Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ariel Elior | 9889 | 65.41% | 31 | 36.90% |
Yuval Mintz | 3476 | 22.99% | 26 | 30.95% |
Dmitry Kravkov | 1010 | 6.68% | 3 | 3.57% |
Shahed Shaikh | 355 | 2.35% | 2 | 2.38% |
Michal Kalderon | 135 | 0.89% | 3 | 3.57% |
Joe Perches | 91 | 0.60% | 3 | 3.57% |
Michal Schmidt | 58 | 0.38% | 4 | 4.76% |
Sinan Kaya | 47 | 0.31% | 1 | 1.19% |
Moshe Shemesh | 21 | 0.14% | 1 | 1.19% |
Kees Cook | 10 | 0.07% | 1 | 1.19% |
Sucheta Chakraborty | 7 | 0.05% | 1 | 1.19% |
Narender Kumar | 6 | 0.04% | 1 | 1.19% |
Peter Zijlstra | 4 | 0.03% | 1 | 1.19% |
Björn Helgaas | 3 | 0.02% | 1 | 1.19% |
Masanari Iida | 2 | 0.01% | 2 | 2.38% |
Ding Tianhong | 2 | 0.01% | 1 | 1.19% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.19% |
Sachin Kamat | 1 | 0.01% | 1 | 1.19% |
Total | 15118 | 84 |
/* bnx2x_sriov.c: QLogic Everest network driver. * * Copyright 2009-2013 Broadcom Corporation * Copyright 2014 QLogic Corporation * All rights reserved * * Unless you and QLogic execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2, available * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other QLogic software provided under a * license other than the GPL, without QLogic's express prior written * consent. * * Maintained by: Ariel Elior <ariel.elior@qlogic.com> * Written by: Shmulik Ravid * Ariel Elior <ariel.elior@qlogic.com> * */ #include "bnx2x.h" #include "bnx2x_init.h" #include "bnx2x_cmn.h" #include "bnx2x_sp.h" #include <linux/crc32.h> #include <linux/if_vlan.h> static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, struct bnx2x_virtf **vf, struct pf_vf_bulletin_content **bulletin, bool test_queue); /* General service functions */ static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, u16 pf_id) { REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); } static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, u8 enable) { REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), enable); } int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) { int idx; for_each_vf(bp, idx) if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) break; return idx; } static struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) { u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; } static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update) { /* acking a VF sb through the PF - use the GRC */ u32 ctl; u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; u32 func_encode = vf->abs_vfid; u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; struct igu_regular cmd_data = {0}; cmd_data.sb_id_and_flags = ((index << IGU_REGULAR_SB_INDEX_SHIFT) | (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | (update << IGU_REGULAR_BUPDATE_SHIFT) | (op << IGU_REGULAR_ENABLE_INT_SHIFT)); ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | func_encode << IGU_CTRL_REG_FID_SHIFT | IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", cmd_data.sb_id_and_flags, igu_addr_data); REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); mmiowb(); barrier(); DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", ctl, igu_addr_ctl); REG_WR(bp, igu_addr_ctl, ctl); mmiowb(); barrier(); } static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, struct bnx2x_virtf *vf, bool print_err) { if (!bnx2x_leading_vfq(vf, sp_initialized)) { if (print_err) BNX2X_ERR("Slowpath objects not yet initialized!\n"); else DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); return false; } return true; } /* VFOP operations states */ void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_queue_init_params *init_params, struct bnx2x_queue_setup_params *setup_params, u16 q_idx, u16 sb_idx) { DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", vf->abs_vfid, q_idx, sb_idx, init_params->tx.sb_cq_index, init_params->tx.hc_rate, setup_params->flags, setup_params->txq_params.traffic_type); } void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_queue_init_params *init_params, struct bnx2x_queue_setup_params *setup_params, u16 q_idx, u16 sb_idx) { struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", vf->abs_vfid, q_idx, sb_idx, init_params->rx.sb_cq_index, init_params->rx.hc_rate, setup_params->gen_params.mtu, rxq_params->buf_sz, rxq_params->sge_buf_sz, rxq_params->max_sges_pkt, rxq_params->tpa_agg_sz, setup_params->flags, rxq_params->drop_flags, rxq_params->cache_line_log); } void bnx2x_vfop_qctor_prep(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q, struct bnx2x_vf_queue_construct_params *p, unsigned long q_type) { struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; /* INIT */ /* Enable host coalescing in the transition to INIT state */ if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); /* FW SB ID */ init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); /* context */ init_p->cxts[0] = q->cxt; /* SETUP */ /* Setup-op general parameters */ setup_p->gen_params.spcl_id = vf->sp_cl_id; setup_p->gen_params.stat_id = vfq_stat_id(vf, q); setup_p->gen_params.fp_hsi = vf->fp_hsi; /* Setup-op flags: * collect statistics, zero statistics, local-switching, security, * OV for Flex10, RSS and MCAST for leading */ if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); /* for VFs, enable tx switching, bd coherency, and mac address * anti-spoofing */ __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); if (vf->spoofchk) __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); else __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); /* Setup-op rx parameters */ if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; } /* Setup-op tx parameters */ if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); } } static int bnx2x_vf_queue_create(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, struct bnx2x_vf_queue_construct_params *qctor) { struct bnx2x_queue_state_params *q_params; int rc = 0; DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); /* Prepare ramrod information */ q_params = &qctor->qstate; q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == BNX2X_Q_LOGICAL_STATE_ACTIVE) { DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); goto out; } /* Run Queue 'construction' ramrods */ q_params->cmd = BNX2X_Q_CMD_INIT; rc = bnx2x_queue_state_change(bp, q_params); if (rc) goto out; memcpy(&q_params->params.setup, &qctor->prep_qsetup, sizeof(struct bnx2x_queue_setup_params)); q_params->cmd = BNX2X_Q_CMD_SETUP; rc = bnx2x_queue_state_change(bp, q_params); if (rc) goto out; /* enable interrupts */ bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), USTORM_ID, 0, IGU_INT_ENABLE, 0); out: return rc; } static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) { enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, BNX2X_Q_CMD_TERMINATE, BNX2X_Q_CMD_CFC_DEL}; struct bnx2x_queue_state_params q_params; int rc, i; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); /* Prepare ramrod information */ memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == BNX2X_Q_LOGICAL_STATE_STOPPED) { DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); goto out; } /* Run Queue 'destruction' ramrods */ for (i = 0; i < ARRAY_SIZE(cmds); i++) { q_params.cmd = cmds[i]; rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); return rc; } } out: /* Clean Context */ if (bnx2x_vfq(vf, qid, cxt)) { bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; } return 0; } static void bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) { struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); if (vf) { /* the first igu entry belonging to VFs of this PF */ if (!BP_VFDB(bp)->first_vf_igu_entry) BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; /* the first igu entry belonging to this VF */ if (!vf_sb_count(vf)) vf->igu_base_id = igu_sb_id; ++vf_sb_count(vf); ++vf->sb_count; } BP_VFDB(bp)->vf_sbs_pool++; } static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *obj, atomic_t *counter) { struct list_head *pos; int read_lock; int cnt = 0; read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); if (read_lock) DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); list_for_each(pos, &obj->head) cnt++; if (!read_lock) bnx2x_vlan_mac_h_read_unlock(bp, obj); atomic_set(counter, cnt); } static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, bool drv_only, int type) { struct bnx2x_vlan_mac_ramrod_params ramrod; int rc; DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); /* Prepare ramrod params */ memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); if (type == BNX2X_VF_FILTER_VLAN_MAC) { set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); } else if (type == BNX2X_VF_FILTER_MAC) { set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); } else { ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); } ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); if (drv_only) set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); else set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); /* Start deleting */ rc = ramrod.vlan_mac_obj->delete_all(bp, ramrod.vlan_mac_obj, &ramrod.user_req.vlan_mac_flags, &ramrod.ramrod_flags); if (rc) { BNX2X_ERR("Failed to delete all %s\n", (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); return rc; } return 0; } static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, struct bnx2x_vf_mac_vlan_filter *filter, bool drv_only) { struct bnx2x_vlan_mac_ramrod_params ramrod; int rc; DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", vf->abs_vfid, filter->add ? "Adding" : "Deleting", (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); /* Prepare ramrod params */ memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); ramrod.user_req.u.vlan.vlan = filter->vid; memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); } else if (filter->type == BNX2X_VF_FILTER_VLAN) { ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); ramrod.user_req.u.vlan.vlan = filter->vid; } else { set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); } ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL; set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); if (drv_only) set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); else set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); /* Add/Remove the filter */ rc = bnx2x_config_vlan_mac(bp, &ramrod); if (rc == -EEXIST) return 0; if (rc) { BNX2X_ERR("Failed to %s %s\n", filter->add ? "add" : "delete", (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); return rc; } filter->applied = true; return 0; } int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_mac_vlan_filters *filters, int qid, bool drv_only) { int rc = 0, i; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) return -EINVAL; /* Prepare ramrod params */ for (i = 0; i < filters->count; i++) { rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filters->filters[i], drv_only); if (rc) break; } /* Rollback if needed */ if (i != filters->count) { BNX2X_ERR("Managed only %d/%d filters - rolling back\n", i, filters->count); while (--i >= 0) { if (!filters->filters[i].applied) continue; filters->filters[i].add = !filters->filters[i].add; bnx2x_vf_mac_vlan_config(bp, vf, qid, &filters->filters[i], drv_only); } } /* It's our responsibility to free the filters */ kfree(filters); return rc; } int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, struct bnx2x_vf_queue_construct_params *qctor) { int rc; DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); if (rc) goto op_err; /* Schedule the configuration of any pending vlan filters */ bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, BNX2X_MSG_IOV); return 0; op_err: BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); return rc; } static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) { int rc; DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); /* If needed, clean the filtering data base */ if ((qid == LEADING_IDX) && bnx2x_validate_vf_sp_objs(bp, vf, false)) { rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, BNX2X_VF_FILTER_VLAN_MAC); if (rc) goto op_err; rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, BNX2X_VF_FILTER_VLAN); if (rc) goto op_err; rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, BNX2X_VF_FILTER_MAC); if (rc) goto op_err; } /* Terminate queue */ if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { struct bnx2x_queue_state_params qstate; memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; qstate.cmd = BNX2X_Q_CMD_TERMINATE; set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); rc = bnx2x_queue_state_change(bp, &qstate); if (rc) goto op_err; } return 0; op_err: BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); return rc; } int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) { struct bnx2x_mcast_list_elem *mc = NULL; struct bnx2x_mcast_ramrod_params mcast; int rc, i; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); /* Prepare Multicast command */ memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); mcast.mcast_obj = &vf->mcast_obj; if (drv_only) set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); else set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); if (mc_num) { mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem), GFP_KERNEL); if (!mc) { BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); return -ENOMEM; } } if (mc_num) { INIT_LIST_HEAD(&mcast.mcast_list); for (i = 0; i < mc_num; i++) { mc[i].mac = mcasts[i]; list_add_tail(&mc[i].link, &mcast.mcast_list); } /* add new mcasts */ mcast.mcast_list_len = mc_num; rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); if (rc) BNX2X_ERR("Failed to set multicasts\n"); } else { /* clear existing mcasts */ rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); if (rc) BNX2X_ERR("Failed to remove multicasts\n"); } kfree(mc); return rc; } static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, struct bnx2x_rx_mode_ramrod_params *ramrod, struct bnx2x_virtf *vf, unsigned long accept_flags) { struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); memset(ramrod, 0, sizeof(*ramrod)); ramrod->cid = vfq->cid; ramrod->cl_id = vfq_cl_id(vf, vfq); ramrod->rx_mode_obj = &bp->rx_mode_obj; ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); ramrod->rx_accept_flags = accept_flags; ramrod->tx_accept_flags = accept_flags; ramrod->pstate = &vf->filter_state; ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); set_bit(RAMROD_RX, &ramrod->ramrod_flags); set_bit(RAMROD_TX, &ramrod->ramrod_flags); ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); } int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, unsigned long accept_flags) { struct bnx2x_rx_mode_ramrod_params ramrod; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; return bnx2x_config_rx_mode(bp, &ramrod); } int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) { int rc; DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); /* Remove all classification configuration for leading queue */ if (qid == LEADING_IDX) { rc = bnx2x_vf_rxmode(bp, vf, qid, 0); if (rc) goto op_err; /* Remove filtering if feasible */ if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, false, BNX2X_VF_FILTER_VLAN_MAC); if (rc) goto op_err; rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, false, BNX2X_VF_FILTER_VLAN); if (rc) goto op_err; rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, false, BNX2X_VF_FILTER_MAC); if (rc) goto op_err; rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); if (rc) goto op_err; } } /* Destroy queue */ rc = bnx2x_vf_queue_destroy(bp, vf, qid); if (rc) goto op_err; return rc; op_err: BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); return rc; } /* VF enable primitives * when pretend is required the caller is responsible * for calling pretend prior to calling these routines */ /* internal vf enable - until vf is enabled internally all transactions * are blocked. This routine should always be called last with pretend. */ static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) { REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); } /* clears vf error in all semi blocks */ static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) { REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); } static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) { u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; u32 was_err_reg = 0; switch (was_err_group) { case 0: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; break; case 1: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; break; case 2: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; break; case 3: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; break; } REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); } static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) { int i; u32 val; /* Set VF masks and configuration - pretend */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); val &= ~IGU_VF_CONF_PARENT_MASK; val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); DP(BNX2X_MSG_IOV, "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", vf->abs_vfid, val); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); /* iterate over all queues, clear sb consumer */ for (i = 0; i < vf_sb_count(vf); i++) { u8 igu_sb_id = vf_igu_sb(vf, i); /* zero prod memory */ REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); /* clear sb state machine */ bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, false /* VF */); /* disable + update */ bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 1); } } void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) { /* set the VF-PF association in the FW */ storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); /* clear vf errors*/ bnx2x_vf_semi_clear_err(bp, abs_vfid); bnx2x_vf_pglue_clear_err(bp, abs_vfid); /* internal vf-enable - pretend */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); bnx2x_vf_enable_internal(bp, true); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) { /* Reset vf in IGU interrupts are still disabled */ bnx2x_vf_igu_reset(bp, vf); /* pretend to enable the vf with the PBF */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); REG_WR(bp, PBF_REG_DISABLE_VF, 0); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) { struct pci_dev *dev; struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); if (!vf) return false; dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn); if (dev) return bnx2x_is_pcie_pending(dev); return false; } int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) { /* Verify no pending pci transactions */ if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) BNX2X_ERR("PCIE Transactions still pending\n"); return 0; } /* must be called after the number of PF queues and the number of VFs are * both known */ static void bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct vf_pf_resc_request *resc = &vf->alloc_resc; /* will be set only during VF-ACQUIRE */ resc->num_rxqs = 0; resc->num_txqs = 0; resc->num_mac_filters = VF_MAC_CREDIT_CNT; resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; /* no real limitation */ resc->num_mc_filters = 0; /* num_sbs already set */ resc->num_sbs = vf->sb_count; } /* FLR routines: */ static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) { /* reset the state variables */ bnx2x_iov_static_resc(bp, vf); vf->state = VF_FREE; } static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) { u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); /* DQ usage counter */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, "DQ VF usage counter timed out", poll_cnt); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); /* FW cleanup command - poll for the results */ if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), poll_cnt)) BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); /* verify TX hw is flushed */ bnx2x_tx_hw_flushed(bp, poll_cnt); } static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) { int rc, i; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); /* the cleanup operations are valid if and only if the VF * was first acquired. */ for (i = 0; i < vf_rxq_count(vf); i++) { rc = bnx2x_vf_queue_flr(bp, vf, i); if (rc) goto out; } /* remove multicasts */ bnx2x_vf_mcast(bp, vf, NULL, 0, true); /* dispatch final cleanup and wait for HW queues to flush */ bnx2x_vf_flr_clnup_hw(bp, vf); /* release VF resources */ bnx2x_vf_free_resc(bp, vf); vf->malicious = false; /* re-open the mailbox */ bnx2x_vf_enable_mbx(bp, vf->abs_vfid); return; out: BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", vf->abs_vfid, i, rc); } static void bnx2x_vf_flr_clnup(struct bnx2x *bp) { struct bnx2x_virtf *vf; int i; for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { /* VF should be RESET & in FLR cleanup states */ if (bnx2x_vf(bp, i, state) != VF_RESET || !bnx2x_vf(bp, i, flr_clnup_stage)) continue; DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", i, BNX2X_NR_VIRTFN(bp)); vf = BP_VF(bp, i); /* lock the vf pf channel */ bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); /* invoke the VF FLR SM */ bnx2x_vf_flr(bp, vf); /* mark the VF to be ACKED and continue */ vf->flr_clnup_stage = false; bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); } /* Acknowledge the handled VFs. * we are acknowledge all the vfs which an flr was requested for, even * if amongst them there are such that we never opened, since the mcp * will interrupt us immediately again if we only ack some of the bits, * resulting in an endless loop. This can happen for example in KVM * where an 'all ones' flr request is sometimes given by hyper visor */ DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); for (i = 0; i < FLRD_VFS_DWORDS; i++) SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], bp->vfdb->flrd_vfs[i]); bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); /* clear the acked bits - better yet if the MCP implemented * write to clear semantics */ for (i = 0; i < FLRD_VFS_DWORDS; i++) SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); } void bnx2x_vf_handle_flr_event(struct bnx2x *bp) { int i; /* Read FLR'd VFs */ for (i = 0; i < FLRD_VFS_DWORDS; i++) bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); for_each_vf(bp, i) { struct bnx2x_virtf *vf = BP_VF(bp, i); u32 reset = 0; if (vf->abs_vfid < 32) reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); else reset = bp->vfdb->flrd_vfs[1] & (1 << (vf->abs_vfid - 32)); if (reset) { /* set as reset and ready for cleanup */ vf->state = VF_RESET; vf->flr_clnup_stage = true; DP(BNX2X_MSG_IOV, "Initiating Final cleanup for VF %d\n", vf->abs_vfid); } } /* do the FLR cleanup for all marked VFs*/ bnx2x_vf_flr_clnup(bp); } /* IOV global initialization routines */ void bnx2x_iov_init_dq(struct bnx2x *bp) { if (!IS_SRIOV(bp)) return; /* Set the DQ such that the CID reflect the abs_vfid */ REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to * the PF L2 queues */ REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); /* The VF window size is the log2 of the max number of CIDs per VF */ REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match * the Pf doorbell size although the 2 are independent. */ REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); /* No security checks for now - * configure single rule (out of 16) mask = 0x1, value = 0x0, * CID range 0 - 0x1ffff */ REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); /* set the VF doorbell threshold. This threshold represents the amount * of doorbells allowed in the main DORQ fifo for a specific VF. */ REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); } void bnx2x_iov_init_dmae(struct bnx2x *bp) { if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); } static int bnx2x_vf_domain(struct bnx2x *bp, int vfid) { struct pci_dev *dev = bp->pdev; return pci_domain_nr(dev->bus); } static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) { struct pci_dev *dev = bp->pdev; struct bnx2x_sriov *iov = &bp->vfdb->sriov; return dev->bus->number + ((dev->devfn + iov->offset + iov->stride * vfid) >> 8); } static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) { struct pci_dev *dev = bp->pdev; struct bnx2x_sriov *iov = &bp->vfdb->sriov; return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; } static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) { int i, n; struct pci_dev *dev = bp->pdev; struct bnx2x_sriov *iov = &bp->vfdb->sriov; for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); size /= iov->total; vf->bars[n].bar = start + size * vf->abs_vfid; vf->bars[n].size = size; } } static int bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) { int sb_id; u32 val; u8 fid, current_pf = 0; /* IGU in normal mode - read CAM */ for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) continue; fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); if (fid & IGU_FID_ENCODE_IS_PF) current_pf = fid & IGU_FID_PF_NUM_MASK; else if (current_pf == BP_FUNC(bp)) bnx2x_vf_set_igu_info(bp, sb_id, (fid & IGU_FID_VF_NUM_MASK)); DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : (fid & IGU_FID_VF_NUM_MASK)), sb_id, GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); } DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); return BP_VFDB(bp)->vf_sbs_pool; } static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) { if (bp->vfdb) { kfree(bp->vfdb->vfqs); kfree(bp->vfdb->vfs); kfree(bp->vfdb); } bp->vfdb = NULL; } static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) { int pos; struct pci_dev *dev = bp->pdev; pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); if (!pos) { BNX2X_ERR("failed to find SRIOV capability in device\n"); return -ENODEV; } iov->pos = pos; DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); return 0; } static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) { u32 val; /* read the SRIOV capability structure * The fields can be read via configuration read or * directly from the device (starting at offset PCICFG_OFFSET) */ if (bnx2x_sriov_pci_cfg_info(bp, iov)) return -ENODEV; /* get the number of SRIOV bars */ iov->nres = 0; /* read the first_vfid */ val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); DP(BNX2X_MSG_IOV, "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", BP_FUNC(bp), iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); return 0; } /* must be called after PF bars are mapped */ int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, int num_vfs_param) { int err, i; struct bnx2x_sriov *iov; struct pci_dev *dev = bp->pdev; bp->vfdb = NULL; /* verify is pf */ if (IS_VF(bp)) return 0; /* verify sriov capability is present in configuration space */ if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) return 0; /* verify chip revision */ if (CHIP_IS_E1x(bp)) return 0; /* check if SRIOV support is turned off */ if (!num_vfs_param) return 0; /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); return 0; } /* SRIOV can be enabled only with MSIX */ if (int_mode_param == BNX2X_INT_MODE_MSI || int_mode_param == BNX2X_INT_MODE_INTX) { BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); return 0; } err = -EIO; /* verify ari is enabled */ if (!pci_ari_enabled(bp->pdev->bus)) { BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); return 0; } /* verify igu is in normal mode */ if (CHIP_INT_MODE_IS_BC(bp)) { BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); return 0; } /* allocate the vfs database */ bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); if (!bp->vfdb) { BNX2X_ERR("failed to allocate vf database\n"); err = -ENOMEM; goto failed; } /* get the sriov info - Linux already collected all the pertinent * information, however the sriov structure is for the private use * of the pci module. Also we want this information regardless * of the hyper-visor. */ iov = &(bp->vfdb->sriov); err = bnx2x_sriov_info(bp, iov); if (err) goto failed; /* SR-IOV capability was enabled but there are no VFs*/ if (iov->total == 0) goto failed; iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", num_vfs_param, iov->nr_virtfn); /* allocate the vf array */ bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp), sizeof(struct bnx2x_virtf), GFP_KERNEL); if (!bp->vfdb->vfs) { BNX2X_ERR("failed to allocate vf array\n"); err = -ENOMEM; goto failed; } /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ for_each_vf(bp, i) { bnx2x_vf(bp, i, index) = i; bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; bnx2x_vf(bp, i, state) = VF_FREE; mutex_init(&bnx2x_vf(bp, i, op_mutex)); bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; /* enable spoofchk by default */ bnx2x_vf(bp, i, spoofchk) = 1; } /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ if (!bnx2x_get_vf_igu_cam_info(bp)) { BNX2X_ERR("No entries in IGU CAM for vfs\n"); err = -EINVAL; goto failed; } /* allocate the queue arrays for all VFs */ bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES, sizeof(struct bnx2x_vf_queue), GFP_KERNEL); if (!bp->vfdb->vfqs) { BNX2X_ERR("failed to allocate vf queue array\n"); err = -ENOMEM; goto failed; } /* Prepare the VFs event synchronization mechanism */ mutex_init(&bp->vfdb->event_mutex); mutex_init(&bp->vfdb->bulletin_mutex); if (SHMEM2_HAS(bp, sriov_switch_mode)) SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); return 0; failed: DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); __bnx2x_iov_free_vfdb(bp); return err; } void bnx2x_iov_remove_one(struct bnx2x *bp) { int vf_idx; /* if SRIOV is not enabled there's nothing to do */ if (!IS_SRIOV(bp)) return; bnx2x_disable_sriov(bp); /* disable access to all VFs */ for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, bp->vfdb->sriov.first_vf_in_pf + vf_idx)); DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", bp->vfdb->sriov.first_vf_in_pf + vf_idx); bnx2x_vf_enable_internal(bp, 0); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } /* free vf database */ __bnx2x_iov_free_vfdb(bp); } void bnx2x_iov_free_mem(struct bnx2x *bp) { int i; if (!IS_SRIOV(bp)) return; /* free vfs hw contexts */ for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { struct hw_dma *cxt = &bp->vfdb->context[i]; BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); } BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, BP_VFDB(bp)->sp_dma.mapping, BP_VFDB(bp)->sp_dma.size); BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, BP_VF_MBX_DMA(bp)->mapping, BP_VF_MBX_DMA(bp)->size); BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, BP_VF_BULLETIN_DMA(bp)->mapping, BP_VF_BULLETIN_DMA(bp)->size); } int bnx2x_iov_alloc_mem(struct bnx2x *bp) { size_t tot_size; int i, rc = 0; if (!IS_SRIOV(bp)) return rc; /* allocate vfs hw contexts */ tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * BNX2X_CIDS_PER_VF * sizeof(union cdu_context); for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); if (cxt->size) { cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); if (!cxt->addr) goto alloc_mem_err; } else { cxt->addr = NULL; cxt->mapping = 0; } tot_size -= cxt->size; } /* allocate vfs ramrods dma memory - client_init and set_mac */ tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, tot_size); if (!BP_VFDB(bp)->sp_dma.addr) goto alloc_mem_err; BP_VFDB(bp)->sp_dma.size = tot_size; /* allocate mailboxes */ tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, tot_size); if (!BP_VF_MBX_DMA(bp)->addr) goto alloc_mem_err; BP_VF_MBX_DMA(bp)->size = tot_size; /* allocate local bulletin boards */ tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, tot_size); if (!BP_VF_BULLETIN_DMA(bp)->addr) goto alloc_mem_err; BP_VF_BULLETIN_DMA(bp)->size = tot_size; return 0; alloc_mem_err: return -ENOMEM; } static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q) { u8 cl_id = vfq_cl_id(vf, q); u8 func_id = FW_VF_HANDLE(vf->abs_vfid); unsigned long q_type = 0; set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); /* Queue State object */ bnx2x_init_queue_obj(bp, &q->sp_obj, cl_id, &q->cid, 1, func_id, bnx2x_vf_sp(bp, vf, q_data), bnx2x_vf_sp_map(bp, vf, q_data), q_type); /* sp indication is set only when vlan/mac/etc. are initialized */ q->sp_initialized = false; DP(BNX2X_MSG_IOV, "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", vf->abs_vfid, q->sp_obj.func_id, q->cid); } static int bnx2x_max_speed_cap(struct bnx2x *bp) { u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; if (supported & (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) return 20000; return 10000; /* assume lowest supported speed is 10G */ } int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) { struct bnx2x_link_report_data *state = &bp->last_reported_link; struct pf_vf_bulletin_content *bulletin; struct bnx2x_virtf *vf; bool update = true; int rc = 0; /* sanity and init */ rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); if (rc) return rc; mutex_lock(&bp->vfdb->bulletin_mutex); if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { bulletin->valid_bitmap |= 1 << LINK_VALID; bulletin->link_speed = state->line_speed; bulletin->link_flags = 0; if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, &state->link_report_flags)) bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; if (test_bit(BNX2X_LINK_REPORT_FD, &state->link_report_flags)) bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, &state->link_report_flags)) bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, &state->link_report_flags)) bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { bulletin->valid_bitmap |= 1 << LINK_VALID; bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { bulletin->valid_bitmap |= 1 << LINK_VALID; bulletin->link_speed = bnx2x_max_speed_cap(bp); bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; } else { update = false; } if (update) { DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, "vf %d mode %u speed %d flags %x\n", idx, vf->link_cfg, bulletin->link_speed, bulletin->link_flags); /* Post update on VF's bulletin board */ rc = bnx2x_post_vf_bulletin(bp, idx); if (rc) { BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); goto out; } } out: mutex_unlock(&bp->vfdb->bulletin_mutex); return rc; } int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) { struct bnx2x *bp = netdev_priv(dev); struct bnx2x_virtf *vf = BP_VF(bp, idx); if (!vf) return -EINVAL; if (vf->link_cfg == link_state) return 0; /* nothing todo */ vf->link_cfg = link_state; return bnx2x_iov_link_update_vf(bp, idx); } void bnx2x_iov_link_update(struct bnx2x *bp) { int vfid; if (!IS_SRIOV(bp)) return; for_each_vf(bp, vfid) bnx2x_iov_link_update_vf(bp, vfid); } /* called by bnx2x_nic_load */ int bnx2x_iov_nic_init(struct bnx2x *bp) { int vfid; if (!IS_SRIOV(bp)) { DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); return 0; } DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); /* let FLR complete ... */ msleep(100); /* initialize vf database */ for_each_vf(bp, vfid) { struct bnx2x_virtf *vf = BP_VF(bp, vfid); int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * BNX2X_CIDS_PER_VF; union cdu_context *base_cxt = (union cdu_context *) BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + (base_vf_cid & (ILT_PAGE_CIDS-1)); DP(BNX2X_MSG_IOV, "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", vf->abs_vfid, vf_sb_count(vf), base_vf_cid, BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); /* init statically provisioned resources */ bnx2x_iov_static_resc(bp, vf); /* queues are initialized during VF-ACQUIRE */ vf->filter_state = 0; vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, vf_vlan_rules_cnt(vf)); bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, vf_mac_rules_cnt(vf)); /* init mcast object - This object will be re-initialized * during VF-ACQUIRE with the proper cl_id and cid. * It needs to be initialized here so that it can be safely * handled by a subsequent FLR flow. */ bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 0xFF, 0xFF, 0xFF, bnx2x_vf_sp(bp, vf, mcast_rdata), bnx2x_vf_sp_map(bp, vf, mcast_rdata), BNX2X_FILTER_MCAST_PENDING, &vf->filter_state, BNX2X_OBJ_TYPE_RX_TX); /* set the mailbox message addresses */ BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * MBX_MSG_ALIGNED_SIZE); BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + vfid * MBX_MSG_ALIGNED_SIZE; /* Enable vf mailbox */ bnx2x_vf_enable_mbx(bp, vf->abs_vfid); } /* Final VF init */ for_each_vf(bp, vfid) { struct bnx2x_virtf *vf = BP_VF(bp, vfid); /* fill in the BDF and bars */ vf->domain = bnx2x_vf_domain(bp, vfid); vf->bus = bnx2x_vf_bus(bp, vfid); vf->devfn = bnx2x_vf_devfn(bp, vfid); bnx2x_vf_set_bars(bp, vf); DP(BNX2X_MSG_IOV, "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", vf->abs_vfid, vf->bus, vf->devfn, (unsigned)vf->bars[0].bar, vf->bars[0].size, (unsigned)vf->bars[1].bar, vf->bars[1].size, (unsigned)vf->bars[2].bar, vf->bars[2].size); } return 0; } /* called by bnx2x_chip_cleanup */ int bnx2x_iov_chip_cleanup(struct bnx2x *bp) { int i; if (!IS_SRIOV(bp)) return 0; /* release all the VFs */ for_each_vf(bp, i) bnx2x_vf_release(bp, BP_VF(bp, i)); return 0; } /* called by bnx2x_init_hw_func, returns the next ilt line */ int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) { int i; struct bnx2x_ilt *ilt = BP_ILT(bp); if (!IS_SRIOV(bp)) return line; /* set vfs ilt lines */ for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); ilt->lines[line+i].page = hw_cxt->addr; ilt->lines[line+i].page_mapping = hw_cxt->mapping; ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ } return line + i; } static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) { return ((cid >= BNX2X_FIRST_VF_CID) && ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); } static void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, struct bnx2x_vf_queue *vfq, union event_ring_elem *elem) { unsigned long ramrod_flags = 0; int rc = 0; u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); /* Always push next commands out, don't wait here */ set_bit(RAMROD_CONT, &ramrod_flags); switch (echo >> BNX2X_SWCID_SHIFT) { case BNX2X_FILTER_MAC_PENDING: rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, &ramrod_flags); break; case BNX2X_FILTER_VLAN_PENDING: rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, &ramrod_flags); break; default: BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); return; } if (rc < 0) BNX2X_ERR("Failed to schedule new commands: %d\n", rc); else if (rc > 0) DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); } static void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_mcast_ramrod_params rparam = {NULL}; int rc; rparam.mcast_obj = &vf->mcast_obj; vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); /* If there are pending mcast commands - send them */ if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); if (rc < 0) BNX2X_ERR("Failed to send pending mcast commands: %d\n", rc); } } static void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, struct bnx2x_virtf *vf) { smp_mb__before_atomic(); clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); smp_mb__after_atomic(); } static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, struct bnx2x_virtf *vf) { vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); } int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) { struct bnx2x_virtf *vf; int qidx = 0, abs_vfid; u8 opcode; u16 cid = 0xffff; if (!IS_SRIOV(bp)) return 1; /* first get the cid - the only events we handle here are cfc-delete * and set-mac completion */ opcode = elem->message.opcode; switch (opcode) { case EVENT_RING_OPCODE_CFC_DEL: cid = SW_CID(elem->message.data.cfc_del_event.cid); DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); break; case EVENT_RING_OPCODE_CLASSIFICATION_RULES: case EVENT_RING_OPCODE_MULTICAST_RULES: case EVENT_RING_OPCODE_FILTERS_RULES: case EVENT_RING_OPCODE_RSS_UPDATE_RULES: cid = SW_CID(elem->message.data.eth_event.echo); DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); break; case EVENT_RING_OPCODE_VF_FLR: abs_vfid = elem->message.data.vf_flr_event.vf_id; DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", abs_vfid); goto get_vf; case EVENT_RING_OPCODE_MALICIOUS_VF: abs_vfid = elem->message.data.malicious_vf_event.vf_id; BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", abs_vfid, elem->message.data.malicious_vf_event.err_id); goto get_vf; default: return 1; } /* check if the cid is the VF range */ if (!bnx2x_iov_is_vf_cid(bp, cid)) { DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); return 1; } /* extract vf and rxq index from vf_cid - relies on the following: * 1. vfid on cid reflects the true abs_vfid * 2. The max number of VFs (per path) is 64 */ qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); get_vf: vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); if (!vf) { BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", cid, abs_vfid); return 0; } switch (opcode) { case EVENT_RING_OPCODE_CFC_DEL: DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", vf->abs_vfid, qidx); vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, &vfq_get(vf, qidx)->sp_obj, BNX2X_Q_CMD_CFC_DEL); break; case EVENT_RING_OPCODE_CLASSIFICATION_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); break; case EVENT_RING_OPCODE_MULTICAST_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_mcast_eqe(bp, vf); break; case EVENT_RING_OPCODE_FILTERS_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_filters_eqe(bp, vf); break; case EVENT_RING_OPCODE_RSS_UPDATE_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_rss_update_eqe(bp, vf); /* fall through */ case EVENT_RING_OPCODE_VF_FLR: /* Do nothing for now */ return 0; case EVENT_RING_OPCODE_MALICIOUS_VF: vf->malicious = true; return 0; } return 0; } static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) { /* extract the vf from vf_cid - relies on the following: * 1. vfid on cid reflects the true abs_vfid * 2. The max number of VFs (per path) is 64 */ int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); return bnx2x_vf_by_abs_fid(bp, abs_vfid); } void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, struct bnx2x_queue_sp_obj **q_obj) { struct bnx2x_virtf *vf; if (!IS_SRIOV(bp)) return; vf = bnx2x_vf_by_cid(bp, vf_cid); if (vf) { /* extract queue index from vf_cid - relies on the following: * 1. vfid on cid reflects the true abs_vfid * 2. The max number of VFs (per path) is 64 */ int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); } else { BNX2X_ERR("No vf matching cid %d\n", vf_cid); } } void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) { int i; int first_queue_query_index, num_queues_req; dma_addr_t cur_data_offset; struct stats_query_entry *cur_query_entry; u8 stats_count = 0; bool is_fcoe = false; if (!IS_SRIOV(bp)) return; if (!NO_FCOE(bp)) is_fcoe = true; /* fcoe adds one global request and one queue request */ num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - (is_fcoe ? 0 : 1); DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, first_queue_query_index + num_queues_req); cur_data_offset = bp->fw_stats_data_mapping + offsetof(struct bnx2x_fw_stats_data, queue_stats) + num_queues_req * sizeof(struct per_queue_stats); cur_query_entry = &bp->fw_stats_req-> query[first_queue_query_index + num_queues_req]; for_each_vf(bp, i) { int j; struct bnx2x_virtf *vf = BP_VF(bp, i); if (vf->state != VF_ENABLED) { DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), "vf %d not enabled so no stats for it\n", vf->abs_vfid); continue; } if (vf->malicious) { DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), "vf %d malicious so no stats for it\n", vf->abs_vfid); continue; } DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), "add addresses for vf %d\n", vf->abs_vfid); for_each_vfq(vf, j) { struct bnx2x_vf_queue *rxq = vfq_get(vf, j); dma_addr_t q_stats_addr = vf->fw_stat_map + j * vf->stats_stride; /* collect stats fro active queues only */ if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == BNX2X_Q_LOGICAL_STATE_STOPPED) continue; /* create stats query entry for this queue */ cur_query_entry->kind = STATS_TYPE_QUEUE; cur_query_entry->index = vfq_stat_id(vf, rxq); cur_query_entry->funcID = cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); cur_query_entry->address.hi = cpu_to_le32(U64_HI(q_stats_addr)); cur_query_entry->address.lo = cpu_to_le32(U64_LO(q_stats_addr)); DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), "added address %x %x for vf %d queue %d client %d\n", cur_query_entry->address.hi, cur_query_entry->address.lo, cur_query_entry->funcID, j, cur_query_entry->index); cur_query_entry++; cur_data_offset += sizeof(struct per_queue_stats); stats_count++; /* all stats are coalesced to the leading queue */ if (vf->cfg_flags & VF_CFG_STATS_COALESCE) break; } } bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; } /* VF API helpers */ static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, u8 enable) { u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; u32 val = enable ? (abs_vfid | (1 << 6)) : 0; REG_WR(bp, reg, val); } static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) { int i; for_each_vfq(vf, i) bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, vfq_qzone_id(vf, vfq_get(vf, i)), false); } static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) { u32 val; /* clear the VF configuration - pretend */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) { return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), BNX2X_VF_MAX_QUEUES); } static int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, struct vf_pf_resc_request *req_resc) { u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); return ((req_resc->num_rxqs <= rxq_cnt) && (req_resc->num_txqs <= txq_cnt) && (req_resc->num_sbs <= vf_sb_count(vf)) && (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); } /* CORE VF API */ int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, struct vf_pf_resc_request *resc) { int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * BNX2X_CIDS_PER_VF; union cdu_context *base_cxt = (union cdu_context *) BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + (base_vf_cid & (ILT_PAGE_CIDS-1)); int i; /* if state is 'acquired' the VF was not released or FLR'd, in * this case the returned resources match the acquired already * acquired resources. Verify that the requested numbers do * not exceed the already acquired numbers. */ if (vf->state == VF_ACQUIRED) { DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", vf->abs_vfid); if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", vf->abs_vfid); return -EINVAL; } return 0; } /* Otherwise vf state must be 'free' or 'reset' */ if (vf->state != VF_FREE && vf->state != VF_RESET) { BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", vf->abs_vfid, vf->state); return -EINVAL; } /* static allocation: * the global maximum number are fixed per VF. Fail the request if * requested number exceed these globals */ if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { DP(BNX2X_MSG_IOV, "cannot fulfill vf resource request. Placing maximal available values in response\n"); /* set the max resource in the vf */ return -ENOMEM; } /* Set resources counters - 0 request means max available */ vf_sb_count(vf) = resc->num_sbs; vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); DP(BNX2X_MSG_IOV, "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", vf_sb_count(vf), vf_rxq_count(vf), vf_txq_count(vf), vf_mac_rules_cnt(vf), vf_vlan_rules_cnt(vf)); /* Initialize the queues */ if (!vf->vfqs) { DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); return -EINVAL; } for_each_vfq(vf, i) { struct bnx2x_vf_queue *q = vfq_get(vf, i); if (!q) { BNX2X_ERR("q number %d was not allocated\n", i); return -EINVAL; } q->index = i; q->cxt = &((base_cxt + i)->eth); q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", vf->abs_vfid, i, q->index, q->cid, q->cxt); /* init SP objects */ bnx2x_vfq_init(bp, vf, q); } vf->state = VF_ACQUIRED; return 0; } int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) { struct bnx2x_func_init_params func_init = {0}; int i; /* the sb resources are initialized at this point, do the * FW/HW initializations */ for_each_vf_sb(vf, i) bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, vf_igu_sb(vf, i), vf_igu_sb(vf, i)); /* Sanity checks */ if (vf->state != VF_ACQUIRED) { DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", vf->abs_vfid, vf->state); return -EINVAL; } /* let FLR complete ... */ msleep(100); /* FLR cleanup epilogue */ if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) return -EBUSY; /* reset IGU VF statistics: MSIX */ REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); /* function setup */ func_init.pf_id = BP_FUNC(bp); func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); bnx2x_func_init(bp, &func_init); /* Enable the vf */ bnx2x_vf_enable_access(bp, vf->abs_vfid); bnx2x_vf_enable_traffic(bp, vf); /* queue protection table */ for_each_vfq(vf, i) bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, vfq_qzone_id(vf, vfq_get(vf, i)), true); vf->state = VF_ENABLED; /* update vf bulletin board */ bnx2x_post_vf_bulletin(bp, vf->index); return 0; } struct set_vf_state_cookie { struct bnx2x_virtf *vf; u8 state; }; static void bnx2x_set_vf_state(void *cookie) { struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; p->vf->state = p->state; } int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) { int rc = 0, i; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); /* Close all queues */ for (i = 0; i < vf_rxq_count(vf); i++) { rc = bnx2x_vf_queue_teardown(bp, vf, i); if (rc) goto op_err; } /* disable the interrupts */ DP(BNX2X_MSG_IOV, "disabling igu\n"); bnx2x_vf_igu_disable(bp, vf); /* disable the VF */ DP(BNX2X_MSG_IOV, "clearing qtbl\n"); bnx2x_vf_clr_qtbl(bp, vf); /* need to make sure there are no outstanding stats ramrods which may * cause the device to access the VF's stats buffer which it will free * as soon as we return from the close flow. */ { struct set_vf_state_cookie cookie; cookie.vf = vf; cookie.state = VF_ACQUIRED; rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); if (rc) goto op_err; } DP(BNX2X_MSG_IOV, "set state to acquired\n"); return 0; op_err: BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); return rc; } /* VF release can be called either: 1. The VF was acquired but * not enabled 2. the vf was enabled or in the process of being * enabled */ int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) { int rc; DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, vf->state == VF_FREE ? "Free" : vf->state == VF_ACQUIRED ? "Acquired" : vf->state == VF_ENABLED ? "Enabled" : vf->state == VF_RESET ? "Reset" : "Unknown"); switch (vf->state) { case VF_ENABLED: rc = bnx2x_vf_close(bp, vf); if (rc) goto op_err; /* Fallthrough to release resources */ case VF_ACQUIRED: DP(BNX2X_MSG_IOV, "about to free resources\n"); bnx2x_vf_free_resc(bp, vf); break; case VF_FREE: case VF_RESET: default: break; } return 0; op_err: BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); return rc; } int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_config_rss_params *rss) { DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); return bnx2x_config_rss(bp, rss); } int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, struct vfpf_tpa_tlv *tlv, struct bnx2x_queue_update_tpa_params *params) { aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; struct bnx2x_queue_state_params qstate; int qid, rc = 0; DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); /* Set ramrod params */ memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); memcpy(&qstate.params.update_tpa, params, sizeof(struct bnx2x_queue_update_tpa_params)); qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); for (qid = 0; qid < vf_rxq_count(vf); qid++) { qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); qstate.params.update_tpa.sge_map = sge_addr[qid]; DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", vf->abs_vfid, qid, U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid])); rc = bnx2x_queue_state_change(bp, &qstate); if (rc) { BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), vf->abs_vfid, qid); return rc; } } return rc; } /* VF release ~ VF close + VF release-resources * Release is the ultimate SW shutdown and is called whenever an * irrecoverable error is encountered. */ int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) { int rc; DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); rc = bnx2x_vf_free(bp, vf); if (rc) WARN(rc, "VF[%d] Failed to allocate resources for release op- rc=%d\n", vf->abs_vfid, rc); bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); return rc; } void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, enum channel_tlvs tlv) { /* we don't lock the channel for unsupported tlvs */ if (!bnx2x_tlv_supported(tlv)) { BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); return; } /* lock the channel */ mutex_lock(&vf->op_mutex); /* record the locking op */ vf->op_current = tlv; /* log the lock */ DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", vf->abs_vfid, tlv); } void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, enum channel_tlvs expected_tlv) { enum channel_tlvs current_tlv; if (!vf) { BNX2X_ERR("VF was %p\n", vf); return; } current_tlv = vf->op_current; /* we don't unlock the channel for unsupported tlvs */ if (!bnx2x_tlv_supported(expected_tlv)) return; WARN(expected_tlv != vf->op_current, "lock mismatch: expected %d found %d", expected_tlv, vf->op_current); /* record the locking op */ vf->op_current = CHANNEL_TLV_NONE; /* lock the channel */ mutex_unlock(&vf->op_mutex); /* log the unlock */ DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", vf->abs_vfid, current_tlv); } static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) { struct bnx2x_queue_state_params q_params; u32 prev_flags; int i, rc; /* Verify changes are needed and record current Tx switching state */ prev_flags = bp->flags; if (enable) bp->flags |= TX_SWITCHING; else bp->flags &= ~TX_SWITCHING; if (prev_flags == bp->flags) return 0; /* Verify state enables the sending of queue ramrods */ if ((bp->state != BNX2X_STATE_OPEN) || (bnx2x_get_q_logical_state(bp, &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != BNX2X_Q_LOGICAL_STATE_ACTIVE)) return 0; /* send q. update ramrod to configure Tx switching */ memset(&q_params, 0, sizeof(q_params)); __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); q_params.cmd = BNX2X_Q_CMD_UPDATE; __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, &q_params.params.update.update_flags); if (enable) __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &q_params.params.update.update_flags); else __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &q_params.params.update.update_flags); /* send the ramrod on all the queues of the PF */ for_each_eth_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; /* Set the appropriate Queue object */ q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; /* Update the Queue state */ rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Failed to configure Tx switching\n"); return rc; } } DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); return 0; } int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) { struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); if (!IS_SRIOV(bp)) { BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); return -EINVAL; } DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", num_vfs_param, BNX2X_NR_VIRTFN(bp)); /* HW channel is only operational when PF is up */ if (bp->state != BNX2X_STATE_OPEN) { BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); return -EINVAL; } /* we are always bound by the total_vfs in the configuration space */ if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", num_vfs_param, BNX2X_NR_VIRTFN(bp)); num_vfs_param = BNX2X_NR_VIRTFN(bp); } bp->requested_nr_virtfn = num_vfs_param; if (num_vfs_param == 0) { bnx2x_set_pf_tx_switching(bp, false); bnx2x_disable_sriov(bp); return 0; } else { return bnx2x_enable_sriov(bp); } } #define IGU_ENTRY_SIZE 4 int bnx2x_enable_sriov(struct bnx2x *bp) { int rc = 0, req_vfs = bp->requested_nr_virtfn; int vf_idx, sb_idx, vfq_idx, qcount, first_vf; u32 igu_entry, address; u16 num_vf_queues; if (req_vfs == 0) return 0; first_vf = bp->vfdb->sriov.first_vf_in_pf; /* statically distribute vf sb pool between VFs */ num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, BP_VFDB(bp)->vf_sbs_pool / req_vfs); /* zero previous values learned from igu cam */ for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); vf->sb_count = 0; vf_sb_count(BP_VF(bp, vf_idx)) = 0; } bp->vfdb->vf_sbs_pool = 0; /* prepare IGU cam */ sb_idx = BP_VFDB(bp)->first_vf_igu_entry; address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | IGU_REG_MAPPING_MEMORY_VALID; DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", sb_idx, vf_idx); REG_WR(bp, address, igu_entry); sb_idx++; address += IGU_ENTRY_SIZE; } } /* Reinitialize vf database according to igu cam */ bnx2x_get_vf_igu_cam_info(bp); DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); qcount = 0; for_each_vf(bp, vf_idx) { struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); /* set local queue arrays */ vf->vfqs = &bp->vfdb->vfqs[qcount]; qcount += vf_sb_count(vf); bnx2x_iov_static_resc(bp, vf); } /* prepare msix vectors in VF configuration space - the value in the * PCI configuration space should be the index of the last entry, * namely one less than the actual size of the table */ for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, num_vf_queues - 1); DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", vf_idx, num_vf_queues - 1); } bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); /* enable sriov. This will probe all the VFs, and consequentially cause * the "acquire" messages to appear on the VF PF channel. */ DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); bnx2x_disable_sriov(bp); rc = bnx2x_set_pf_tx_switching(bp, true); if (rc) return rc; rc = pci_enable_sriov(bp->pdev, req_vfs); if (rc) { BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); return rc; } DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); return req_vfs; } void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) { int vfidx; struct pf_vf_bulletin_content *bulletin; DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); for_each_vf(bp, vfidx) { bulletin = BP_VF_BULLETIN(bp, vfidx); if (bulletin->valid_bitmap & (1 << VLAN_VALID)) bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, htons(ETH_P_8021Q)); } } void bnx2x_disable_sriov(struct bnx2x *bp) { if (pci_vfs_assigned(bp->pdev)) { DP(BNX2X_MSG_IOV, "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); return; } pci_disable_sriov(bp->pdev); } static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, struct bnx2x_virtf **vf, struct pf_vf_bulletin_content **bulletin, bool test_queue) { if (bp->state != BNX2X_STATE_OPEN) { BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); return -EINVAL; } if (!IS_SRIOV(bp)) { BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); return -EINVAL; } if (vfidx >= BNX2X_NR_VIRTFN(bp)) { BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", vfidx, BNX2X_NR_VIRTFN(bp)); return -EINVAL; } /* init members */ *vf = BP_VF(bp, vfidx); *bulletin = BP_VF_BULLETIN(bp, vfidx); if (!*vf) { BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); return -EINVAL; } if (test_queue && !(*vf)->vfqs) { BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", vfidx); return -EINVAL; } if (!*bulletin) { BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", vfidx); return -EINVAL; } return 0; } int bnx2x_get_vf_config(struct net_device *dev, int vfidx, struct ifla_vf_info *ivi) { struct bnx2x *bp = netdev_priv(dev); struct bnx2x_virtf *vf = NULL; struct pf_vf_bulletin_content *bulletin = NULL; struct bnx2x_vlan_mac_obj *mac_obj; struct bnx2x_vlan_mac_obj *vlan_obj; int rc; /* sanity and init */ rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); if (rc) return rc; mac_obj = &bnx2x_leading_vfq(vf, mac_obj); vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); if (!mac_obj || !vlan_obj) { BNX2X_ERR("VF partially initialized\n"); return -EINVAL; } ivi->vf = vfidx; ivi->qos = 0; ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ ivi->min_tx_rate = 0; ivi->spoofchk = vf->spoofchk ? 1 : 0; ivi->linkstate = vf->link_cfg; if (vf->state == VF_ENABLED) { /* mac and vlan are in vlan_mac objects */ if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 0, ETH_ALEN); vlan_obj->get_n_elements(bp, vlan_obj, 1, (u8 *)&ivi->vlan, 0, VLAN_HLEN); } } else { mutex_lock(&bp->vfdb->bulletin_mutex); /* mac */ if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) /* mac configured by ndo so its in bulletin board */ memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); else /* function has not been loaded yet. Show mac as 0s */ eth_zero_addr(ivi->mac); /* vlan */ if (bulletin->valid_bitmap & (1 << VLAN_VALID)) /* vlan configured by ndo so its in bulletin board */ memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); else /* function has not been loaded yet. Show vlans as 0s */ memset(&ivi->vlan, 0, VLAN_HLEN); mutex_unlock(&bp->vfdb->bulletin_mutex); } return 0; } /* New mac for VF. Consider these cases: * 1. VF hasn't been acquired yet - save the mac in local bulletin board and * supply at acquire. * 2. VF has already been acquired but has not yet initialized - store in local * bulletin board. mac will be posted on VF bulletin board after VF init. VF * will configure this mac when it is ready. * 3. VF has already initialized but has not yet setup a queue - post the new * mac on VF's bulletin board right now. VF will configure this mac when it * is ready. * 4. VF has already set a queue - delete any macs already configured for this * queue and manually config the new mac. * In any event, once this function has been called refuse any attempts by the * VF to configure any mac for itself except for this mac. In case of a race * where the VF fails to see the new post on its bulletin board before sending a * mac configuration request, the PF will simply fail the request and VF can try * again after consulting its bulletin board. */ int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) { struct bnx2x *bp = netdev_priv(dev); int rc, q_logical_state; struct bnx2x_virtf *vf = NULL; struct pf_vf_bulletin_content *bulletin = NULL; if (!is_valid_ether_addr(mac)) { BNX2X_ERR("mac address invalid\n"); return -EINVAL; } /* sanity and init */ rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); if (rc) return rc; mutex_lock(&bp->vfdb->bulletin_mutex); /* update PF's copy of the VF's bulletin. Will no longer accept mac * configuration requests from vf unless match this mac */ bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; memcpy(bulletin->mac, mac, ETH_ALEN); /* Post update on VF's bulletin board */ rc = bnx2x_post_vf_bulletin(bp, vfidx); /* release lock before checking return code */ mutex_unlock(&bp->vfdb->bulletin_mutex); if (rc) { BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); return rc; } q_logical_state = bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); if (vf->state == VF_ENABLED && q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { /* configure the mac in device on this vf's queue */ unsigned long ramrod_flags = 0; struct bnx2x_vlan_mac_obj *mac_obj; /* User should be able to see failure reason in system logs */ if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) return -EINVAL; /* must lock vfpf channel to protect against vf flows */ bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); /* remove existing eth macs */ mac_obj = &bnx2x_leading_vfq(vf, mac_obj); rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); if (rc) { BNX2X_ERR("failed to delete eth macs\n"); rc = -EINVAL; goto out; } /* remove existing uc list macs */ rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); if (rc) { BNX2X_ERR("failed to delete uc_list macs\n"); rc = -EINVAL; goto out; } /* configure the new mac to device */ __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, BNX2X_ETH_MAC, &ramrod_flags); out: bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); } return rc; } static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, struct bnx2x_virtf *vf, bool accept) { struct bnx2x_rx_mode_ramrod_params rx_ramrod; unsigned long accept_flags; /* need to remove/add the VF's accept_any_vlan bit */ accept_flags = bnx2x_leading_vfq(vf, accept_flags); if (accept) set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); else clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, accept_flags); bnx2x_leading_vfq(vf, accept_flags) = accept_flags; bnx2x_config_rx_mode(bp, &rx_ramrod); } static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, u16 vlan, bool add) { struct bnx2x_vlan_mac_ramrod_params ramrod_param; unsigned long ramrod_flags = 0; int rc = 0; /* configure the new vlan to device */ memset(&ramrod_param, 0, sizeof(ramrod_param)); __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); ramrod_param.ramrod_flags = ramrod_flags; ramrod_param.user_req.u.vlan.vlan = vlan; ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL; rc = bnx2x_config_vlan_mac(bp, &ramrod_param); if (rc) { BNX2X_ERR("failed to configure vlan\n"); return -EINVAL; } return 0; } int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, __be16 vlan_proto) { struct pf_vf_bulletin_content *bulletin = NULL; struct bnx2x *bp = netdev_priv(dev); struct bnx2x_vlan_mac_obj *vlan_obj; unsigned long vlan_mac_flags = 0; unsigned long ramrod_flags = 0; struct bnx2x_virtf *vf = NULL; int i, rc; if (vlan > 4095) { BNX2X_ERR("illegal vlan value %d\n", vlan); return -EINVAL; } if (vlan_proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", vfidx, vlan, 0); /* sanity and init */ rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); if (rc) return rc; /* update PF's copy of the VF's bulletin. No point in posting the vlan * to the VF since it doesn't have anything to do with it. But it useful * to store it here in case the VF is not up yet and we can only * configure the vlan later when it does. Treat vlan id 0 as remove the * Host tag. */ mutex_lock(&bp->vfdb->bulletin_mutex); if (vlan > 0) bulletin->valid_bitmap |= 1 << VLAN_VALID; else bulletin->valid_bitmap &= ~(1 << VLAN_VALID); bulletin->vlan = vlan; /* Post update on VF's bulletin board */ rc = bnx2x_post_vf_bulletin(bp, vfidx); if (rc) BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); mutex_unlock(&bp->vfdb->bulletin_mutex); /* is vf initialized and queue set up? */ if (vf->state != VF_ENABLED || bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != BNX2X_Q_LOGICAL_STATE_ACTIVE) return rc; /* User should be able to see error in system logs */ if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) return -EINVAL; /* must lock vfpf channel to protect against vf flows */ bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); /* remove existing vlans */ __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, &ramrod_flags); if (rc) { BNX2X_ERR("failed to delete vlans\n"); rc = -EINVAL; goto out; } /* clear accept_any_vlan when HV forces vlan, otherwise * according to VF capabilities */ if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); if (rc) goto out; /* send queue update ramrods to configure default vlan and * silent vlan removal */ for_each_vfq(vf, i) { struct bnx2x_queue_state_params q_params = {NULL}; struct bnx2x_queue_update_params *update_params; q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); /* validate the Q is UP */ if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != BNX2X_Q_LOGICAL_STATE_ACTIVE) continue; __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); q_params.cmd = BNX2X_Q_CMD_UPDATE; update_params = &q_params.params.update; __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, &update_params->update_flags); __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, &update_params->update_flags); if (vlan == 0) { /* if vlan is 0 then we want to leave the VF traffic * untagged, and leave the incoming traffic untouched * (i.e. do not remove any vlan tags). */ __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &update_params->update_flags); __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &update_params->update_flags); } else { /* configure default vlan to vf queue and set silent * vlan removal (the vf remains unaware of this vlan). */ __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &update_params->update_flags); __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &update_params->update_flags); update_params->def_vlan = vlan; update_params->silent_removal_value = vlan & VLAN_VID_MASK; update_params->silent_removal_mask = VLAN_VID_MASK; } /* Update the Queue state */ rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Failed to configure default VLAN queue %d\n", i); goto out; } } out: bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); if (rc) DP(BNX2X_MSG_IOV, "updated VF[%d] vlan configuration (vlan = %d)\n", vfidx, vlan); return rc; } int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val) { struct bnx2x *bp = netdev_priv(dev); struct bnx2x_virtf *vf; int i, rc = 0; vf = BP_VF(bp, idx); if (!vf) return -EINVAL; /* nothing to do */ if (vf->spoofchk == val) return 0; vf->spoofchk = val ? 1 : 0; DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n", val ? "enabling" : "disabling", idx); /* is vf initialized and queue set up? */ if (vf->state != VF_ENABLED || bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != BNX2X_Q_LOGICAL_STATE_ACTIVE) return rc; /* User should be able to see error in system logs */ if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) return -EINVAL; /* send queue update ramrods to configure spoofchk */ for_each_vfq(vf, i) { struct bnx2x_queue_state_params q_params = {NULL}; struct bnx2x_queue_update_params *update_params; q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); /* validate the Q is UP */ if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != BNX2X_Q_LOGICAL_STATE_ACTIVE) continue; __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); q_params.cmd = BNX2X_Q_CMD_UPDATE; update_params = &q_params.params.update; __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &update_params->update_flags); if (val) { __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &update_params->update_flags); } else { __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &update_params->update_flags); } /* Update the Queue state */ rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n", val ? "enable" : "disable", idx, i); goto out; } } out: if (!rc) DP(BNX2X_MSG_IOV, "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled", idx); return rc; } /* crc is the first field in the bulletin board. Compute the crc over the * entire bulletin board excluding the crc field itself. Use the length field * as the Bulletin Board was posted by a PF with possibly a different version * from the vf which will sample it. Therefore, the length is computed by the * PF and then used blindly by the VF. */ u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) { return crc32(BULLETIN_CRC_SEED, ((u8 *)bulletin) + sizeof(bulletin->crc), bulletin->length - sizeof(bulletin->crc)); } /* Check for new posts on the bulletin board */ enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) { struct pf_vf_bulletin_content *bulletin; int attempts; /* sampling structure in mid post may result with corrupted data * validate crc to ensure coherency. */ for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { u32 crc; /* sample the bulletin board */ memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, sizeof(union pf_vf_bulletin)); crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); if (bp->shadow_bulletin.content.crc == crc) break; BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", bp->shadow_bulletin.content.crc, crc); } if (attempts >= BULLETIN_ATTEMPTS) { BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", attempts); return PFVF_BULLETIN_CRC_ERR; } bulletin = &bp->shadow_bulletin.content; /* bulletin board hasn't changed since last sample */ if (bp->old_bulletin.version == bulletin->version) return PFVF_BULLETIN_UNCHANGED; /* the mac address in bulletin board is valid and is new */ if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { /* update new mac to net device */ memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); } if (bulletin->valid_bitmap & (1 << LINK_VALID)) { DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", bulletin->link_speed, bulletin->link_flags); bp->vf_link_vars.line_speed = bulletin->link_speed; bp->vf_link_vars.link_report_flags = 0; /* Link is down */ if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, &bp->vf_link_vars.link_report_flags); /* Full DUPLEX */ if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) __set_bit(BNX2X_LINK_REPORT_FD, &bp->vf_link_vars.link_report_flags); /* Rx Flow Control is ON */ if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &bp->vf_link_vars.link_report_flags); /* Tx Flow Control is ON */ if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &bp->vf_link_vars.link_report_flags); __bnx2x_link_report(bp); } /* copy new bulletin board to bp */ memcpy(&bp->old_bulletin, bulletin, sizeof(struct pf_vf_bulletin_content)); return PFVF_BULLETIN_UPDATED; } void bnx2x_timer_sriov(struct bnx2x *bp) { bnx2x_sample_bulletin(bp); /* if channel is down we need to self destruct */ if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, BNX2X_MSG_IOV); } void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) { /* vf doorbells are embedded within the regview */ return bp->regview + PXP_VF_ADDR_DB_START; } void bnx2x_vf_pci_dealloc(struct bnx2x *bp) { BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, sizeof(struct bnx2x_vf_mbx_msg)); BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping, sizeof(union pf_vf_bulletin)); } int bnx2x_vf_pci_alloc(struct bnx2x *bp) { mutex_init(&bp->vf2pf_mutex); /* allocate vf2pf mailbox for vf to pf channel */ bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, sizeof(struct bnx2x_vf_mbx_msg)); if (!bp->vf2pf_mbox) goto alloc_mem_err; /* allocate pf 2 vf bulletin board */ bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, sizeof(union pf_vf_bulletin)); if (!bp->pf2vf_bulletin) goto alloc_mem_err; bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); return 0; alloc_mem_err: bnx2x_vf_pci_dealloc(bp); return -ENOMEM; } void bnx2x_iov_channel_down(struct bnx2x *bp) { int vf_idx; struct pf_vf_bulletin_content *bulletin; if (!IS_SRIOV(bp)) return; for_each_vf(bp, vf_idx) { /* locate this VFs bulletin board and update the channel down * bit */ bulletin = BP_VF_BULLETIN(bp, vf_idx); bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; /* update vf bulletin board */ bnx2x_post_vf_bulletin(bp, vf_idx); } } void bnx2x_iov_task(struct work_struct *work) { struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); if (!netif_running(bp->dev)) return; if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, &bp->iov_task_state)) bnx2x_vf_handle_flr_event(bp); if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, &bp->iov_task_state)) bnx2x_vf_mbx(bp); } void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) { smp_mb__before_atomic(); set_bit(flag, &bp->iov_task_state); smp_mb__after_atomic(); DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1