the type * of EEPROM being accessed (1=two byte addressing, 0=one byte * addressing). */ if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, LBCIF_CONTROL_LBCIF_ENABLE)) return -EIO; /* Write the address to the LBCIF Address Register (I2C read will * begin). */ if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) return -EIO; /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure * has occurred). */ err = eeprom_wait_ready(pdev, &status); if (err < 0) return err; /* Regardless of error status, read data byte from LBCIF Data * Register. */ *pdata = err; return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0; } static int et131x_init_eeprom(struct et131x_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; u8 eestatus; pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus); /* THIS IS A WORKAROUND: * I need to call this function twice to get my card in a * LG M1 Express Dual running. I tried also a msleep before this * function, because I thought there could be some time conditions * but it didn't work. Call the whole function twice also work. */ if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) { dev_err(&pdev->dev, "Could not read PCI config space for EEPROM Status\n"); return -EIO; } /* Determine if the error(s) we care about are present. If they are * present we need to fail. */ if (eestatus & 0x4C) { int write_failed = 0; if (pdev->revision == 0x01) { int i; static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF }; /* Re-write the first 4 bytes if we have an eeprom * present and the revision id is 1, this fixes the * corruption seen with 1310 B Silicon */ for (i = 0; i < 3; i++) if (eeprom_write(adapter, i, eedata[i]) < 0) write_failed = 1; } if (pdev->revision != 0x01 || write_failed) { dev_err(&pdev->dev, "Fatal EEPROM Status Error - 0x%04x\n", eestatus); /* This error could mean that there was an error * reading the eeprom or that the eeprom doesn't exist. * We will treat each case the same and not try to * gather additional information that normally would * come from the eeprom, like MAC Address */ adapter->has_eeprom = 0; return -EIO; } } adapter->has_eeprom = 1; /* Read the EEPROM for information regarding LED behavior. Refer to * et131x_xcvr_init() for its use. */ eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]); eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]); if (adapter->eeprom_data[0] != 0xcd) /* Disable all optional features */ adapter->eeprom_data[1] = 0x00; return 0; } static void et131x_rx_dma_enable(struct et131x_adapter *adapter) { /* Setup the receive dma configuration register for normal operation */ u32 csr = ET_RXDMA_CSR_FBR1_ENABLE; struct rx_ring *rx_ring = &adapter->rx_ring; if (rx_ring->fbr[1]->buffsize == 4096) csr |= ET_RXDMA_CSR_FBR1_SIZE_LO; else if (rx_ring->fbr[1]->buffsize == 8192) csr |= ET_RXDMA_CSR_FBR1_SIZE_HI; else if (rx_ring->fbr[1]->buffsize == 16384) csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI; csr |= ET_RXDMA_CSR_FBR0_ENABLE; if (rx_ring->fbr[0]->buffsize == 256) csr |= ET_RXDMA_CSR_FBR0_SIZE_LO; else if (rx_ring->fbr[0]->buffsize == 512) csr |= ET_RXDMA_CSR_FBR0_SIZE_HI; else if (rx_ring->fbr[0]->buffsize == 1024) csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI; writel(csr, &adapter->regs->rxdma.csr); csr = readl(&adapter->regs->rxdma.csr); if (csr & ET_RXDMA_CSR_HALT_STATUS) { udelay(5); csr = readl(&adapter->regs->rxdma.csr); if (csr & ET_RXDMA_CSR_HALT_STATUS) { dev_err(&adapter->pdev->dev, "RX Dma failed to exit halt state. CSR 0x%08x\n", csr); } } } static void et131x_rx_dma_disable(struct et131x_adapter *adapter) { u32 csr; /* Setup the receive dma configuration register */ writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE, &adapter->regs->rxdma.csr); csr = readl(&adapter->regs->rxdma.csr); if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) { udelay(5); csr = readl(&adapter->regs->rxdma.csr); if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) dev_err(&adapter->pdev->dev, "RX Dma failed to enter halt state. CSR 0x%08x\n", csr); } } static void et131x_tx_dma_enable(struct et131x_adapter *adapter) { /* Setup the transmit dma configuration register for normal * operation */ writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT), &adapter->regs->txdma.csr); } static inline void add_10bit(u32 *v, int n) { *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP); } static inline void add_12bit(u32 *v, int n) { *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP); } static void et1310_config_mac_regs1(struct et131x_adapter *adapter) { struct mac_regs __iomem *macregs = &adapter->regs->mac; u32 station1; u32 station2; u32 ipg; /* First we need to reset everything. Write to MAC configuration * register 1 to perform reset. */ writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC, ¯egs->cfg1); /* Next lets configure the MAC Inter-packet gap register */ ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */ ipg |= 0x50 << 8; /* ifg enforce 0x50 */ writel(ipg, ¯egs->ipg); /* Next lets configure the MAC Half Duplex register */ /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */ writel(0x00A1F037, ¯egs->hfdp); /* Next lets configure the MAC Interface Control register */ writel(0, ¯egs->if_ctrl); writel(ET_MAC_MIIMGMT_CLK_RST, ¯egs->mii_mgmt_cfg); /* Next lets configure the MAC Station Address register. These * values are read from the EEPROM during initialization and stored * in the adapter structure. We write what is stored in the adapter * structure to the MAC Station Address registers high and low. This * station address is used for generating and checking pause control * packets. */ station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) | (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT); station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) | (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) | (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) | adapter->addr[2]; writel(station1, ¯egs->station_addr_1); writel(station2, ¯egs->station_addr_2); /* Max ethernet packet in bytes that will be passed by the mac without * being truncated. Allow the MAC to pass 4 more than our max packet * size. This is 4 for the Ethernet CRC. * * Packets larger than (registry_jumbo_packet) that do not contain a * VLAN ID will be dropped by the Rx function. */ writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len); /* clear out MAC config reset */ writel(0, ¯egs->cfg1); } static void et1310_config_mac_regs2(struct et131x_adapter *adapter) { int32_t delay = 0; struct mac_regs __iomem *mac = &adapter->regs->mac; struct phy_device *phydev = adapter->netdev->phydev; u32 cfg1; u32 cfg2; u32 ifctrl; u32 ctl; ctl = readl(&adapter->regs->txmac.ctl); cfg1 = readl(&mac->cfg1); cfg2 = readl(&mac->cfg2); ifctrl = readl(&mac->if_ctrl); /* Set up the if mode bits */ cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK; if (phydev->speed == SPEED_1000) { cfg2 |= ET_MAC_CFG2_IFMODE_1000; ifctrl &= ~ET_MAC_IFCTRL_PHYMODE; } else { cfg2 |= ET_MAC_CFG2_IFMODE_100; ifctrl |= ET_MAC_IFCTRL_PHYMODE; } cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE | ET_MAC_CFG1_TX_FLOW; cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW); if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH) cfg1 |= ET_MAC_CFG1_RX_FLOW; writel(cfg1, &mac->cfg1); /* Now we need to initialize the MAC Configuration 2 register */ /* preamble 7, check length, huge frame off, pad crc, crc enable * full duplex off */ cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT; cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK; cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC; cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE; cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME; cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX; if (phydev->duplex == DUPLEX_FULL) cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX; ifctrl &= ~ET_MAC_IFCTRL_GHDMODE; if (phydev->duplex == DUPLEX_HALF) ifctrl |= ET_MAC_IFCTRL_GHDMODE; writel(ifctrl, &mac->if_ctrl); writel(cfg2, &mac->cfg2); do { udelay(10); delay++; cfg1 = readl(&mac->cfg1); } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100); if (delay == 100) { dev_warn(&adapter->pdev->dev, "Syncd bits did not respond correctly cfg1 word 0x%08x\n", cfg1); } ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE; writel(ctl, &adapter->regs->txmac.ctl); if (adapter->flags & FMP_ADAPTER_LOWER_POWER) { et131x_rx_dma_enable(adapter); et131x_tx_dma_enable(adapter); } } static int et1310_in_phy_coma(struct et131x_adapter *adapter) { u32 pmcsr = readl(&adapter->regs->global.pm_csr); return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0; } static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter) { struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; u32 hash1 = 0; u32 hash2 = 0; u32 hash3 = 0; u32 hash4 = 0; u32 pm_csr; /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision * the multi-cast LIST. If it is NOT specified, (and "ALL" is not * specified) then we should pass NO multi-cast addresses to the * driver. */ if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) { int i; /* Loop through our multicast array and set up the device */ for (i = 0; i < adapter->multicast_addr_count; i++) { u32 result; result = ether_crc(6, adapter->multicast_list[i]); result = (result & 0x3F800000) >> 23; if (result < 32) { hash1 |= (1 << result); } else if ((31 < result) && (result < 64)) { result -= 32; hash2 |= (1 << result); } else if ((63 < result) && (result < 96)) { result -= 64; hash3 |= (1 << result); } else { result -= 96; hash4 |= (1 << result); } } } /* Write out the new hash to the device */ pm_csr = readl(&adapter->regs->global.pm_csr); if (!et1310_in_phy_coma(adapter)) { writel(hash1, &rxmac->multi_hash1); writel(hash2, &rxmac->multi_hash2); writel(hash3, &rxmac->multi_hash3); writel(hash4, &rxmac->multi_hash4); } } static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter) { struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; u32 uni_pf1; u32 uni_pf2; u32 uni_pf3; u32 pm_csr; /* Set up unicast packet filter reg 3 to be the first two octets of * the MAC address for both address * * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the * MAC address for second address * * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the * MAC address for first address */ uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) | (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) | (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) | adapter->addr[1]; uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) | (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) | (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) | adapter->addr[5]; uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) | (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) | (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) | adapter->addr[5]; pm_csr = readl(&adapter->regs->global.pm_csr); if (!et1310_in_phy_coma(adapter)) { writel(uni_pf1, &rxmac->uni_pf_addr1); writel(uni_pf2, &rxmac->uni_pf_addr2); writel(uni_pf3, &rxmac->uni_pf_addr3); } } static void et1310_config_rxmac_regs(struct et131x_adapter *adapter) { struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; struct phy_device *phydev = adapter->netdev->phydev; u32 sa_lo; u32 sa_hi = 0; u32 pf_ctrl = 0; u32 __iomem *wolw; /* Disable the MAC while it is being configured (also disable WOL) */ writel(0x8, &rxmac->ctrl); /* Initialize WOL to disabled. */ writel(0, &rxmac->crc0); writel(0, &rxmac->crc12); writel(0, &rxmac->crc34); /* We need to set the WOL mask0 - mask4 next. We initialize it to * its default Values of 0x00000000 because there are not WOL masks * as of this time. */ for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++) writel(0, wolw); /* Lets setup the WOL Source Address */ sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) | (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) | (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) | adapter->addr[5]; writel(sa_lo, &rxmac->sa_lo); sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) | adapter->addr[1]; writel(sa_hi, &rxmac->sa_hi); /* Disable all Packet Filtering */ writel(0, &rxmac->pf_ctrl); /* Let's initialize the Unicast Packet filtering address */ if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) { et1310_setup_device_for_unicast(adapter); pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE; } else { writel(0, &rxmac->uni_pf_addr1); writel(0, &rxmac->uni_pf_addr2); writel(0, &rxmac->uni_pf_addr3); } /* Let's initialize the Multicast hash */ if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) { pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE; et1310_setup_device_for_multicast(adapter); } /* Runt packet filtering. Didn't work in version A silicon. */ pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT; pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE; if (adapter->registry_jumbo_packet > 8192) /* In order to transmit jumbo packets greater than 8k, the * FIFO between RxMAC and RxDMA needs to be reduced in size * to (16k - Jumbo packet size). In order to implement this, * we must use "cut through" mode in the RxMAC, which chops * packets down into segments which are (max_size * 16). In * this case we selected 256 bytes, since this is the size of * the PCI-Express TLP's that the 1310 uses. * * seg_en on, fc_en off, size 0x10 */ writel(0x41, &rxmac->mcif_ctrl_max_seg); else writel(0, &rxmac->mcif_ctrl_max_seg); writel(0, &rxmac->mcif_water_mark); writel(0, &rxmac->mif_ctrl); writel(0, &rxmac->space_avail); /* Initialize the the mif_ctrl register * bit 3: Receive code error. One or more nibbles were signaled as * errors during the reception of the packet. Clear this * bit in Gigabit, set it in 100Mbit. This was derived * experimentally at UNH. * bit 4: Receive CRC error. The packet's CRC did not match the * internally generated CRC. * bit 5: Receive length check error. Indicates that frame length * field value in the packet does not match the actual data * byte length and is not a type field. * bit 16: Receive frame truncated. * bit 17: Drop packet enable */ if (phydev && phydev->speed == SPEED_100) writel(0x30038, &rxmac->mif_ctrl); else writel(0x30030, &rxmac->mif_ctrl); /* Finally we initialize RxMac to be enabled & WOL disabled. Packet * filter is always enabled since it is where the runt packets are * supposed to be dropped. For version A silicon, runt packet * dropping doesn't work, so it is disabled in the pf_ctrl register, * but we still leave the packet filter on. */ writel(pf_ctrl, &rxmac->pf_ctrl); writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl); } static void et1310_config_txmac_regs(struct et131x_adapter *adapter) { struct txmac_regs __iomem *txmac = &adapter->regs->txmac; /* We need to update the Control Frame Parameters * cfpt - control frame pause timer set to 64 (0x40) * cfep - control frame extended pause timer set to 0x0 */ if (adapter->flow == FLOW_NONE) writel(0, &txmac->cf_param); else writel(0x40, &txmac->cf_param); } static void et1310_config_macstat_regs(struct et131x_adapter *adapter) { struct macstat_regs __iomem *macstat = &adapter->regs->macstat; u32 __iomem *reg; /* initialize all the macstat registers to zero on the device */ for (reg = &macstat->txrx_0_64_byte_frames; reg <= &macstat->carry_reg2; reg++) writel(0, reg); /* Unmask any counters that we want to track the overflow of. * Initially this will be all counters. It may become clear later * that we do not need to track all counters. */ writel(0xFFFFBE32, &macstat->carry_reg1_mask); writel(0xFFFE7E8B, &macstat->carry_reg2_mask); } static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr, u8 reg, u16 *value) { struct mac_regs __iomem *mac = &adapter->regs->mac; int status = 0; u32 delay = 0; u32 mii_addr; u32 mii_cmd; u32 mii_indicator; /* Save a local copy of the registers we are dealing with so we can * set them back */ mii_addr = readl(&mac->mii_mgmt_addr); mii_cmd = readl(&mac->mii_mgmt_cmd); /* Stop the current operation */ writel(0, &mac->mii_mgmt_cmd); /* Set up the register we need to read from on the correct PHY */ writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); writel(0x1, &mac->mii_mgmt_cmd); do { udelay(50); delay++; mii_indicator = readl(&mac->mii_mgmt_indicator); } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50); /* If we hit the max delay, we could not read the register */ if (delay == 50) { dev_warn(&adapter->pdev->dev, "reg 0x%08x could not be read\n", reg); dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", mii_indicator); status = -EIO; goto out; } /* If we hit here we were able to read the register and we need to * return the value to the caller */ *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK; out: /* Stop the read operation */ writel(0, &mac->mii_mgmt_cmd); /* set the registers we touched back to the state at which we entered * this function */ writel(mii_addr, &mac->mii_mgmt_addr); writel(mii_cmd, &mac->mii_mgmt_cmd); return status; } static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value) { struct phy_device *phydev = adapter->netdev->phydev; if (!phydev) return -EIO; return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value); } static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg, u16 value) { struct mac_regs __iomem *mac = &adapter->regs->mac; int status = 0; u32 delay = 0; u32 mii_addr; u32 mii_cmd; u32 mii_indicator; /* Save a local copy of the registers we are dealing with so we can * set them back */ mii_addr = readl(&mac->mii_mgmt_addr); mii_cmd = readl(&mac->mii_mgmt_cmd); /* Stop the current operation */ writel(0, &mac->mii_mgmt_cmd); /* Set up the register we need to write to on the correct PHY */ writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); /* Add the value to write to the registers to the mac */ writel(value, &mac->mii_mgmt_ctrl); do { udelay(50); delay++; mii_indicator = readl(&mac->mii_mgmt_indicator); } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100); /* If we hit the max delay, we could not write the register */ if (delay == 100) { u16 tmp; dev_warn(&adapter->pdev->dev, "reg 0x%08x could not be written", reg); dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", mii_indicator); dev_warn(&adapter->pdev->dev, "command is 0x%08x\n", readl(&mac->mii_mgmt_cmd)); et131x_mii_read(adapter, reg, &tmp); status = -EIO; } /* Stop the write operation */ writel(0, &mac->mii_mgmt_cmd); /* set the registers we touched back to the state at which we entered * this function */ writel(mii_addr, &mac->mii_mgmt_addr); writel(mii_cmd, &mac->mii_mgmt_cmd); return status; } static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter, u16 regnum, u16 bitnum, u8 *value) { u16 reg; u16 mask = 1 << bitnum; et131x_mii_read(adapter, regnum, ®); *value = (reg & mask) >> bitnum; } static void et1310_config_flow_control(struct et131x_adapter *adapter) { struct phy_device *phydev = adapter->netdev->phydev; if (phydev->duplex == DUPLEX_HALF) { adapter->flow = FLOW_NONE; } else { char remote_pause, remote_async_pause; et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause); et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause); if (remote_pause && remote_async_pause) { adapter->flow = adapter->wanted_flow; } else if (remote_pause && !remote_async_pause) { if (adapter->wanted_flow == FLOW_BOTH) adapter->flow = FLOW_BOTH; else adapter->flow = FLOW_NONE; } else if (!remote_pause && !remote_async_pause) { adapter->flow = FLOW_NONE; } else { if (adapter->wanted_flow == FLOW_BOTH) adapter->flow = FLOW_RXONLY; else adapter->flow = FLOW_NONE; } } } /* et1310_update_macstat_host_counters - Update local copy of the statistics */ static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter) { struct ce_stats *stats = &adapter->stats; struct macstat_regs __iomem *macstat = &adapter->regs->macstat; stats->tx_collisions += readl(&macstat->tx_total_collisions); stats->tx_first_collisions += readl(&macstat->tx_single_collisions); stats->tx_deferred += readl(&macstat->tx_deferred); stats->tx_excessive_collisions += readl(&macstat->tx_multiple_collisions); stats->tx_late_collisions += readl(&macstat->tx_late_collisions); stats->tx_underflows += readl(&macstat->tx_undersize_frames); stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames); stats->rx_align_errs += readl(&macstat->rx_align_errs); stats->rx_crc_errs += readl(&macstat->rx_code_errs); stats->rcvd_pkts_dropped += readl(&macstat->rx_drops); stats->rx_overflows += readl(&macstat->rx_oversize_packets); stats->rx_code_violations += readl(&macstat->rx_fcs_errs); stats->rx_length_errs += readl(&macstat->rx_frame_len_errs); stats->rx_other_errs += readl(&macstat->rx_fragment_packets); } /* et1310_handle_macstat_interrupt * * One of the MACSTAT counters has wrapped. Update the local copy of * the statistics held in the adapter structure, checking the "wrap" * bit for each counter. */ static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter) { u32 carry_reg1; u32 carry_reg2; /* Read the interrupt bits from the register(s). These are Clear On * Write. */ carry_reg1 = readl(&adapter->regs->macstat.carry_reg1); carry_reg2 = readl(&adapter->regs->macstat.carry_reg2); writel(carry_reg1, &adapter->regs->macstat.carry_reg1); writel(carry_reg2, &adapter->regs->macstat.carry_reg2); /* We need to do update the host copy of all the MAC_STAT counters. * For each counter, check it's overflow bit. If the overflow bit is * set, then increment the host version of the count by one complete * revolution of the counter. This routine is called when the counter * block indicates that one of the counters has wrapped. */ if (carry_reg1 & (1 << 14)) adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT; if (carry_reg1 & (1 << 8)) adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT; if (carry_reg1 & (1 << 7)) adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT; if (carry_reg1 & (1 << 2)) adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT; if (carry_reg1 & (1 << 6)) adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT; if (carry_reg1 & (1 << 3)) adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT; if (carry_reg1 & (1 << 0)) adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT; if (carry_reg2 & (1 << 16)) adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT; if (carry_reg2 & (1 << 15)) adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT; if (carry_reg2 & (1 << 6)) adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT; if (carry_reg2 & (1 << 8)) adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT; if (carry_reg2 & (1 << 5)) adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT; if (carry_reg2 & (1 << 4)) adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT; if (carry_reg2 & (1 << 2)) adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT; } static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg) { struct net_device *netdev = bus->priv; struct et131x_adapter *adapter = netdev_priv(netdev); u16 value; int ret; ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value); if (ret < 0) return ret; return value; } static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value) { struct net_device *netdev = bus->priv; struct et131x_adapter *adapter = netdev_priv(netdev); return et131x_mii_write(adapter, phy_addr, reg, value); } /* et1310_phy_power_switch - PHY power control * @adapter: device to control * @down: true for off/false for back on * * one hundred, ten, one thousand megs * How would you like to have your LAN accessed * Can't you see that this code processed * Phy power, phy power.. */ static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down) { u16 data; struct phy_device *phydev = adapter->netdev->phydev; et131x_mii_read(adapter, MII_BMCR, &data); data &= ~BMCR_PDOWN; if (down) data |= BMCR_PDOWN; et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data); } /* et131x_xcvr_init - Init the phy if we are setting it into force mode */ static void et131x_xcvr_init(struct et131x_adapter *adapter) { u16 lcr2; struct phy_device *phydev = adapter->netdev->phydev; /* Set the LED behavior such that LED 1 indicates speed (off = * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates * link and activity (on for link, blink off for activity). * * NOTE: Some customizations have been added here for specific * vendors; The LED behavior is now determined by vendor data in the * EEPROM. However, the above description is the default. */ if ((adapter->eeprom_data[1] & 0x4) == 0) { et131x_mii_read(adapter, PHY_LED_2, &lcr2); lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T); lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT); if ((adapter->eeprom_data[1] & 0x8) == 0) lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT); else lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT); et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2); } } /* et131x_configure_global_regs - configure JAGCore global regs */ static void et131x_configure_global_regs(struct et131x_adapter *adapter) { struct global_regs __iomem *regs = &adapter->regs->global; writel(0, ®s->rxq_start_addr); writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr); if (adapter->registry_jumbo_packet < 2048) { /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word * block of RAM that the driver can split between Tx * and Rx as it desires. Our default is to split it * 50/50: */ writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr); writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr); } else if (adapter->registry_jumbo_packet < 8192) { /* For jumbo packets > 2k but < 8k, split 50-50. */ writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr); writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr); } else { /* 9216 is the only packet size greater than 8k that * is available. The Tx buffer has to be big enough * for one whole packet on the Tx side. We'll make * the Tx 9408, and give the rest to Rx */ writel(0x01b3, ®s->rxq_end_addr); writel(0x01b4, ®s->txq_start_addr); } /* Initialize the loopback register. Disable all loopbacks. */ writel(0, ®s->loopback); writel(0, ®s->msi_config); /* By default, disable the watchdog timer. It will be enabled when * a packet is queued. */ writel(0, ®s->watchdog_timer); } /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */ static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter) { struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; struct rx_ring *rx_local = &adapter->rx_ring; struct fbr_desc *fbr_entry; u32 entry; u32 psr_num_des; unsigned long flags; u8 id; et131x_rx_dma_disable(adapter); /* Load the completion writeback physical address */ writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi); writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo); memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block)); /* Set the address and parameters of the packet status ring */ writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi); writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo); writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des); writel(0, &rx_dma->psr_full_offset); psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK; writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100, &rx_dma->psr_min_des); spin_lock_irqsave(&adapter->rcv_lock, flags); /* These local variables track the PSR in the adapter structure */ rx_local->local_psr_full = 0; for (id = 0; id < NUM_FBRS; id++) { u32 __iomem *num_des; u32 __iomem *full_offset; u32 __iomem *min_des; u32 __iomem *base_hi; u32 __iomem *base_lo; struct fbr_lookup *fbr = rx_local->fbr[id]; if (id == 0) { num_des = &rx_dma->fbr0_num_des; full_offset = &rx_dma->fbr0_full_offset; min_des = &rx_dma->fbr0_min_des; base_hi = &rx_dma->fbr0_base_hi; base_lo = &rx_dma->fbr0_base_lo; } else { num_des = &rx_dma->fbr1_num_des; full_offset = &rx_dma->fbr1_full_offset; min_des = &rx_dma->fbr1_min_des; base_hi = &rx_dma->fbr1_base_hi; base_lo = &rx_dma->fbr1_base_lo; } /* Now's the best time to initialize FBR contents */ fbr_entry = fbr->ring_virtaddr; for (entry = 0; entry < fbr->num_entries; entry++) { fbr_entry->addr_hi = fbr->bus_high[entry]; fbr_entry->addr_lo = fbr->bus_low[entry]; fbr_entry->word2 = entry; fbr_entry++; } /* Set the address and parameters of Free buffer ring 1 and 0 */ writel(upper_32_bits(fbr->ring_physaddr), base_hi); writel(lower_32_bits(fbr->ring_physaddr), base_lo); writel(fbr->num_entries - 1, num_des); writel(ET_DMA10_WRAP, full_offset); /* This variable tracks the free buffer ring 1 full position, * so it has to match the above. */ fbr->local_full = ET_DMA10_WRAP; writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, min_des); } /* Program the number of packets we will receive before generating an * interrupt. * For version B silicon, this value gets updated once autoneg is *complete. */ writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done); /* The "time_done" is not working correctly to coalesce interrupts * after a given time period, but rather is giving us an interrupt * regardless of whether we have received packets. * This value gets updated once autoneg is complete. */ writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time); spin_unlock_irqrestore(&adapter->rcv_lock, flags); } /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore. * * Configure the transmit engine with the ring buffers we have created * and prepare it for use. */ static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter) { struct txdma_regs __iomem *txdma = &adapter->regs->txdma; struct tx_ring *tx_ring = &adapter->tx_ring; /* Load the hardware with the start of the transmit descriptor ring. */ writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi); writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo); /* Initialise the transmit DMA engine */ writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des); /* Load the completion writeback physical address */ writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi); writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo); *tx_ring->tx_status = 0; writel(0, &txdma->service_request); tx_ring->send_idx = 0; } /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */ static void et131x_adapter_setup(struct et131x_adapter *adapter) { et131x_configure_global_regs(adapter); et1310_config_mac_regs1(adapter); /* Configure the MMC registers */ /* All we need to do is initialize the Memory Control Register */ writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl); et1310_config_rxmac_regs(adapter); et1310_config_txmac_regs(adapter); et131x_config_rx_dma_regs(adapter); et131x_config_tx_dma_regs(adapter); et1310_config_macstat_regs(adapter); et1310_phy_power_switch(adapter, 0); et131x_xcvr_init(adapter); } /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */ static void et131x_soft_reset(struct et131x_adapter *adapter) { u32 reg; /* Disable MAC Core */ reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; writel(reg, &adapter->regs->mac.cfg1); reg = ET_RESET_ALL; writel(reg, &adapter->regs->global.sw_reset); reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; writel(reg, &adapter->regs->mac.cfg1); writel(0, &adapter->regs->mac.cfg1); } static void et131x_enable_interrupts(struct et131x_adapter *adapter) { u32 mask; if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) mask = INT_MASK_ENABLE; else mask = INT_MASK_ENABLE_NO_FLOW; writel(mask, &adapter->regs->global.int_mask); } static void et131x_disable_interrupts(struct et131x_adapter *adapter) { writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask); } static void et131x_tx_dma_disable(struct et131x_adapter *adapter) { /* Setup the transmit dma configuration register */ writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT, &adapter->regs->txdma.csr); } static void et131x_enable_txrx(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); et131x_rx_dma_enable(adapter); et131x_tx_dma_enable(adapter); if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE) et131x_enable_interrupts(adapter); netif_start_queue(netdev); } static void et131x_disable_txrx(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); netif_stop_queue(netdev); et131x_rx_dma_disable(adapter); et131x_tx_dma_disable(adapter); et131x_disable_interrupts(adapter); } static void et131x_init_send(struct et131x_adapter *adapter) { int i; struct tx_ring *tx_ring = &adapter->tx_ring; struct tcb *tcb = tx_ring->tcb_ring; tx_ring->tcb_qhead = tcb; memset(tcb, 0, sizeof(struct tcb) * NUM_TCB); for (i = 0; i < NUM_TCB; i++) { tcb->next = tcb + 1; tcb++; } tcb--; tx_ring->tcb_qtail = tcb; tcb->next = NULL; /* Curr send queue should now be empty */ tx_ring->send_head = NULL; tx_ring->send_tail = NULL; } /* et1310_enable_phy_coma * * driver receive an phy status change interrupt while in D0 and check that * phy_status is down. * * -- gate off JAGCore; * -- set gigE PHY in Coma mode * -- wake on phy_interrupt; Perform software reset JAGCore, * re-initialize jagcore and gigE PHY */ static void et1310_enable_phy_coma(struct et131x_adapter *adapter) { u32 pmcsr = readl(&adapter->regs->global.pm_csr); /* Stop sending packets. */ adapter->flags |= FMP_ADAPTER_LOWER_POWER; /* Wait for outstanding Receive packets */ et131x_disable_txrx(adapter->netdev); /* Gate off JAGCore 3 clock domains */ pmcsr &= ~ET_PMCSR_INIT; writel(pmcsr, &adapter->regs->global.pm_csr); /* Program gigE PHY in to Coma mode */ pmcsr |= ET_PM_PHY_SW_COMA; writel(pmcsr, &adapter->regs->global.pm_csr); } static void et1310_disable_phy_coma(struct et131x_adapter *adapter) { u32 pmcsr; pmcsr = readl(&adapter->regs->global.pm_csr); /* Disable phy_sw_coma register and re-enable JAGCore clocks */ pmcsr |= ET_PMCSR_INIT; pmcsr &= ~ET_PM_PHY_SW_COMA; writel(pmcsr, &adapter->regs->global.pm_csr); /* Restore the GbE PHY speed and duplex modes; * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY */ /* Re-initialize the send structures */ et131x_init_send(adapter); /* Bring the device back to the state it was during init prior to * autonegotiation being complete. This way, when we get the auto-neg * complete interrupt, we can complete init by calling ConfigMacREGS2. */ et131x_soft_reset(adapter); et131x_adapter_setup(adapter); /* Allow Tx to restart */ adapter->flags &= ~FMP_ADAPTER_LOWER_POWER; et131x_enable_txrx(adapter->netdev); } static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit) { u32 tmp_free_buff_ring = *free_buff_ring; tmp_free_buff_ring++; /* This works for all cases where limit < 1024. The 1023 case * works because 1023++ is 1024 which means the if condition is not * taken but the carry of the bit into the wrap bit toggles the wrap * value correctly */ if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) { tmp_free_buff_ring &= ~ET_DMA10_MASK; tmp_free_buff_ring ^= ET_DMA10_WRAP; } /* For the 1023 case */ tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP); *free_buff_ring = tmp_free_buff_ring; return tmp_free_buff_ring; } /* et131x_rx_dma_memory_alloc * * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required, * and the Packet Status Ring. */ static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter) { u8 id; u32 i, j; u32 bufsize; u32 psr_size; u32 fbr_chunksize; struct rx_ring *rx_ring = &adapter->rx_ring; struct fbr_lookup *fbr; /* Alloc memory for the lookup table */ rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL); if (rx_ring->fbr[0] == NULL) return -ENOMEM; rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL); if (rx_ring->fbr[1] == NULL) return -ENOMEM; /* The first thing we will do is configure the sizes of the buffer * rings. These will change based on jumbo packet support. Larger * jumbo packets increases the size of each entry in FBR0, and the * number of entries in FBR0, while at the same time decreasing the * number of entries in FBR1. * * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1 * entries are huge in order to accommodate a "jumbo" frame, then it * will have less entries. Conversely, FBR1 will now be relied upon * to carry more "normal" frames, thus it's entry size also increases * and the number of entries goes up too (since it now carries * "small" + "regular" packets. * * In this scheme, we try to maintain 512 entries between the two * rings. Also, FBR1 remains a constant size - when it's size doubles * the number of entries halves. FBR0 increases in size, however. */ if (adapter->registry_jumbo_packet < 2048) { rx_ring->fbr[0]->buffsize = 256; rx_ring->fbr[0]->num_entries = 512; rx_ring->fbr[1]->buffsize = 2048; rx_ring->fbr[1]->num_entries = 512; } else if (adapter->registry_jumbo_packet < 4096) { rx_ring->fbr[0]->buffsize = 512; rx_ring->fbr[0]->num_entries = 1024; rx_ring->fbr[1]->buffsize = 4096; rx_ring->fbr[1]->num_entries = 512; } else { rx_ring->fbr[0]->buffsize = 1024; rx_ring->fbr[0]->num_entries = 768; rx_ring->fbr[1]->buffsize = 16384; rx_ring->fbr[1]->num_entries = 128; } rx_ring->psr_entries = rx_ring->fbr[0]->num_entries + rx_ring->fbr[1]->num_entries; for (id = 0; id < NUM_FBRS; id++) { fbr = rx_ring->fbr[id]; /* Allocate an area of memory for Free Buffer Ring */ bufsize = sizeof(struct fbr_desc) * fbr->num_entries; fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, bufsize, &fbr->ring_physaddr, GFP_KERNEL); if (!fbr->ring_virtaddr) { dev_err(&adapter->pdev->dev, "Cannot alloc memory for Free Buffer Ring %d\n", id); return -ENOMEM; } } for (id = 0; id < NUM_FBRS; id++) { fbr = rx_ring->fbr[id]; fbr_chunksize = (FBR_CHUNKS * fbr->buffsize); for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) { dma_addr_t fbr_physaddr; fbr->mem_virtaddrs[i] = dma_alloc_coherent( &adapter->pdev->dev, fbr_chunksize, &fbr->mem_physaddrs[i], GFP_KERNEL); if (!fbr->mem_virtaddrs[i]) { dev_err(&adapter->pdev->dev, "Could not alloc memory\n"); return -ENOMEM; } /* See NOTE in "Save Physical Address" comment above */ fbr_physaddr = fbr->mem_physaddrs[i]; for (j = 0; j < FBR_CHUNKS; j++) { u32 k = (i * FBR_CHUNKS) + j; /* Save the Virtual address of this index for * quick access later */ fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] + (j * fbr->buffsize); /* now store the physical address in the * descriptor so the device can access it */ fbr->bus_high[k] = upper_32_bits(fbr_physaddr); fbr->bus_low[k] = lower_32_bits(fbr_physaddr); fbr_physaddr += fbr->buffsize; } } } /* Allocate an area of memory for FIFO of Packet Status ring entries */ psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, psr_size, &rx_ring->ps_ring_physaddr, GFP_KERNEL); if (!rx_ring->ps_ring_virtaddr) { dev_err(&adapter->pdev->dev, "Cannot alloc memory for Packet Status Ring\n"); return -ENOMEM; } /* Allocate an area of memory for writeback of status information */ rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev, sizeof(struct rx_status_block), &rx_ring->rx_status_bus, GFP_KERNEL); if (!rx_ring->rx_status_block) { dev_err(&adapter->pdev->dev, "Cannot alloc memory for Status Block\n"); return -ENOMEM; } rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD; /* The RFDs are going to be put on lists later on, so initialize the * lists now. */ INIT_LIST_HEAD(&rx_ring->recv_list); return 0; } static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter) { u8 id; u32 ii; u32 bufsize; u32 psr_size; struct rfd *rfd; struct rx_ring *rx_ring = &adapter->rx_ring; struct fbr_lookup *fbr; /* Free RFDs and associated packet descriptors */ WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd); while (!list_empty(&rx_ring->recv_list)) { rfd = list_entry(rx_ring->recv_list.next, struct rfd, list_node); list_del(&rfd->list_node); rfd->skb = NULL; kfree(rfd); } /* Free Free Buffer Rings */ for (id = 0; id < NUM_FBRS; id++) { fbr = rx_ring->fbr[id]; if (!fbr || !fbr->ring_virtaddr) continue; /* First the packet memory */ for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) { if (fbr->mem_virtaddrs[ii]) { bufsize = fbr->buffsize * FBR_CHUNKS; dma_free_coherent(&adapter->pdev->dev, bufsize, fbr->mem_virtaddrs[ii], fbr->mem_physaddrs[ii]); fbr->mem_virtaddrs[ii] = NULL; } } bufsize = sizeof(struct fbr_desc) * fbr->num_entries; dma_free_coherent(&adapter->pdev->dev, bufsize, fbr->ring_virtaddr, fbr->ring_physaddr); fbr->ring_virtaddr = NULL; } /* Free Packet Status Ring */ if (rx_ring->ps_ring_virtaddr) { psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; dma_free_coherent(&adapter->pdev->dev, psr_size, rx_ring->ps_ring_virtaddr, rx_ring->ps_ring_physaddr); rx_ring->ps_ring_virtaddr = NULL; } /* Free area of memory for the writeback of status information */ if (rx_ring->rx_status_block) { dma_free_coherent(&adapter->pdev->dev, sizeof(struct rx_status_block), rx_ring->rx_status_block, rx_ring->rx_status_bus); rx_ring->rx_status_block = NULL; } /* Free the FBR Lookup Table */ kfree(rx_ring->fbr[0]); kfree(rx_ring->fbr[1]); /* Reset Counters */ rx_ring->num_ready_recv = 0; } /* et131x_init_recv - Initialize receive data structures */ static int et131x_init_recv(struct et131x_adapter *adapter) { struct rfd *rfd; u32 rfdct; struct rx_ring *rx_ring = &adapter->rx_ring; /* Setup each RFD */ for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) { rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA); if (!rfd) return -ENOMEM; rfd->skb = NULL; /* Add this RFD to the recv_list */ list_add_tail(&rfd->list_node, &rx_ring->recv_list); /* Increment the available RFD's */ rx_ring->num_ready_recv++; } return 0; } /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */ static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter) { struct phy_device *phydev = adapter->netdev->phydev; /* For version B silicon, we do not use the RxDMA timer for 10 and 100 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing. */ if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) { writel(0, &adapter->regs->rxdma.max_pkt_time); writel(1, &adapter->regs->rxdma.num_pkt_done); } } /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */ static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd) { struct rx_ring *rx_local = &adapter->rx_ring; struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; u16 buff_index = rfd->bufferindex; u8 ring_index = rfd->ringindex; unsigned long flags; struct fbr_lookup *fbr = rx_local->fbr[ring_index]; /* We don't use any of the OOB data besides status. Otherwise, we * need to clean up OOB data */ if (buff_index < fbr->num_entries) { u32 free_buff_ring; u32 __iomem *offset; struct fbr_desc *next; if (ring_index == 0) offset = &rx_dma->fbr0_full_offset; else offset = &rx_dma->fbr1_full_offset; next = (struct fbr_desc *)(fbr->ring_virtaddr) + INDEX10(fbr->local_full); /* Handle the Free Buffer Ring advancement here. Write * the PA / Buffer Index for the returned buffer into * the oldest (next to be freed)FBR entry */ next->addr_hi = fbr->bus_high[buff_index]; next->addr_lo = fbr->bus_low[buff_index]; next->word2 = buff_index; free_buff_ring = bump_free_buff_ring(&fbr->local_full, fbr->num_entries - 1); writel(free_buff_ring, offset); } else { dev_err(&adapter->pdev->dev, "%s illegal Buffer Index returned\n", __func__); } /* The processing on this RFD is done, so put it back on the tail of * our list */ spin_lock_irqsave(&adapter->rcv_lock, flags); list_add_tail(&rfd->list_node, &rx_local->recv_list); rx_local->num_ready_recv++; spin_unlock_irqrestore(&adapter->rcv_lock, flags); WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd); } /* nic_rx_pkts - Checks the hardware for available packets * * Checks the hardware for available packets, using completion ring * If packets are available, it gets an RFD from the recv_list, attaches * the packet to it, puts the RFD in the RecvPendList, and also returns * the pointer to the RFD. */ static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter) { struct rx_ring *rx_local = &adapter->rx_ring; struct rx_status_block *status; struct pkt_stat_desc *psr; struct rfd *rfd; unsigned long flags; struct list_head *element; u8 ring_index; u16 buff_index; u32 len; u32 word0; u32 word1; struct sk_buff *skb; struct fbr_lookup *fbr; /* RX Status block is written by the DMA engine prior to every * interrupt. It contains the next to be used entry in the Packet * Status Ring, and also the two Free Buffer rings. */ status = rx_local->rx_status_block; word1 = status->word1 >> 16; /* Check the PSR and wrap bits do not match */ if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF)) return NULL; /* Looks like this ring is not updated yet */ /* The packet status ring indicates that data is available. */ psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) + (rx_local->local_psr_full & 0xFFF); /* Grab any information that is required once the PSR is advanced, * since we can no longer rely on the memory being accurate */ len = psr->word1 & 0xFFFF; ring_index = (psr->word1 >> 26) & 0x03; fbr = rx_local->fbr[ring_index]; buff_index = (psr->word1 >> 16) & 0x3FF; word0 = psr->word0; /* Indicate that we have used this PSR entry. */ /* FIXME wrap 12 */ add_12bit(&rx_local->local_psr_full, 1); if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) { /* Clear psr full and toggle the wrap bit */ rx_local->local_psr_full &= ~0xFFF; rx_local->local_psr_full ^= 0x1000; } writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset); if (ring_index > 1 || buff_index > fbr->num_entries - 1) { /* Illegal buffer or ring index cannot be used by S/W*/ dev_err(&adapter->pdev->dev, "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n", rx_local->local_psr_full & 0xFFF, len, buff_index); return NULL; } /* Get and fill the RFD. */ spin_lock_irqsave(&adapter->rcv_lock, flags); element = rx_local->recv_list.next; rfd = list_entry(element, struct rfd, list_node); if (!rfd) { spin_unlock_irqrestore(&adapter->rcv_lock, flags); return NULL; } list_del(&rfd->list_node); rx_local->num_ready_recv--; spin_unlock_irqrestore(&adapter->rcv_lock, flags); rfd->bufferindex = buff_index; rfd->ringindex = ring_index; /* In V1 silicon, there is a bug which screws up filtering of runt * packets. Therefore runt packet filtering is disabled in the MAC and * the packets are dropped here. They are also counted here. */ if (len < (NIC_MIN_PACKET_SIZE + 4)) { adapter->stats.rx_other_errs++; rfd->len = 0; goto out; } if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT)) adapter->stats.multicast_pkts_rcvd++; rfd->len = len; skb = dev_alloc_skb(rfd->len + 2); if (!skb) return NULL; adapter->netdev->stats.rx_bytes += rfd->len; skb_put_data(skb, fbr->virt[buff_index], rfd->len); skb->protocol = eth_type_trans(skb, adapter->netdev); skb->ip_summed = CHECKSUM_NONE; netif_receive_skb(skb); out: nic_return_rfd(adapter, rfd); return rfd; } static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget) { struct rfd *rfd = NULL; int count = 0; int limit = budget; bool done = true; struct rx_ring *rx_ring = &adapter->rx_ring; if (budget > MAX_PACKETS_HANDLED) limit = MAX_PACKETS_HANDLED; /* Process up to available RFD's */ while (count < limit) { if (list_empty(&rx_ring->recv_list)) { WARN_ON(rx_ring->num_ready_recv != 0); done = false; break; } rfd = nic_rx_pkts(adapter); if (rfd == NULL) break; /* Do not receive any packets until a filter has been set. * Do not receive any packets until we have link. * If length is zero, return the RFD in order to advance the * Free buffer ring. */ if (!adapter->packet_filter || !netif_carrier_ok(adapter->netdev) || rfd->len == 0) continue; adapter->netdev->stats.rx_packets++; if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK) dev_warn(&adapter->pdev->dev, "RFD's are running out\n"); count++; } if (count == limit || !done) { rx_ring->unfinished_receives = true; writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, &adapter->regs->global.watchdog_timer); } else { /* Watchdog timer will disable itself if appropriate. */ rx_ring->unfinished_receives = false; } return count; } /* et131x_tx_dma_memory_alloc * * Allocates memory that will be visible both to the device and to the CPU. * The OS will pass us packets, pointers to which we will insert in the Tx * Descriptor queue. The device will read this queue to find the packets in * memory. The device will update the "status" in memory each time it xmits a * packet. */ static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter) { int desc_size = 0; struct tx_ring *tx_ring = &adapter->tx_ring; /* Allocate memory for the TCB's (Transmit Control Block) */ tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA); if (!tx_ring->tcb_ring) return -ENOMEM; desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev, desc_size, &tx_ring->tx_desc_ring_pa, GFP_KERNEL); if (!tx_ring->tx_desc_ring) { dev_err(&adapter->pdev->dev, "Cannot alloc memory for Tx Ring\n"); return -ENOMEM; } tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev, sizeof(u32), &tx_ring->tx_status_pa, GFP_KERNEL); if (!tx_ring->tx_status) { dev_err(&adapter->pdev->dev, "Cannot alloc memory for Tx status block\n"); return -ENOMEM; } return 0; } static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter) { int desc_size = 0; struct tx_ring *tx_ring = &adapter->tx_ring; if (tx_ring->tx_desc_ring) { /* Free memory relating to Tx rings here */ desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); dma_free_coherent(&adapter->pdev->dev, desc_size, tx_ring->tx_desc_ring, tx_ring->tx_desc_ring_pa); tx_ring->tx_desc_ring = NULL; } /* Free memory for the Tx status block */ if (tx_ring->tx_status) { dma_free_coherent(&adapter->pdev->dev, sizeof(u32), tx_ring->tx_status, tx_ring->tx_status_pa); tx_ring->tx_status = NULL; } /* Free the memory for the tcb structures */ kfree(tx_ring->tcb_ring); } /* nic_send_packet - NIC specific send handler for version B silicon. */ static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb) { u32 i; struct tx_desc desc[24]; u32 frag = 0; u32 thiscopy, remainder; struct sk_buff *skb = tcb->skb; u32 nr_frags = skb_shinfo(skb)->nr_frags + 1; struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0]; struct phy_device *phydev = adapter->netdev->phydev; dma_addr_t dma_addr; struct tx_ring *tx_ring = &adapter->tx_ring; /* Part of the optimizations of this send routine restrict us to * sending 24 fragments at a pass. In practice we should never see * more than 5 fragments. */ /* nr_frags should be no more than 18. */ BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23); memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1)); for (i = 0; i < nr_frags; i++) { /* If there is something in this element, lets get a * descriptor from the ring and get the necessary data */ if (i == 0) { /* If the fragments are smaller than a standard MTU, * then map them to a single descriptor in the Tx * Desc ring. However, if they're larger, as is * possible with support for jumbo packets, then * split them each across 2 descriptors. * * This will work until we determine why the hardware * doesn't seem to like large fragments. */ if (skb_headlen(skb) <= 1514) { /* Low 16bits are length, high is vlan and * unused currently so zero */ desc[frag].len_vlan = skb_headlen(skb); dma_addr = dma_map_single(&adapter->pdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); desc[frag].addr_lo = lower_32_bits(dma_addr); desc[frag].addr_hi = upper_32_bits(dma_addr); frag++; } else { desc[frag].len_vlan = skb_headlen(skb) / 2; dma_addr = dma_map_single(&adapter->pdev->dev, skb->data, skb_headlen(skb) / 2, DMA_TO_DEVICE); desc[frag].addr_lo = lower_32_bits(dma_addr); desc[frag].addr_hi = upper_32_bits(dma_addr); frag++; desc[frag].len_vlan = skb_headlen(skb) / 2; dma_addr = dma_map_single(&adapter->pdev->dev, skb->data + skb_headlen(skb) / 2, skb_headlen(skb) / 2, DMA_TO_DEVICE); desc[frag].addr_lo = lower_32_bits(dma_addr); desc[frag].addr_hi = upper_32_bits(dma_addr); frag++; } } else { desc[frag].len_vlan = frags[i - 1].size; dma_addr = skb_frag_dma_map(&adapter->pdev->dev, &frags[i - 1], 0, frags[i - 1].size, DMA_TO_DEVICE); desc[frag].addr_lo = lower_32_bits(dma_addr); desc[frag].addr_hi = upper_32_bits(dma_addr); frag++; } } if (phydev && phydev->speed == SPEED_1000) { if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) { /* Last element & Interrupt flag */ desc[frag - 1].flags = TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; tx_ring->since_irq = 0; } else { /* Last element */ desc[frag - 1].flags = TXDESC_FLAG_LASTPKT; } } else { desc[frag - 1].flags = TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; } desc[0].flags |= TXDESC_FLAG_FIRSTPKT; tcb->index_start = tx_ring->send_idx; tcb->stale = 0; thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx); if (thiscopy >= frag) { remainder = 0; thiscopy = frag; } else { remainder = frag - thiscopy; } memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx), desc, sizeof(struct tx_desc) * thiscopy); add_10bit(&tx_ring->send_idx, thiscopy); if (INDEX10(tx_ring->send_idx) == 0 || INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) { tx_ring->send_idx &= ~ET_DMA10_MASK; tx_ring->send_idx ^= ET_DMA10_WRAP; } if (remainder) { memcpy(tx_ring->tx_desc_ring, desc + thiscopy, sizeof(struct tx_desc) * remainder); add_10bit(&tx_ring->send_idx, remainder); } if (INDEX10(tx_ring->send_idx) == 0) { if (tx_ring->send_idx) tcb->index = NUM_DESC_PER_RING_TX - 1; else tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1); } else { tcb->index = tx_ring->send_idx - 1; } spin_lock(&adapter->tcb_send_qlock); if (tx_ring->send_tail) tx_ring->send_tail->next = tcb; else tx_ring->send_head = tcb; tx_ring->send_tail = tcb; WARN_ON(tcb->next != NULL); tx_ring->used++; spin_unlock(&adapter->tcb_send_qlock); /* Write the new write pointer back to the device. */ writel(tx_ring->send_idx, &adapter->regs->txdma.service_request); /* For Gig only, we use Tx Interrupt coalescing. Enable the software * timer to wake us up if this packet isn't followed by N more. */ if (phydev && phydev->speed == SPEED_1000) { writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, &adapter->regs->global.watchdog_timer); } return 0; } static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter) { int status; struct tcb *tcb; unsigned long flags; struct tx_ring *tx_ring = &adapter->tx_ring; /* All packets must have at least a MAC address and a protocol type */ if (skb->len < ETH_HLEN) return -EIO; spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); tcb = tx_ring->tcb_qhead; if (tcb == NULL) { spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); return -ENOMEM; } tx_ring->tcb_qhead = tcb->next; if (tx_ring->tcb_qhead == NULL) tx_ring->tcb_qtail = NULL; spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); tcb->skb = skb; tcb->next = NULL; status = nic_send_packet(adapter, tcb); if (status != 0) { spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); if (tx_ring->tcb_qtail) tx_ring->tcb_qtail->next = tcb; else /* Apparently ready Q is empty. */ tx_ring->tcb_qhead = tcb; tx_ring->tcb_qtail = tcb; spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); return status; } WARN_ON(tx_ring->used > NUM_TCB); return 0; } /* free_send_packet - Recycle a struct tcb */ static inline void free_send_packet(struct et131x_adapter *adapter, struct tcb *tcb) { unsigned long flags; struct tx_desc *desc = NULL; struct net_device_stats *stats = &adapter->netdev->stats; struct tx_ring *tx_ring = &adapter->tx_ring; u64 dma_addr; if (tcb->skb) { stats->tx_bytes += tcb->skb->len; /* Iterate through the TX descriptors on the ring * corresponding to this packet and umap the fragments * they point to */ do { desc = tx_ring->tx_desc_ring + INDEX10(tcb->index_start); dma_addr = desc->addr_lo; dma_addr |= (u64)desc->addr_hi << 32; dma_unmap_single(&adapter->pdev->dev, dma_addr, desc->len_vlan, DMA_TO_DEVICE); add_10bit(&tcb->index_start, 1); if (INDEX10(tcb->index_start) >= NUM_DESC_PER_RING_TX) { tcb->index_start &= ~ET_DMA10_MASK; tcb->index_start ^= ET_DMA10_WRAP; } } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index)); dev_kfree_skb_any(tcb->skb); } memset(tcb, 0, sizeof(struct tcb)); /* Add the TCB to the Ready Q */ spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); stats->tx_packets++; if (tx_ring->tcb_qtail) tx_ring->tcb_qtail->next = tcb; else /* Apparently ready Q is empty. */ tx_ring->tcb_qhead = tcb; tx_ring->tcb_qtail = tcb; spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); WARN_ON(tx_ring->used < 0); } /* et131x_free_busy_send_packets - Free and complete the stopped active sends */ static void et131x_free_busy_send_packets(struct et131x_adapter *adapter) { struct tcb *tcb; unsigned long flags; u32 freed = 0; struct tx_ring *tx_ring = &adapter->tx_ring; /* Any packets being sent? Check the first TCB on the send list */ spin_lock_irqsave(&adapter->tcb_send_qlock, flags); tcb = tx_ring->send_head; while (tcb != NULL && freed < NUM_TCB) { struct tcb *next = tcb->next; tx_ring->send_head = next; if (next == NULL) tx_ring->send_tail = NULL; tx_ring->used--; spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); freed++; free_send_packet(adapter, tcb); spin_lock_irqsave(&adapter->tcb_send_qlock, flags); tcb = tx_ring->send_head; } WARN_ON(freed == NUM_TCB); spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); tx_ring->used = 0; } /* et131x_handle_send_pkts * * Re-claim the send resources, complete sends and get more to send from * the send wait queue. */ static void et131x_handle_send_pkts(struct et131x_adapter *adapter) { unsigned long flags; u32 serviced; struct tcb *tcb; u32 index; struct tx_ring *tx_ring = &adapter->tx_ring; serviced = readl(&adapter->regs->txdma.new_service_complete); index = INDEX10(serviced); /* Has the ring wrapped? Process any descriptors that do not have * the same "wrap" indicator as the current completion indicator */ spin_lock_irqsave(&adapter->tcb_send_qlock, flags); tcb = tx_ring->send_head; while (tcb && ((serviced ^ tcb->index) & ET_DMA10_WRAP) && index < INDEX10(tcb->index)) { tx_ring->used--; tx_ring->send_head = tcb->next; if (tcb->next == NULL) tx_ring->send_tail = NULL; spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); free_send_packet(adapter, tcb); spin_lock_irqsave(&adapter->tcb_send_qlock, flags); /* Goto the next packet */ tcb = tx_ring->send_head; } while (tcb && !((serviced ^ tcb->index) & ET_DMA10_WRAP) && index > (tcb->index & ET_DMA10_MASK)) { tx_ring->used--; tx_ring->send_head = tcb->next; if (tcb->next == NULL) tx_ring->send_tail = NULL; spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); free_send_packet(adapter, tcb); spin_lock_irqsave(&adapter->tcb_send_qlock, flags); /* Goto the next packet */ tcb = tx_ring->send_head; } /* Wake up the queue when we hit a low-water mark */ if (tx_ring->used <= NUM_TCB / 3) netif_wake_queue(adapter->netdev); spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); } static int et131x_get_regs_len(struct net_device *netdev) { #define ET131X_REGS_LEN 256 return ET131X_REGS_LEN * sizeof(u32); } static void et131x_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *regs_data) { struct et131x_adapter *adapter = netdev_priv(netdev); struct address_map __iomem *aregs = adapter->regs; u32 *regs_buff = regs_data; u32 num = 0; u16 tmp; memset(regs_data, 0, et131x_get_regs_len(netdev)); regs->version = (1 << 24) | (adapter->pdev->revision << 16) | adapter->pdev->device; /* PHY regs */ et131x_mii_read(adapter, MII_BMCR, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_BMSR, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_PHYSID1, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_PHYSID2, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_ADVERTISE, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_LPA, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_EXPANSION, &tmp); regs_buff[num++] = tmp; /* Autoneg next page transmit reg */ et131x_mii_read(adapter, 0x07, &tmp); regs_buff[num++] = tmp; /* Link partner next page reg */ et131x_mii_read(adapter, 0x08, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_CTRL1000, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_STAT1000, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, 0x0b, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, 0x0c, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_MMD_CTRL, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_MMD_DATA, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, MII_ESTATUS, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_INDEX_REG, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_DATA_REG, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_CONFIG, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_LED_1, &tmp); regs_buff[num++] = tmp; et131x_mii_read(adapter, PHY_LED_2, &tmp); regs_buff[num++] = tmp; /* Global regs */ regs_buff[num++] = readl(&aregs->global.txq_start_addr); regs_buff[num++] = readl(&aregs->global.txq_end_addr); regs_buff[num++] = readl(&aregs->global.rxq_start_addr); regs_buff[num++] = readl(&aregs->global.rxq_end_addr); regs_buff[num++] = readl(&aregs->global.pm_csr); regs_buff[num++] = adapter->stats.interrupt_status; regs_buff[num++] = readl(&aregs->global.int_mask); regs_buff[num++] = readl(&aregs->global.int_alias_clr_en); regs_buff[num++] = readl(&aregs->global.int_status_alias); regs_buff[num++] = readl(&aregs->global.sw_reset); regs_buff[num++] = readl(&aregs->global.slv_timer); regs_buff[num++] = readl(&aregs->global.msi_config); regs_buff[num++] = readl(&aregs->global.loopback); regs_buff[num++] = readl(&aregs->global.watchdog_timer); /* TXDMA regs */ regs_buff[num++] = readl(&aregs->txdma.csr); regs_buff[num++] = readl(&aregs->txdma.pr_base_hi); regs_buff[num++] = readl(&aregs->txdma.pr_base_lo); regs_buff[num++] = readl(&aregs->txdma.pr_num_des); regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr); regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext); regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr); regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi); regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo); regs_buff[num++] = readl(&aregs->txdma.service_request); regs_buff[num++] = readl(&aregs->txdma.service_complete); regs_buff[num++] = readl(&aregs->txdma.cache_rd_index); regs_buff[num++] = readl(&aregs->txdma.cache_wr_index); regs_buff[num++] = readl(&aregs->txdma.tx_dma_error); regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt); regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt); regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt); regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt); regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt); regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt); regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt); regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt); regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt); regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt); regs_buff[num++] = readl(&aregs->txdma.new_service_complete); regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt); /* RXDMA regs */ regs_buff[num++] = readl(&aregs->rxdma.csr); regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi); regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo); regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done); regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time); regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr); regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext); regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr); regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi); regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo); regs_buff[num++] = readl(&aregs->rxdma.psr_num_des); regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset); regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset); regs_buff[num++] = readl(&aregs->rxdma.psr_access_index); regs_buff[num++] = readl(&aregs->rxdma.psr_min_des); regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo); regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi); regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des); regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset); regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset); regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index); regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des); regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo); regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi); regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des); regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset); regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset); regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index); regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des); } static void et131x_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct et131x_adapter *adapter = netdev_priv(netdev); strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); strlcpy(info->bus_info, pci_name(adapter->pdev), sizeof(info->bus_info)); } static const struct ethtool_ops et131x_ethtool_ops = { .get_drvinfo = et131x_get_drvinfo, .get_regs_len = et131x_get_regs_len, .get_regs = et131x_get_regs, .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; /* et131x_hwaddr_init - set up the MAC Address */ static void et131x_hwaddr_init(struct et131x_adapter *adapter) { /* If have our default mac from init and no mac address from * EEPROM then we need to generate the last octet and set it on the * device */ if (is_zero_ether_addr(adapter->rom_addr)) { /* We need to randomly generate the last octet so we * decrease our chances of setting the mac address to * same as another one of our cards in the system */ get_random_bytes(&adapter->addr[5], 1); /* We have the default value in the register we are * working with so we need to copy the current * address into the permanent address */ ether_addr_copy(adapter->rom_addr, adapter->addr); } else { /* We do not have an override address, so set the * current address to the permanent address and add * it to the device */ ether_addr_copy(adapter->addr, adapter->rom_addr); } } static int et131x_pci_init(struct et131x_adapter *adapter, struct pci_dev *pdev) { u16 max_payload; int i, rc; rc = et131x_init_eeprom(adapter); if (rc < 0) goto out; if (!pci_is_pcie(pdev)) { dev_err(&pdev->dev, "Missing PCIe capabilities\n"); goto err_out; } /* Program the Ack/Nak latency and replay timers */ max_payload = pdev->pcie_mpss; if (max_payload < 2) { static const u16 acknak[2] = { 0x76, 0xD0 }; static const u16 replay[2] = { 0x1E0, 0x2ED }; if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK, acknak[max_payload])) { dev_err(&pdev->dev, "Could not write PCI config space for ACK/NAK\n"); goto err_out; } if (pci_write_config_word(pdev, ET1310_PCI_REPLAY, replay[max_payload])) { dev_err(&pdev->dev, "Could not write PCI config space for Replay Timer\n"); goto err_out; } } /* l0s and l1 latency timers. We are using default values. * Representing 001 for L0s and 010 for L1 */ if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) { dev_err(&pdev->dev, "Could not write PCI config space for Latency Timers\n"); goto err_out; } /* Change the max read size to 2k */ if (pcie_set_readrq(pdev, 2048)) { dev_err(&pdev->dev, "Couldn't change PCI config space for Max read size\n"); goto err_out; } /* Get MAC address from config space if an eeprom exists, otherwise * the MAC address there will not be valid */ if (!adapter->has_eeprom) { et131x_hwaddr_init(adapter); return 0; } for (i = 0; i < ETH_ALEN; i++) { if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i, adapter->rom_addr + i)) { dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n"); goto err_out; } } ether_addr_copy(adapter->addr, adapter->rom_addr); out: return rc; err_out: rc = -EIO; goto out; } /* et131x_error_timer_handler * @data: timer-specific variable; here a pointer to our adapter structure * * The routine called when the error timer expires, to track the number of * recurring errors. */ static void et131x_error_timer_handler(struct timer_list *t) { struct et131x_adapter *adapter = from_timer(adapter, t, error_timer); struct phy_device *phydev = adapter->netdev->phydev; if (et1310_in_phy_coma(adapter)) { /* Bring the device immediately out of coma, to * prevent it from sleeping indefinitely, this * mechanism could be improved! */ et1310_disable_phy_coma(adapter); adapter->boot_coma = 20; } else { et1310_update_macstat_host_counters(adapter); } if (!phydev->link && adapter->boot_coma < 11) adapter->boot_coma++; if (adapter->boot_coma == 10) { if (!phydev->link) { if (!et1310_in_phy_coma(adapter)) { /* NOTE - This was originally a 'sync with * interrupt'. How to do that under Linux? */ et131x_enable_interrupts(adapter); et1310_enable_phy_coma(adapter); } } } /* This is a periodic timer, so reschedule */ mod_timer(&adapter->error_timer, jiffies + msecs_to_jiffies(TX_ERROR_PERIOD)); } static void et131x_adapter_memory_free(struct et131x_adapter *adapter) { et131x_tx_dma_memory_free(adapter); et131x_rx_dma_memory_free(adapter); } static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter) { int status; status = et131x_tx_dma_memory_alloc(adapter); if (status) { dev_err(&adapter->pdev->dev, "et131x_tx_dma_memory_alloc FAILED\n"); et131x_tx_dma_memory_free(adapter); return status; } status = et131x_rx_dma_memory_alloc(adapter); if (status) { dev_err(&adapter->pdev->dev, "et131x_rx_dma_memory_alloc FAILED\n"); et131x_adapter_memory_free(adapter); return status; } status = et131x_init_recv(adapter); if (status) { dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n"); et131x_adapter_memory_free(adapter); } return status; } static void et131x_adjust_link(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; if (!phydev) return; if (phydev->link == adapter->link) return; /* Check to see if we are in coma mode and if * so, disable it because we will not be able * to read PHY values until we are out. */ if (et1310_in_phy_coma(adapter)) et1310_disable_phy_coma(adapter); adapter->link = phydev->link; phy_print_status(phydev); if (phydev->link) { adapter->boot_coma = 20; if (phydev->speed == SPEED_10) { u16 register18; et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, ®ister18); et131x_mii_write(adapter, phydev->mdio.addr, PHY_MPHY_CONTROL_REG, register18 | 0x4); et131x_mii_write(adapter, phydev->mdio.addr, PHY_INDEX_REG, register18 | 0x8402); et131x_mii_write(adapter, phydev->mdio.addr, PHY_DATA_REG, register18 | 511); et131x_mii_write(adapter, phydev->mdio.addr, PHY_MPHY_CONTROL_REG, register18); } et1310_config_flow_control(adapter); if (phydev->speed == SPEED_1000 && adapter->registry_jumbo_packet > 2048) { u16 reg; et131x_mii_read(adapter, PHY_CONFIG, ®); reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH; reg |= ET_PHY_CONFIG_FIFO_DEPTH_32; et131x_mii_write(adapter, phydev->mdio.addr, PHY_CONFIG, reg); } et131x_set_rx_dma_timer(adapter); et1310_config_mac_regs2(adapter); } else { adapter->boot_coma = 0; if (phydev->speed == SPEED_10) { u16 register18; et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, ®ister18); et131x_mii_write(adapter, phydev->mdio.addr, PHY_MPHY_CONTROL_REG, register18 | 0x4); et131x_mii_write(adapter, phydev->mdio.addr, PHY_INDEX_REG, register18 | 0x8402); et131x_mii_write(adapter, phydev->mdio.addr, PHY_DATA_REG, register18 | 511); et131x_mii_write(adapter, phydev->mdio.addr, PHY_MPHY_CONTROL_REG, register18); } et131x_free_busy_send_packets(adapter); et131x_init_send(adapter); /* Bring the device back to the state it was during * init prior to autonegotiation being complete. This * way, when we get the auto-neg complete interrupt, * we can complete init by calling config_mac_regs2. */ et131x_soft_reset(adapter); et131x_adapter_setup(adapter); et131x_disable_txrx(netdev); et131x_enable_txrx(netdev); } } static int et131x_mii_probe(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); struct phy_device *phydev = NULL; phydev = phy_find_first(adapter->mii_bus); if (!phydev) { dev_err(&adapter->pdev->dev, "no PHY found\n"); return -ENODEV; } phydev = phy_connect(netdev, phydev_name(phydev), &et131x_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { dev_err(&adapter->pdev->dev, "Could not attach to PHY\n"); return PTR_ERR(phydev); } phy_set_max_speed(phydev, SPEED_100); if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST) phy_set_max_speed(phydev, SPEED_1000); phydev->autoneg = AUTONEG_ENABLE; phy_attached_info(phydev); return 0; } static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev, struct pci_dev *pdev) { static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 }; struct et131x_adapter *adapter; adapter = netdev_priv(netdev); adapter->pdev = pci_dev_get(pdev); adapter->netdev = netdev; spin_lock_init(&adapter->tcb_send_qlock); spin_lock_init(&adapter->tcb_ready_qlock); spin_lock_init(&adapter->rcv_lock); adapter->registry_jumbo_packet = 1514; /* 1514-9216 */ ether_addr_copy(adapter->addr, default_mac); return adapter; } static void et131x_pci_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct et131x_adapter *adapter = netdev_priv(netdev); unregister_netdev(netdev); netif_napi_del(&adapter->napi); phy_disconnect(netdev->phydev); mdiobus_unregister(adapter->mii_bus); mdiobus_free(adapter->mii_bus); et131x_adapter_memory_free(adapter); iounmap(adapter->regs); pci_dev_put(pdev); free_netdev(netdev); pci_release_regions(pdev); pci_disable_device(pdev); } static void et131x_up(struct net_device *netdev) { et131x_enable_txrx(netdev); phy_start(netdev->phydev); } static void et131x_down(struct net_device *netdev) { /* Save the timestamp for the TX watchdog, prevent a timeout */ netif_trans_update(netdev); phy_stop(netdev->phydev); et131x_disable_txrx(netdev); } #ifdef CONFIG_PM_SLEEP static int et131x_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); if (netif_running(netdev)) { netif_device_detach(netdev); et131x_down(netdev); pci_save_state(pdev); } return 0; } static int et131x_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); if (netif_running(netdev)) { pci_restore_state(pdev); et131x_up(netdev); netif_device_attach(netdev); } return 0; } #endif static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume); static irqreturn_t et131x_isr(int irq, void *dev_id) { bool handled = true; bool enable_interrupts = true; struct net_device *netdev = dev_id; struct et131x_adapter *adapter = netdev_priv(netdev); struct address_map __iomem *iomem = adapter->regs; struct rx_ring *rx_ring = &adapter->rx_ring; struct tx_ring *tx_ring = &adapter->tx_ring; u32 status; if (!netif_device_present(netdev)) { handled = false; enable_interrupts = false; goto out; } et131x_disable_interrupts(adapter); status = readl(&adapter->regs->global.int_status); if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) status &= ~INT_MASK_ENABLE; else status &= ~INT_MASK_ENABLE_NO_FLOW; /* Make sure this is our interrupt */ if (!status) { handled = false; et131x_enable_interrupts(adapter); goto out; } /* This is our interrupt, so process accordingly */ if (status & ET_INTR_WATCHDOG) { struct tcb *tcb = tx_ring->send_head; if (tcb) if (++tcb->stale > 1) status |= ET_INTR_TXDMA_ISR; if (rx_ring->unfinished_receives) status |= ET_INTR_RXDMA_XFR_DONE; else if (tcb == NULL) writel(0, &adapter->regs->global.watchdog_timer); status &= ~ET_INTR_WATCHDOG; } if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) { enable_interrupts = false; napi_schedule(&adapter->napi); } status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE); if (!status) goto out; if (status & ET_INTR_TXDMA_ERR) { /* Following read also clears the register (COR) */ u32 txdma_err = readl(&iomem->txdma.tx_dma_error); dev_warn(&adapter->pdev->dev, "TXDMA_ERR interrupt, error = %d\n", txdma_err); } if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) { /* This indicates the number of unused buffers in RXDMA free * buffer ring 0 is <= the limit you programmed. Free buffer * resources need to be returned. Free buffers are consumed as * packets are passed from the network to the host. The host * becomes aware of the packets from the contents of the packet * status ring. This ring is queried when the packet done * interrupt occurs. Packets are then passed to the OS. When * the OS is done with the packets the resources can be * returned to the ET1310 for re-use. This interrupt is one * method of returning resources. */ /* If the user has flow control on, then we will * send a pause packet, otherwise just exit */ if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) { u32 pm_csr; /* Tell the device to send a pause packet via the back * pressure register (bp req and bp xon/xoff) */ pm_csr = readl(&iomem->global.pm_csr); if (!et1310_in_phy_coma(adapter)) writel(3, &iomem->txmac.bp_ctrl); } } /* Handle Packet Status Ring Low Interrupt */ if (status & ET_INTR_RXDMA_STAT_LOW) { /* Same idea as with the two Free Buffer Rings. Packets going * from the network to the host each consume a free buffer * resource and a packet status resource. These resources are * passed to the OS. When the OS is done with the resources, * they need to be returned to the ET1310. This is one method * of returning the resources. */ } if (status & ET_INTR_RXDMA_ERR) { /* The rxdma_error interrupt is sent when a time-out on a * request issued by the JAGCore has occurred or a completion is * returned with an un-successful status. In both cases the * request is considered complete. The JAGCore will * automatically re-try the request in question. Normally * information on events like these are sent to the host using * the "Advanced Error Reporting" capability. This interrupt is * another way of getting similar information. The only thing * required is to clear the interrupt by reading the ISR in the * global resources. The JAGCore will do a re-try on the * request. Normally you should never see this interrupt. If * you start to see this interrupt occurring frequently then * something bad has occurred. A reset might be the thing to do. */ /* TRAP();*/ dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n", readl(&iomem->txmac.tx_test)); } /* Handle the Wake on LAN Event */ if (status & ET_INTR_WOL) { /* This is a secondary interrupt for wake on LAN. The driver * should never see this, if it does, something serious is * wrong. */ dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n"); } if (status & ET_INTR_TXMAC) { u32 err = readl(&iomem->txmac.err); /* When any of the errors occur and TXMAC generates an * interrupt to report these errors, it usually means that * TXMAC has detected an error in the data stream retrieved * from the on-chip Tx Q. All of these errors are catastrophic * and TXMAC won't be able to recover data when these errors * occur. In a nutshell, the whole Tx path will have to be reset * and re-configured afterwards. */ dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n", err); /* If we are debugging, we want to see this error, otherwise we * just want the device to be reset and continue */ } if (status & ET_INTR_RXMAC) { /* These interrupts are catastrophic to the device, what we need * to do is disable the interrupts and set the flag to cause us * to reset so we can solve this issue. */ dev_warn(&adapter->pdev->dev, "RXMAC interrupt, error 0x%08x. Requesting reset\n", readl(&iomem->rxmac.err_reg)); dev_warn(&adapter->pdev->dev, "Enable 0x%08x, Diag 0x%08x\n", readl(&iomem->rxmac.ctrl), readl(&iomem->rxmac.rxq_diag)); /* If we are debugging, we want to see this error, otherwise we * just want the device to be reset and continue */ } if (status & ET_INTR_MAC_STAT) { /* This means at least one of the un-masked counters in the * MAC_STAT block has rolled over. Use this to maintain the top, * software managed bits of the counter(s). */ et1310_handle_macstat_interrupt(adapter); } if (status & ET_INTR_SLV_TIMEOUT) { /* This means a timeout has occurred on a read or write request * to one of the JAGCore registers. The Global Resources block * has terminated the request and on a read request, returned a * "fake" value. The most likely reasons are: Bad Address or the * addressed module is in a power-down state and can't respond. */ } out: if (enable_interrupts) et131x_enable_interrupts(adapter); return IRQ_RETVAL(handled); } static int et131x_poll(struct napi_struct *napi, int budget) { struct et131x_adapter *adapter = container_of(napi, struct et131x_adapter, napi); int work_done = et131x_handle_recv_pkts(adapter, budget); et131x_handle_send_pkts(adapter); if (work_done < budget) { napi_complete_done(&adapter->napi, work_done); et131x_enable_interrupts(adapter); } return work_done; } /* et131x_stats - Return the current device statistics */ static struct net_device_stats *et131x_stats(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); struct net_device_stats *stats = &adapter->netdev->stats; struct ce_stats *devstat = &adapter->stats; stats->rx_errors = devstat->rx_length_errs + devstat->rx_align_errs + devstat->rx_crc_errs + devstat->rx_code_violations + devstat->rx_other_errs; stats->tx_errors = devstat->tx_max_pkt_errs; stats->multicast = devstat->multicast_pkts_rcvd; stats->collisions = devstat->tx_collisions; stats->rx_length_errors = devstat->rx_length_errs; stats->rx_over_errors = devstat->rx_overflows; stats->rx_crc_errors = devstat->rx_crc_errs; stats->rx_dropped = devstat->rcvd_pkts_dropped; /* NOTE: Not used, can't find analogous statistics */ /* stats->rx_frame_errors = devstat->; */ /* stats->rx_fifo_errors = devstat->; */ /* stats->rx_missed_errors = devstat->; */ /* stats->tx_aborted_errors = devstat->; */ /* stats->tx_carrier_errors = devstat->; */ /* stats->tx_fifo_errors = devstat->; */ /* stats->tx_heartbeat_errors = devstat->; */ /* stats->tx_window_errors = devstat->; */ return stats; } static int et131x_open(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; unsigned int irq = pdev->irq; int result; /* Start the timer to track NIC errors */ timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0); adapter->error_timer.expires = jiffies + msecs_to_jiffies(TX_ERROR_PERIOD); add_timer(&adapter->error_timer); result = request_irq(irq, et131x_isr, IRQF_SHARED, netdev->name, netdev); if (result) { dev_err(&pdev->dev, "could not register IRQ %d\n", irq); return result; } adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE; napi_enable(&adapter->napi); et131x_up(netdev); return result; } static int et131x_close(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); et131x_down(netdev); napi_disable(&adapter->napi); adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE; free_irq(adapter->pdev->irq, netdev); /* Stop the error timer */ return del_timer_sync(&adapter->error_timer); } static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf, int cmd) { if (!netdev->phydev) return -EINVAL; return phy_mii_ioctl(netdev->phydev, reqbuf, cmd); } /* et131x_set_packet_filter - Configures the Rx Packet filtering */ static int et131x_set_packet_filter(struct et131x_adapter *adapter) { int filter = adapter->packet_filter; u32 ctrl; u32 pf_ctrl; ctrl = readl(&adapter->regs->rxmac.ctrl); pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl); /* Default to disabled packet filtering */ ctrl |= 0x04; /* Set us to be in promiscuous mode so we receive everything, this * is also true when we get a packet filter of 0 */ if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0) pf_ctrl &= ~7; /* Clear filter bits */ else { /* Set us up with Multicast packet filtering. Three cases are * possible - (1) we have a multi-cast list, (2) we receive ALL * multicast entries or (3) we receive none. */ if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST) pf_ctrl &= ~2; /* Multicast filter bit */ else { et1310_setup_device_for_multicast(adapter); pf_ctrl |= 2; ctrl &= ~0x04; } /* Set us up with Unicast packet filtering */ if (filter & ET131X_PACKET_TYPE_DIRECTED) { et1310_setup_device_for_unicast(adapter); pf_ctrl |= 4; ctrl &= ~0x04; } /* Set us up with Broadcast packet filtering */ if (filter & ET131X_PACKET_TYPE_BROADCAST) { pf_ctrl |= 1; /* Broadcast filter bit */ ctrl &= ~0x04; } else { pf_ctrl &= ~1; } /* Setup the receive mac configuration registers - Packet * Filter control + the enable / disable for packet filter * in the control reg. */ writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl); writel(ctrl, &adapter->regs->rxmac.ctrl); } return 0; } static void et131x_multicast(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); int packet_filter; struct netdev_hw_addr *ha; int i; /* Before we modify the platform-independent filter flags, store them * locally. This allows us to determine if anything's changed and if * we even need to bother the hardware */ packet_filter = adapter->packet_filter; /* Clear the 'multicast' flag locally; because we only have a single * flag to check multicast, and multiple multicast addresses can be * set, this is the easiest way to determine if more than one * multicast address is being set. */ packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; /* Check the net_device flags and set the device independent flags * accordingly */ if (netdev->flags & IFF_PROMISC) adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS; else adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS; if ((netdev->flags & IFF_ALLMULTI) || (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)) adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST; if (netdev_mc_count(netdev) < 1) { adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST; adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; } else { adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST; } /* Set values in the private adapter struct */ i = 0; netdev_for_each_mc_addr(ha, netdev) { if (i == NIC_MAX_MCAST_LIST) break; ether_addr_copy(adapter->multicast_list[i++], ha->addr); } adapter->multicast_addr_count = i; /* Are the new flags different from the previous ones? If not, then no * action is required * * NOTE - This block will always update the multicast_list with the * hardware, even if the addresses aren't the same. */ if (packet_filter != adapter->packet_filter) et131x_set_packet_filter(adapter); } static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); struct tx_ring *tx_ring = &adapter->tx_ring; /* stop the queue if it's getting full */ if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev)) netif_stop_queue(netdev); /* Save the timestamp for the TX timeout watchdog */ netif_trans_update(netdev); /* TCB is not available */ if (tx_ring->used >= NUM_TCB) goto drop_err; if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) || !netif_carrier_ok(netdev)) goto drop_err; if (send_packet(skb, adapter)) goto drop_err; return NETDEV_TX_OK; drop_err: dev_kfree_skb_any(skb); adapter->netdev->stats.tx_dropped++; return NETDEV_TX_OK; } /* et131x_tx_timeout - Timeout handler * * The handler called when a Tx request times out. The timeout period is * specified by the 'tx_timeo" element in the net_device structure (see * et131x_alloc_device() to see how this value is set). */ static void et131x_tx_timeout(struct net_device *netdev) { struct et131x_adapter *adapter = netdev_priv(netdev); struct tx_ring *tx_ring = &adapter->tx_ring; struct tcb *tcb; unsigned long flags; /* If the device is closed, ignore the timeout */ if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)) return; /* Any nonrecoverable hardware error? * Checks adapter->flags for any failure in phy reading */ if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR) return; /* Hardware failure? */ if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) { dev_err(&adapter->pdev->dev, "hardware error - reset\n"); return; } /* Is send stuck? */ spin_lock_irqsave(&adapter->tcb_send_qlock, flags); tcb = tx_ring->send_head; spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); if (tcb) { tcb->count++; if (tcb->count > NIC_SEND_HANG_THRESHOLD) { dev_warn(&adapter->pdev->dev, "Send stuck - reset. tcb->WrIndex %x\n", tcb->index); adapter->netdev->stats.tx_errors++; /* perform reset of tx/rx */ et131x_disable_txrx(netdev); et131x_enable_txrx(netdev); } } } static int et131x_change_mtu(struct net_device *netdev, int new_mtu) { int result = 0; struct et131x_adapter *adapter = netdev_priv(netdev); et131x_disable_txrx(netdev); netdev->mtu = new_mtu; et131x_adapter_memory_free(adapter); /* Set the config parameter for Jumbo Packet support */ adapter->registry_jumbo_packet = new_mtu + 14; et131x_soft_reset(adapter); result = et131x_adapter_memory_alloc(adapter); if (result != 0) { dev_warn(&adapter->pdev->dev, "Change MTU failed; couldn't re-alloc DMA memory\n"); return result; } et131x_init_send(adapter); et131x_hwaddr_init(adapter); ether_addr_copy(netdev->dev_addr, adapter->addr); /* Init the device with the new settings */ et131x_adapter_setup(adapter); et131x_enable_txrx(netdev); return result; } static const struct net_device_ops et131x_netdev_ops = { .ndo_open = et131x_open, .ndo_stop = et131x_close, .ndo_start_xmit = et131x_tx, .ndo_set_rx_mode = et131x_multicast, .ndo_tx_timeout = et131x_tx_timeout, .ndo_change_mtu = et131x_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_get_stats = et131x_stats, .ndo_do_ioctl = et131x_ioctl, }; static int et131x_pci_setup(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct et131x_adapter *adapter; int rc; rc = pci_enable_device(pdev); if (rc < 0) { dev_err(&pdev->dev, "pci_enable_device() failed\n"); goto out; } /* Perform some basic PCI checks */ if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Can't find PCI device's base address\n"); rc = -ENODEV; goto err_disable; } rc = pci_request_regions(pdev, DRIVER_NAME); if (rc < 0) { dev_err(&pdev->dev, "Can't get PCI resources\n"); goto err_disable; } pci_set_master(pdev); /* Check the DMA addressing support of this device */ if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) && dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) { dev_err(&pdev->dev, "No usable DMA addressing method\n"); rc = -EIO; goto err_release_res; } netdev = alloc_etherdev(sizeof(struct et131x_adapter)); if (!netdev) { dev_err(&pdev->dev, "Couldn't alloc netdev struct\n"); rc = -ENOMEM; goto err_release_res; } netdev->watchdog_timeo = ET131X_TX_TIMEOUT; netdev->netdev_ops = &et131x_netdev_ops; netdev->min_mtu = ET131X_MIN_MTU; netdev->max_mtu = ET131X_MAX_MTU; SET_NETDEV_DEV(netdev, &pdev->dev); netdev->ethtool_ops = &et131x_ethtool_ops; adapter = et131x_adapter_init(netdev, pdev); rc = et131x_pci_init(adapter, pdev); if (rc < 0) goto err_free_dev; /* Map the bus-relative registers to system virtual memory */ adapter->regs = pci_ioremap_bar(pdev, 0); if (!adapter->regs) { dev_err(&pdev->dev, "Cannot map device registers\n"); rc = -ENOMEM; goto err_free_dev; } /* If Phy COMA mode was enabled when we went down, disable it here. */ writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr); et131x_soft_reset(adapter); et131x_disable_interrupts(adapter); rc = et131x_adapter_memory_alloc(adapter); if (rc < 0) { dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n"); goto err_iounmap; } et131x_init_send(adapter); netif_napi_add(netdev, &adapter->napi, et131x_poll, 64); ether_addr_copy(netdev->dev_addr, adapter->addr); rc = -ENOMEM; adapter->mii_bus = mdiobus_alloc(); if (!adapter->mii_bus) { dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n"); goto err_mem_free; } adapter->mii_bus->name = "et131x_eth_mii"; snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", (adapter->pdev->bus->number << 8) | adapter->pdev->devfn); adapter->mii_bus->priv = netdev; adapter->mii_bus->read = et131x_mdio_read; adapter->mii_bus->write = et131x_mdio_write; rc = mdiobus_register(adapter->mii_bus); if (rc < 0) { dev_err(&pdev->dev, "failed to register MII bus\n"); goto err_mdio_free; } rc = et131x_mii_probe(netdev); if (rc < 0) { dev_err(&pdev->dev, "failed to probe MII bus\n"); goto err_mdio_unregister; } et131x_adapter_setup(adapter); /* Init variable for counting how long we do not have link status */ adapter->boot_coma = 0; et1310_disable_phy_coma(adapter); /* We can enable interrupts now * * NOTE - Because registration of interrupt handler is done in the * device's open(), defer enabling device interrupts to that * point */ rc = register_netdev(netdev); if (rc < 0) { dev_err(&pdev->dev, "register_netdev() failed\n"); goto err_phy_disconnect; } /* Register the net_device struct with the PCI subsystem. Save a copy * of the PCI config space for this device now that the device has * been initialized, just in case it needs to be quickly restored. */ pci_set_drvdata(pdev, netdev); out: return rc; err_phy_disconnect: phy_disconnect(netdev->phydev); err_mdio_unregister: mdiobus_unregister(adapter->mii_bus); err_mdio_free: mdiobus_free(adapter->mii_bus); err_mem_free: et131x_adapter_memory_free(adapter); err_iounmap: iounmap(adapter->regs); err_free_dev: pci_dev_put(pdev); free_netdev(netdev); err_release_res: pci_release_regions(pdev); err_disable: pci_disable_device(pdev); goto out; } static const struct pci_device_id et131x_pci_table[] = { { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL}, { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL}, { 0,} }; MODULE_DEVICE_TABLE(pci, et131x_pci_table); static struct pci_driver et131x_driver = { .name = DRIVER_NAME, .id_table = et131x_pci_table, .probe = et131x_pci_setup, .remove = et131x_pci_remove, .driver.pm = &et131x_pm_ops, }; module_pci_driver(et131x_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1