Contributors: 107
Author Tokens Token Proportion Commits Commit Proportion
Alexander Duyck 13764 33.97% 202 39.61%
Auke-Jan H Kok 8370 20.66% 2 0.39%
Carolyn Wyborny 3348 8.26% 44 8.63%
Yury Kylulin 1544 3.81% 2 0.39%
Vinicius Costa Gomes 1505 3.71% 8 1.57%
Taku Izumi 1441 3.56% 2 0.39%
Greg Rose 1133 2.80% 7 1.37%
Andre Guedes 949 2.34% 1 0.20%
Mitch A Williams 789 1.95% 7 1.37%
Jesus Sanchez-Palencia 614 1.52% 7 1.37%
Lior Levy 599 1.48% 3 0.59%
Todd Fujinaka 511 1.26% 16 3.14%
Richard Cochran 488 1.20% 4 0.78%
Jeb J. Cramer 435 1.07% 1 0.20%
Yan Zheng 428 1.06% 1 0.20%
Jeff Kirsher 333 0.82% 10 1.96%
Eric Dumazet 324 0.80% 7 1.37%
Matthew Vick 323 0.80% 9 1.76%
Corinna Vinschen 293 0.72% 3 0.59%
Stefan Assmann 279 0.69% 11 2.16%
Nicholas Nunley 226 0.56% 11 2.16%
Akeem G. Abodunrin 221 0.55% 6 1.18%
Gangfeng Huang 209 0.52% 2 0.39%
Jacob E Keller 190 0.47% 8 1.57%
David S. Miller 175 0.43% 3 0.59%
Chuah, Kim Tatt 150 0.37% 1 0.20%
Jiri Pirko 138 0.34% 9 1.76%
Laura Mihaela Vasilescu 118 0.29% 3 0.59%
Stephen Hemminger 103 0.25% 7 1.37%
Rafael J. Wysocki 101 0.25% 2 0.39%
Peter P. Waskiewicz Jr 100 0.25% 2 0.39%
Takuma Ueba 97 0.24% 1 0.20%
Ben Greear 96 0.24% 2 0.39%
Jesse Brandeburg 90 0.22% 8 1.57%
Shota Suzuki 71 0.18% 2 0.39%
Emil Tantilov 58 0.14% 4 0.78%
Patrick Ohly 56 0.14% 3 0.59%
Sergey Nemov 53 0.13% 1 0.20%
Joseph Gasparakis 44 0.11% 2 0.39%
Kees Cook 43 0.11% 2 0.39%
David Decotigny 40 0.10% 1 0.20%
Michał Mirosław 35 0.09% 2 0.39%
Andy Gospodarek 34 0.08% 1 0.20%
Jarod Wilson 33 0.08% 3 0.59%
Koki Sanagi 29 0.07% 1 0.20%
Zhang Shengju 29 0.07% 1 0.20%
Jakub Kiciński 26 0.06% 2 0.39%
Patrick McHardy 26 0.06% 3 0.59%
Sucheta Chakraborty 26 0.06% 1 0.20%
John Stultz 24 0.06% 1 0.20%
Greg Edwards 23 0.06% 1 0.20%
Alexander Graf 22 0.05% 1 0.20%
John Holland 21 0.05% 1 0.20%
Moshe Shemesh 19 0.05% 1 0.20%
Aaron Sierra 17 0.04% 1 0.20%
Maciej Sosnowski 16 0.04% 1 0.20%
Toshiaki Makita 15 0.04% 3 0.59%
Arnd Bergmann 15 0.04% 2 0.39%
Alex Williamson 15 0.04% 3 0.59%
Oliver Hartkopp 14 0.03% 1 0.20%
Christoph Paasch 14 0.03% 2 0.39%
Jan Beulich 13 0.03% 1 0.20%
Eric W. Biedermann 13 0.03% 2 0.39%
Christophe Jaillet 12 0.03% 2 0.39%
Jiang Liu 12 0.03% 1 0.20%
Joanna Yurdal 10 0.02% 1 0.20%
Jia-Ju Bai 9 0.02% 2 0.39%
Guilherme G. Piccoli 9 0.02% 1 0.20%
Yang Hongyang 8 0.02% 2 0.39%
François Romieu 8 0.02% 1 0.20%
John Fastabend 8 0.02% 1 0.20%
Benjamin Poirier 8 0.02% 1 0.20%
Cliff Spradlin 7 0.02% 1 0.20%
Tom Herbert 6 0.01% 1 0.20%
Andrew Lunn 6 0.01% 1 0.20%
Peter Senna Tschudin 6 0.01% 1 0.20%
Li RongQing 5 0.01% 1 0.20%
Anders Berggren 5 0.01% 1 0.20%
Roman Gushchin 5 0.01% 1 0.20%
Alexander Gordeev 4 0.01% 1 0.20%
Stephen Chandler Paul 4 0.01% 1 0.20%
Joe Perches 4 0.01% 2 0.39%
Cao jin 4 0.01% 1 0.20%
John Hurley 4 0.01% 1 0.20%
Paul Gortmaker 3 0.01% 1 0.20%
Johannes Thumshirn 3 0.01% 1 0.20%
Florian Westphal 3 0.01% 1 0.20%
Tejun Heo 3 0.01% 1 0.20%
Arthur Jones 3 0.01% 1 0.20%
Ajit Khaparde 3 0.01% 1 0.20%
Vasily Averin 3 0.01% 1 0.20%
Colin Ian King 3 0.01% 1 0.20%
Michal Hocko 3 0.01% 1 0.20%
Yi Zou 3 0.01% 1 0.20%
Russell King 2 0.00% 1 0.20%
Venkatesh Srinivas 2 0.00% 1 0.20%
Fernando Luis Vázquez Cao 2 0.00% 1 0.20%
Tobias Klauser 2 0.00% 1 0.20%
Al Viro 2 0.00% 1 0.20%
Gustavo A. R. Silva 2 0.00% 1 0.20%
Jean-Philippe Brucker 2 0.00% 1 0.20%
Nogah Frankel 1 0.00% 1 0.20%
Brian King 1 0.00% 1 0.20%
Ben Hutchings 1 0.00% 1 0.20%
Mark Rutland 1 0.00% 1 0.20%
Johannes Berg 1 0.00% 1 0.20%
Mika Westerberg 1 0.00% 1 0.20%
Total 40522 510


// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2018 Intel Corporation. */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <linux/net_tstamp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
#include <linux/if_ether.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include <linux/pm_runtime.h>
#include <linux/etherdevice.h>
#ifdef CONFIG_IGB_DCA
#include <linux/dca.h>
#endif
#include <linux/i2c.h>
#include "igb.h"

#define MAJ 5
#define MIN 4
#define BUILD 0
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
__stringify(BUILD) "-k"

enum queue_mode {
	QUEUE_MODE_STRICT_PRIORITY,
	QUEUE_MODE_STREAM_RESERVATION,
};

enum tx_queue_prio {
	TX_QUEUE_PRIO_HIGH,
	TX_QUEUE_PRIO_LOW,
};

char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
				"Copyright (c) 2007-2014 Intel Corporation.";

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static const struct pci_device_id igb_pci_tbl[] = {
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
int igb_open(struct net_device *);
int igb_close(struct net_device *);
static void igb_configure(struct igb_adapter *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
static void igb_update_phy_info(struct timer_list *);
static void igb_watchdog(struct timer_list *);
static void igb_watchdog_task(struct work_struct *);
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static void igb_get_stats64(struct net_device *dev,
			    struct rtnl_link_stats64 *stats);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter, bool set);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef CONFIG_IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* CONFIG_IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *, int);
static int igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_mode(struct net_device *netdev,
			  netdev_features_t features);
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
static void igb_restore_vlan(struct igb_adapter *);
static void igb_rar_set_index(struct igb_adapter *, u32);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_flush_mac_table(struct igb_adapter *);
static int igb_available_rars(struct igb_adapter *, u8);
static void igb_set_default_mac_filter(struct igb_adapter *);
static int igb_uc_sync(struct net_device *, const unsigned char *);
static int igb_uc_unsync(struct net_device *, const unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
				bool setting);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
static void igb_nfc_filter_exit(struct igb_adapter *adapter);
static void igb_nfc_filter_restore(struct igb_adapter *adapter);

#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
static int igb_disable_sriov(struct pci_dev *dev);
static int igb_pci_disable_sriov(struct pci_dev *dev);
#endif

static int igb_suspend(struct device *);
static int igb_resume(struct device *);
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
static void igb_shutdown(struct pci_dev *);
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
#ifdef CONFIG_IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
#ifdef CONFIG_PCI_IOV
static unsigned int max_vfs;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
#endif /* CONFIG_PCI_IOV */

static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static const struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = igb_remove,
#ifdef CONFIG_PM
	.driver.pm = &igb_pm_ops,
#endif
	.shutdown = igb_shutdown,
	.sriov_configure = igb_pci_sriov_configure,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);

#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/* igb_regdump - register printout routine */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
}

/* igb_dump - Print registers, Tx-rings and Rx-rings */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	u16 i, n;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		pr_info("Device Name     state            trans_start\n");
		pr_info("%-15s %016lX %016lX\n", netdev->name,
			netdev->state, dev_trans_start(netdev));
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	pr_info(" Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
		struct igb_tx_buffer *buffer_info;
		tx_ring = adapter->tx_ring[n];
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
			const char *next_desc;
			struct igb_tx_buffer *buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, i);
			buffer_info = &tx_ring->tx_buffer_info[i];
			u0 = (struct my_u0 *)tx_desc;
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
				i, le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb, next_desc);

			if (netif_msg_pktdata(adapter) && buffer_info->skb)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, buffer_info->skb->data,
					dma_unmap_len(buffer_info, len),
					true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	pr_info("Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
			const char *next_desc;
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
			rx_desc = IGB_RX_DESC(rx_ring, i);
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					next_desc);
			} else {
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					next_desc);

				if (netif_msg_pktdata(adapter) &&
				    buffer_info->dma && buffer_info->page) {
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
					  igb_rx_bufsz(rx_ring), true);
				}
			}
		}
	}

exit:
	return;
}

/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
 **/
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return !!(i2cctl & E1000_I2C_DATA_IN);
}

/**
 *  igb_set_i2c_data - Sets the I2C data bit
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
 **/
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
 **/
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
 **/
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return !!(i2cctl & E1000_I2C_CLK_IN);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

/**
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
 **/
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev;
}

/**
 *  igb_init_module - Driver Registration Routine
 *
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;

	pr_info("%s - version %s\n",
	       igb_driver_string, igb_driver_version);
	pr_info("%s\n", igb_copyright);

#ifdef CONFIG_IGB_DCA
	dca_register_notify(&dca_notifier);
#endif
	ret = pci_register_driver(&igb_driver);
	return ret;
}

module_init(igb_init_module);

/**
 *  igb_exit_module - Driver Exit Cleanup Routine
 *
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
 **/
static void __exit igb_exit_module(void)
{
#ifdef CONFIG_IGB_DCA
	dca_unregister_notify(&dca_notifier);
#endif
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
 *
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i = 0, j = 0;
	u32 rbase_offset = adapter->vfs_allocated_count;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		if (adapter->vfs_allocated_count) {
			for (; i < adapter->rss_queues; i++)
				adapter->rx_ring[i]->reg_idx = rbase_offset +
							       Q_IDX_82576(i);
		}
		/* Fall through */
	case e1000_82575:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		/* Fall through */
	default:
		for (; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
		for (; j < adapter->num_tx_queues; j++)
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
		break;
	}
}

u32 igb_rd32(struct e1000_hw *hw, u32 reg)
{
	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
	u32 value = 0;

	if (E1000_REMOVED(hw_addr))
		return ~value;

	value = readl(&hw_addr[reg]);

	/* reads should not return all F's */
	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
		struct net_device *netdev = igb->netdev;
		hw->hw_addr = NULL;
		netdev_err(netdev, "PCIe link lost\n");
	}

	return value;
}

/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
	u32 msixbm = 0;

	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;

	switch (hw->mac.type) {
	case e1000_82575:
		/* The 82575 assigns vectors using a bitmask, which matches the
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
		if (tx_queue > IGB_N0_QUEUE)
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
		q_vector->eims_value = msixbm;
		break;
	case e1000_82576:
		/* 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
		q_vector->eims_value = BIT(msix_vector);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		/* On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
		q_vector->eims_value = BIT(msix_vector);
		break;
	default:
		BUG();
		break;
	}

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
}

/**
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
 *
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
	switch (hw->mac.type) {
	case e1000_82575:
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
		adapter->eims_other = E1000_EIMS_OTHER;

		break;

	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug.
		 */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = BIT(vector);
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

		wr32(E1000_IVAR_MISC, tmp);
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);

	wrfl();
}

/**
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
 *
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i, err = 0, vector = 0, free_vector = 0;

	err = request_irq(adapter->msix_entries[vector].vector,
			  igb_msix_other, 0, netdev->name, adapter);
	if (err)
		goto err_out;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		vector++;

		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);

		if (q_vector->rx.ring && q_vector->tx.ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
				q_vector->rx.ring->queue_index);
		else
			sprintf(q_vector->name, "%s-unused", netdev->name);

		err = request_irq(adapter->msix_entries[vector].vector,
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
		if (err)
			goto err_free;
	}

	igb_configure_msix(adapter);
	return 0;

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
	return err;
}

/**
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
 *
 *  This function frees the memory allocated to the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	adapter->q_vector[v_idx] = NULL;

	/* igb_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	if (q_vector)
		kfree_rcu(q_vector, rcu);
}

/**
 *  igb_reset_q_vector - Reset config for interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be reset
 *
 *  If NAPI is enabled it will delete any references to the
 *  NAPI struct. This is preparation for igb_free_q_vector.
 **/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	/* Coming from igb_set_interrupt_capability, the vectors are not yet
	 * allocated. So, q_vector is NULL so we should stop here.
	 */
	if (!q_vector)
		return;

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;

	netif_napi_del(&q_vector->napi);

}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	int v_idx = adapter->num_q_vectors;

	if (adapter->flags & IGB_FLAG_HAS_MSIX)
		pci_disable_msix(adapter->pdev);
	else if (adapter->flags & IGB_FLAG_HAS_MSI)
		pci_disable_msi(adapter->pdev);

	while (v_idx--)
		igb_reset_q_vector(adapter, v_idx);
}

/**
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
 *
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--) {
		igb_reset_q_vector(adapter, v_idx);
		igb_free_q_vector(adapter, v_idx);
	}
}

/**
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
 *
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}

/**
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
 *
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
{
	int err;
	int numvecs, i;

	if (!msix)
		goto msi_only;
	adapter->flags |= IGB_FLAG_HAS_MSIX;

	/* Number of supported queues. */
	adapter->num_rx_queues = adapter->rss_queues;
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;

	/* start with one vector for every Rx queue */
	numvecs = adapter->num_rx_queues;

	/* if Tx handler is separate add 1 for every Tx queue */
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix_range(adapter->pdev,
				    adapter->msix_entries,
				    numvecs,
				    numvecs);
	if (err > 0)
		return;

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_mac_list);
		adapter->vf_mac_list = NULL;
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
	adapter->vfs_allocated_count = 0;
	adapter->rss_queues = 1;
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
	adapter->num_rx_queues = 1;
	adapter->num_tx_queues = 1;
	adapter->num_q_vectors = 1;
	if (!pci_enable_msi(adapter->pdev))
		adapter->flags |= IGB_FLAG_HAS_MSI;
}

static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

/**
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
 *
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
 **/
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
{
	struct igb_q_vector *q_vector;
	struct igb_ring *ring;
	int ring_count, size;

	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = adapter->q_vector[v_idx];
	if (!q_vector) {
		q_vector = kzalloc(size, GFP_KERNEL);
	} else if (size > ksize(q_vector)) {
		kfree_rcu(q_vector, rcu);
		q_vector = kzalloc(size, GFP_KERNEL);
	} else {
		memset(q_vector, 0, size);
	}
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		ring->cbs_enable = false;
		ring->idleslope = 0;
		ring->sendslope = 0;
		ring->hicredit = 0;
		ring->locredit = 0;

		u64_stats_init(&ring->tx_syncp);
		u64_stats_init(&ring->tx_syncp2);

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
	}

	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);

		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);

		/* On i350, i354, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		u64_stats_init(&ring->rx_syncp);

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
}


/**
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
 *
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;

	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);

			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
		}
	}

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);

		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

	return 0;

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
}

/**
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
 *
 *  This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter, msix);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	igb_cache_ring_register(adapter);

	return 0;

err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

/**
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
 *
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		err = igb_request_msix(adapter);
		if (!err)
			goto request_done;
		/* fall back to MSI */
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);

		igb_clear_interrupt_scheme(adapter);
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
			goto request_done;

		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
		igb_configure(adapter);
	}

	igb_assign_vector(adapter->q_vector[0], 0);

	if (adapter->flags & IGB_FLAG_HAS_MSI) {
		err = request_irq(pdev->irq, igb_intr_msi, 0,
				  netdev->name, adapter);
		if (!err)
			goto request_done;

		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
	}

	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
			  netdev->name, adapter);

	if (err)
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		int vector = 0, i;

		free_irq(adapter->msix_entries[vector++].vector, adapter);

		for (i = 0; i < adapter->num_q_vectors; i++)
			free_irq(adapter->msix_entries[vector++].vector,
				 adapter->q_vector[i]);
	} else {
		free_irq(adapter->pdev->irq, adapter);
	}
}

/**
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		u32 regval = rd32(E1000_EIAM);

		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
	}

	wr32(E1000_IAM, 0);
	wr32(E1000_IMC, ~0);
	wrfl();
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		int i;

		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
}

/**
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
		u32 regval = rd32(E1000_EIAC);

		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
		wr32(E1000_EIMS, adapter->eims_enable_mask);
		if (adapter->vfs_allocated_count) {
			wr32(E1000_MBVFIMR, 0xFF);
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
	}
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, pf_id, true, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !test_bit(old_vid, adapter->active_vlans)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, vid, pf_id, false, true);
	}
}

/**
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
 *
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
 *
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

static void enable_fqtss(struct igb_adapter *adapter, bool enable)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;

	WARN_ON(hw->mac.type != e1000_i210);

	if (enable)
		adapter->flags |= IGB_FLAG_FQTSS;
	else
		adapter->flags &= ~IGB_FLAG_FQTSS;

	if (netif_running(netdev))
		schedule_work(&adapter->reset_task);
}

static bool is_fqtss_enabled(struct igb_adapter *adapter)
{
	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
}

static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
				   enum tx_queue_prio prio)
{
	u32 val;

	WARN_ON(hw->mac.type != e1000_i210);
	WARN_ON(queue < 0 || queue > 4);

	val = rd32(E1000_I210_TXDCTL(queue));

	if (prio == TX_QUEUE_PRIO_HIGH)
		val |= E1000_TXDCTL_PRIORITY;
	else
		val &= ~E1000_TXDCTL_PRIORITY;

	wr32(E1000_I210_TXDCTL(queue), val);
}

static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
{
	u32 val;

	WARN_ON(hw->mac.type != e1000_i210);
	WARN_ON(queue < 0 || queue > 1);

	val = rd32(E1000_I210_TQAVCC(queue));

	if (mode == QUEUE_MODE_STREAM_RESERVATION)
		val |= E1000_TQAVCC_QUEUEMODE;
	else
		val &= ~E1000_TQAVCC_QUEUEMODE;

	wr32(E1000_I210_TQAVCC(queue), val);
}

static bool is_any_cbs_enabled(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		if (adapter->tx_ring[i]->cbs_enable)
			return true;
	}

	return false;
}

static bool is_any_txtime_enabled(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		if (adapter->tx_ring[i]->launchtime_enable)
			return true;
	}

	return false;
}

/**
 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
 *  @adapter: pointer to adapter struct
 *  @queue: queue number
 *
 *  Configure CBS and Launchtime for a given hardware queue.
 *  Parameters are retrieved from the correct Tx ring, so
 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
 *  for setting those correctly prior to this function being called.
 **/
static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
{
	struct igb_ring *ring = adapter->tx_ring[queue];
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tqavcc, tqavctrl;
	u16 value;

	WARN_ON(hw->mac.type != e1000_i210);
	WARN_ON(queue < 0 || queue > 1);

	/* If any of the Qav features is enabled, configure queues as SR and
	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
	 * as SP.
	 */
	if (ring->cbs_enable || ring->launchtime_enable) {
		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
	} else {
		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
	}

	/* If CBS is enabled, set DataTranARB and config its parameters. */
	if (ring->cbs_enable || queue == 0) {
		/* i210 does not allow the queue 0 to be in the Strict
		 * Priority mode while the Qav mode is enabled, so,
		 * instead of disabling strict priority mode, we give
		 * queue 0 the maximum of credits possible.
		 *
		 * See section 8.12.19 of the i210 datasheet, "Note:
		 * Queue0 QueueMode must be set to 1b when
		 * TransmitMode is set to Qav."
		 */
		if (queue == 0 && !ring->cbs_enable) {
			/* max "linkspeed" idleslope in kbps */
			ring->idleslope = 1000000;
			ring->hicredit = ETH_FRAME_LEN;
		}

		/* Always set data transfer arbitration to credit-based
		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
		 * the queues.
		 */
		tqavctrl = rd32(E1000_I210_TQAVCTRL);
		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
		wr32(E1000_I210_TQAVCTRL, tqavctrl);

		/* According to i210 datasheet section 7.2.7.7, we should set
		 * the 'idleSlope' field from TQAVCC register following the
		 * equation:
		 *
		 * For 100 Mbps link speed:
		 *
		 *     value = BW * 0x7735 * 0.2                          (E1)
		 *
		 * For 1000Mbps link speed:
		 *
		 *     value = BW * 0x7735 * 2                            (E2)
		 *
		 * E1 and E2 can be merged into one equation as shown below.
		 * Note that 'link-speed' is in Mbps.
		 *
		 *     value = BW * 0x7735 * 2 * link-speed
		 *                           --------------               (E3)
		 *                                1000
		 *
		 * 'BW' is the percentage bandwidth out of full link speed
		 * which can be found with the following equation. Note that
		 * idleSlope here is the parameter from this function which
		 * is in kbps.
		 *
		 *     BW =     idleSlope
		 *          -----------------                             (E4)
		 *          link-speed * 1000
		 *
		 * That said, we can come up with a generic equation to
		 * calculate the value we should set it TQAVCC register by
		 * replacing 'BW' in E3 by E4. The resulting equation is:
		 *
		 * value =     idleSlope     * 0x7735 * 2 * link-speed
		 *         -----------------            --------------    (E5)
		 *         link-speed * 1000                 1000
		 *
		 * 'link-speed' is present in both sides of the fraction so
		 * it is canceled out. The final equation is the following:
		 *
		 *     value = idleSlope * 61034
		 *             -----------------                          (E6)
		 *                  1000000
		 *
		 * NOTE: For i210, given the above, we can see that idleslope
		 *       is represented in 16.38431 kbps units by the value at
		 *       the TQAVCC register (1Gbps / 61034), which reduces
		 *       the granularity for idleslope increments.
		 *       For instance, if you want to configure a 2576kbps
		 *       idleslope, the value to be written on the register
		 *       would have to be 157.23. If rounded down, you end
		 *       up with less bandwidth available than originally
		 *       required (~2572 kbps). If rounded up, you end up
		 *       with a higher bandwidth (~2589 kbps). Below the
		 *       approach we take is to always round up the
		 *       calculated value, so the resulting bandwidth might
		 *       be slightly higher for some configurations.
		 */
		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);

		tqavcc = rd32(E1000_I210_TQAVCC(queue));
		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
		tqavcc |= value;
		wr32(E1000_I210_TQAVCC(queue), tqavcc);

		wr32(E1000_I210_TQAVHC(queue),
		     0x80000000 + ring->hicredit * 0x7735);
	} else {

		/* Set idleSlope to zero. */
		tqavcc = rd32(E1000_I210_TQAVCC(queue));
		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
		wr32(E1000_I210_TQAVCC(queue), tqavcc);

		/* Set hiCredit to zero. */
		wr32(E1000_I210_TQAVHC(queue), 0);

		/* If CBS is not enabled for any queues anymore, then return to
		 * the default state of Data Transmission Arbitration on
		 * TQAVCTRL.
		 */
		if (!is_any_cbs_enabled(adapter)) {
			tqavctrl = rd32(E1000_I210_TQAVCTRL);
			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
			wr32(E1000_I210_TQAVCTRL, tqavctrl);
		}
	}

	/* If LaunchTime is enabled, set DataTranTIM. */
	if (ring->launchtime_enable) {
		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
		 * for any of the SR queues, and configure fetchtime delta.
		 * XXX NOTE:
		 *     - LaunchTime will be enabled for all SR queues.
		 *     - A fixed offset can be added relative to the launch
		 *       time of all packets if configured at reg LAUNCH_OS0.
		 *       We are keeping it as 0 for now (default value).
		 */
		tqavctrl = rd32(E1000_I210_TQAVCTRL);
		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
		       E1000_TQAVCTRL_FETCHTIME_DELTA;
		wr32(E1000_I210_TQAVCTRL, tqavctrl);
	} else {
		/* If Launchtime is not enabled for any SR queues anymore,
		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
		 * effectively disabling Launchtime.
		 */
		if (!is_any_txtime_enabled(adapter)) {
			tqavctrl = rd32(E1000_I210_TQAVCTRL);
			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
			wr32(E1000_I210_TQAVCTRL, tqavctrl);
		}
	}

	/* XXX: In i210 controller the sendSlope and loCredit parameters from
	 * CBS are not configurable by software so we don't do any 'controller
	 * configuration' in respect to these parameters.
	 */

	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d \
			    idleslope %d sendslope %d hiCredit %d \
			    locredit %d\n",
		   (ring->cbs_enable) ? "enabled" : "disabled",
		   (ring->launchtime_enable) ? "enabled" : "disabled", queue,
		   ring->idleslope, ring->sendslope, ring->hicredit,
		   ring->locredit);
}

static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
				  bool enable)
{
	struct igb_ring *ring;

	if (queue < 0 || queue > adapter->num_tx_queues)
		return -EINVAL;

	ring = adapter->tx_ring[queue];
	ring->launchtime_enable = enable;

	return 0;
}

static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
			       bool enable, int idleslope, int sendslope,
			       int hicredit, int locredit)
{
	struct igb_ring *ring;

	if (queue < 0 || queue > adapter->num_tx_queues)
		return -EINVAL;

	ring = adapter->tx_ring[queue];

	ring->cbs_enable = enable;
	ring->idleslope = idleslope;
	ring->sendslope = sendslope;
	ring->hicredit = hicredit;
	ring->locredit = locredit;

	return 0;
}

/**
 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
 *  @adapter: pointer to adapter struct
 *
 *  Configure TQAVCTRL register switching the controller's Tx mode
 *  if FQTSS mode is enabled or disabled. Additionally, will issue
 *  a call to igb_config_tx_modes() per queue so any previously saved
 *  Tx parameters are applied.
 **/
static void igb_setup_tx_mode(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 val;

	/* Only i210 controller supports changing the transmission mode. */
	if (hw->mac.type != e1000_i210)
		return;

	if (is_fqtss_enabled(adapter)) {
		int i, max_queue;

		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
		 * so SP queues wait for SR ones.
		 */
		val = rd32(E1000_I210_TQAVCTRL);
		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
		wr32(E1000_I210_TQAVCTRL, val);

		/* Configure Tx and Rx packet buffers sizes as described in
		 * i210 datasheet section 7.2.7.7.
		 */
		val = rd32(E1000_TXPBS);
		val &= ~I210_TXPBSIZE_MASK;
		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
		wr32(E1000_TXPBS, val);

		val = rd32(E1000_RXPBS);
		val &= ~I210_RXPBSIZE_MASK;
		val |= I210_RXPBSIZE_PB_32KB;
		wr32(E1000_RXPBS, val);

		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
		 * register should not exceed the buffer size programmed in
		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
		 * so according to the datasheet we should set MAX_TPKT_SIZE to
		 * 4kB / 64.
		 *
		 * However, when we do so, no frame from queue 2 and 3 are
		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
		 * or _equal_ to the buffer size programmed in TXPBS. For this
		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
		 */
		val = (4096 - 1) / 64;
		wr32(E1000_I210_DTXMXPKTSZ, val);

		/* Since FQTSS mode is enabled, apply any CBS configuration
		 * previously set. If no previous CBS configuration has been
		 * done, then the initial configuration is applied, which means
		 * CBS is disabled.
		 */
		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;

		for (i = 0; i < max_queue; i++) {
			igb_config_tx_modes(adapter, i);
		}
	} else {
		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);

		val = rd32(E1000_I210_TQAVCTRL);
		/* According to Section 8.12.21, the other flags we've set when
		 * enabling FQTSS are not relevant when disabling FQTSS so we
		 * don't set they here.
		 */
		val &= ~E1000_TQAVCTRL_XMIT_MODE;
		wr32(E1000_I210_TQAVCTRL, val);
	}

	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
		   "enabled" : "disabled");
}

/**
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
	igb_set_rx_mode(netdev);
	igb_setup_tx_mode(adapter);

	igb_restore_vlan(adapter);

	igb_setup_tctl(adapter);
	igb_setup_mrqc(adapter);
	igb_setup_rctl(adapter);

	igb_nfc_filter_restore(adapter);
	igb_configure_tx(adapter);
	igb_configure_rx(adapter);

	igb_rx_fifo_flush_82575(&adapter->hw);

	/* call igb_desc_unused which always leaves
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean
	 */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = adapter->rx_ring[i];
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
	}
}

/**
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	igb_reset_phy(&adapter->hw);

	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);

	igb_setup_link(&adapter->hw);
}

/**
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}

/**
 * Detect and switch function for Media Auto Sense
 * @adapter: address of the board private structure
 **/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext, connsw;
	bool swap_now = false;

	ctrl_ext = rd32(E1000_CTRL_EXT);
	connsw = rd32(E1000_CONNSW);

	/* need to live swap if current media is copper and we have fiber/serdes
	 * to go to.
	 */

	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
		swap_now = true;
	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
		/* copper signal takes time to appear */
		if (adapter->copper_tries < 4) {
			adapter->copper_tries++;
			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
			wr32(E1000_CONNSW, connsw);
			return;
		} else {
			adapter->copper_tries = 0;
			if ((connsw & E1000_CONNSW_PHYSD) &&
			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
				swap_now = true;
				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
				wr32(E1000_CONNSW, connsw);
			}
		}
	}

	if (!swap_now)
		return;

	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		netdev_info(adapter->netdev,
			"MAS: changing media to fiber/serdes\n");
		ctrl_ext |=
			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		adapter->copper_tries = 0;
		break;
	case e1000_media_type_internal_serdes:
	case e1000_media_type_fiber:
		netdev_info(adapter->netdev,
			"MAS: changing media to copper\n");
		ctrl_ext &=
			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		break;
	default:
		/* shouldn't get here during regular operation */
		netdev_err(adapter->netdev,
			"AMS: Invalid media type found, returning\n");
		break;
	}
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

/**
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

	if (adapter->flags & IGB_FLAG_HAS_MSIX)
		igb_configure_msix(adapter);
	else
		igb_assign_vector(adapter->q_vector[0], 0);

	/* Clear any pending interrupts. */
	rd32(E1000_TSICR);
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);

		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

	netif_tx_start_all_queues(adapter->netdev);

	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

	if ((adapter->flags & IGB_FLAG_EEE) &&
	    (!hw->dev_spec._82575.eee_disable))
		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;

	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

	igb_nfc_filter_exit(adapter);

	netif_carrier_off(netdev);
	netif_tx_stop_all_queues(netdev);

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	usleep_range(10000, 11000);

	igb_irq_disable(adapter);

	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		if (adapter->q_vector[i]) {
			napi_synchronize(&adapter->q_vector[i]->napi);
			napi_disable(&adapter->q_vector[i]->napi);
		}
	}

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	/* record the stats before reset*/
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

	adapter->link_speed = 0;
	adapter->link_duplex = 0;

	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);

	/* clear VLAN promisc flag so VFTA will be updated if necessary */
	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;

	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

/** igb_enable_mas - Media Autosense re-enable after swap
 *
 * @adapter: adapter struct
 **/
static void igb_enable_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 connsw = rd32(E1000_CONNSW);

	/* configure for SerDes media detect */
	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    (!(connsw & E1000_CONNSW_SERDESD))) {
		connsw |= E1000_CONNSW_ENRGSRC;
		connsw |= E1000_CONNSW_AUTOSENSE_EN;
		wr32(E1000_CONNSW, connsw);
		wrfl();
	}
}

void igb_reset(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
	u32 pba, hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
	switch (mac->type) {
	case e1000_i350:
	case e1000_i354:
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
	case e1000_82576:
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
		break;
	case e1000_82575:
	case e1000_i210:
	case e1000_i211:
	default:
		pba = E1000_PBA_34K;
		break;
	}

	if (mac->type == e1000_82575) {
		u32 min_rx_space, min_tx_space, needed_tx_space;

		/* write Rx PBA so that hardware can report correct Tx PBA */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB.
		 */
		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);

		/* The Tx FIFO also stores 16 bytes of information about the Tx
		 * but don't include Ethernet FCS because hardware appends it.
		 * We only need to round down to the nearest 512 byte block
		 * count since the value we care about is 2 frames, not 1.
		 */
		min_tx_space = adapter->max_frame_size;
		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);

		/* upper 16 bits has Tx packet buffer allocation size in KB */
		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation.
		 */
		if (needed_tx_space < pba) {
			pba -= needed_tx_space;

			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}

		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);
	}

	/* flow control settings
	 * The high water mark must be low enough to fit one full frame
	 * after transmitting the pause frame.  As such we must have enough
	 * space to allow for us to complete our current transmit and then
	 * receive the frame that is in progress from the link partner.
	 * Set it to:
	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
	 */
	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);

	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;

		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;

		/* ping all the active vfs to let them know we are going down */
		igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

	/* Allow time for pending master requests to run */
	hw->mac.ops.reset_hw(hw);
	wr32(E1000_WUC, 0);

	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
		/* need to resetup here after media swap */
		adapter->ei.get_invariants(hw);
		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
	}
	if ((mac->type == e1000_82575) &&
	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
		igb_enable_mas(adapter);
	}
	if (hw->mac.ops.init_hw(hw))
		dev_err(&pdev->dev, "Hardware Error\n");

	/* RAR registers were cleared during init_hw, clear mac table */
	igb_flush_mac_table(adapter);
	__dev_uc_unsync(adapter->netdev, NULL);

	/* Recover default RAR entry */
	igb_set_default_mac_filter(adapter);

	/* Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

	igb_init_dmac(adapter, pba);
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
	/* Re-establish EEE setting */
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (mac->type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			igb_set_eee_i350(hw, true, true);
			break;
		case e1000_i354:
			igb_set_eee_i354(hw, true, true);
			break;
		default:
			break;
		}
	}
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	/* Re-enable PTP, where applicable. */
	if (adapter->ptp_flags & IGB_PTP_ENABLED)
		igb_ptp_reset(adapter);

	igb_get_phy_info(hw);
}

static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
{
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
	 */
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
	else
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;

	return features;
}

static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
		igb_vlan_mode(netdev, features);

	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
		return 0;

	if (!(features & NETIF_F_NTUPLE)) {
		struct hlist_node *node2;
		struct igb_nfc_filter *rule;

		spin_lock(&adapter->nfc_lock);
		hlist_for_each_entry_safe(rule, node2,
					  &adapter->nfc_filter_list, nfc_node) {
			igb_erase_filter(adapter, rule);
			hlist_del(&rule->nfc_node);
			kfree(rule);
		}
		spin_unlock(&adapter->nfc_lock);
		adapter->nfc_filter_count = 0;
	}

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

	return 0;
}

static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
			   struct net_device *dev,
			   const unsigned char *addr, u16 vid,
			   u16 flags)
{
	/* guarantee we can provide a unique filter for the unicast address */
	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
		struct igb_adapter *adapter = netdev_priv(dev);
		int vfn = adapter->vfs_allocated_count;

		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
			return -ENOMEM;
	}

	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
}

#define IGB_MAX_MAC_HDR_LEN	127
#define IGB_MAX_NETWORK_HDR_LEN	511

static netdev_features_t
igb_features_check(struct sk_buff *skb, struct net_device *dev,
		   netdev_features_t features)
{
	unsigned int network_hdr_len, mac_hdr_len;

	/* Make certain the headers can be described by a context descriptor */
	mac_hdr_len = skb_network_header(skb) - skb->data;
	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
		return features & ~(NETIF_F_HW_CSUM |
				    NETIF_F_SCTP_CRC |
				    NETIF_F_HW_VLAN_CTAG_TX |
				    NETIF_F_TSO |
				    NETIF_F_TSO6);

	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
		return features & ~(NETIF_F_HW_CSUM |
				    NETIF_F_SCTP_CRC |
				    NETIF_F_TSO |
				    NETIF_F_TSO6);

	/* We can only support IPV4 TSO in tunnels if we can mangle the
	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
	 */
	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
		features &= ~NETIF_F_TSO;

	return features;
}

static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
{
	if (!is_fqtss_enabled(adapter)) {
		enable_fqtss(adapter, true);
		return;
	}

	igb_config_tx_modes(adapter, queue);

	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
		enable_fqtss(adapter, false);
}

static int igb_offload_cbs(struct igb_adapter *adapter,
			   struct tc_cbs_qopt_offload *qopt)
{
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* CBS offloading is only supported by i210 controller. */
	if (hw->mac.type != e1000_i210)
		return -EOPNOTSUPP;

	/* CBS offloading is only supported by queue 0 and queue 1. */
	if (qopt->queue < 0 || qopt->queue > 1)
		return -EINVAL;

	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
				  qopt->idleslope, qopt->sendslope,
				  qopt->hicredit, qopt->locredit);
	if (err)
		return err;

	igb_offload_apply(adapter, qopt->queue);

	return 0;
}

#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
#define VLAN_PRIO_FULL_MASK (0x07)

static int igb_parse_cls_flower(struct igb_adapter *adapter,
				struct tc_cls_flower_offload *f,
				int traffic_class,
				struct igb_nfc_filter *input)
{
	struct netlink_ext_ack *extack = f->common.extack;

	if (f->dissector->used_keys &
	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
		NL_SET_ERR_MSG_MOD(extack,
				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
		return -EOPNOTSUPP;
	}

	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
		struct flow_dissector_key_eth_addrs *key, *mask;

		key = skb_flow_dissector_target(f->dissector,
						FLOW_DISSECTOR_KEY_ETH_ADDRS,
						f->key);
		mask = skb_flow_dissector_target(f->dissector,
						 FLOW_DISSECTOR_KEY_ETH_ADDRS,
						 f->mask);

		if (!is_zero_ether_addr(mask->dst)) {
			if (!is_broadcast_ether_addr(mask->dst)) {
				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
				return -EINVAL;
			}

			input->filter.match_flags |=
				IGB_FILTER_FLAG_DST_MAC_ADDR;
			ether_addr_copy(input->filter.dst_addr, key->dst);
		}

		if (!is_zero_ether_addr(mask->src)) {
			if (!is_broadcast_ether_addr(mask->src)) {
				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
				return -EINVAL;
			}

			input->filter.match_flags |=
				IGB_FILTER_FLAG_SRC_MAC_ADDR;
			ether_addr_copy(input->filter.src_addr, key->src);
		}
	}

	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
		struct flow_dissector_key_basic *key, *mask;

		key = skb_flow_dissector_target(f->dissector,
						FLOW_DISSECTOR_KEY_BASIC,
						f->key);
		mask = skb_flow_dissector_target(f->dissector,
						 FLOW_DISSECTOR_KEY_BASIC,
						 f->mask);

		if (mask->n_proto) {
			if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
				return -EINVAL;
			}

			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
			input->filter.etype = key->n_proto;
		}
	}

	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
		struct flow_dissector_key_vlan *key, *mask;

		key = skb_flow_dissector_target(f->dissector,
						FLOW_DISSECTOR_KEY_VLAN,
						f->key);
		mask = skb_flow_dissector_target(f->dissector,
						 FLOW_DISSECTOR_KEY_VLAN,
						 f->mask);

		if (mask->vlan_priority) {
			if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
				return -EINVAL;
			}

			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
			input->filter.vlan_tci = key->vlan_priority;
		}
	}

	input->action = traffic_class;
	input->cookie = f->cookie;

	return 0;
}

static int igb_configure_clsflower(struct igb_adapter *adapter,
				   struct tc_cls_flower_offload *cls_flower)
{
	struct netlink_ext_ack *extack = cls_flower->common.extack;
	struct igb_nfc_filter *filter, *f;
	int err, tc;

	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
	if (tc < 0) {
		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
		return -EINVAL;
	}

	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
	if (!filter)
		return -ENOMEM;

	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
	if (err < 0)
		goto err_parse;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
			err = -EEXIST;
			NL_SET_ERR_MSG_MOD(extack,
					   "This filter is already set in ethtool");
			goto err_locked;
		}
	}

	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
			err = -EEXIST;
			NL_SET_ERR_MSG_MOD(extack,
					   "This filter is already set in cls_flower");
			goto err_locked;
		}
	}

	err = igb_add_filter(adapter, filter);
	if (err < 0) {
		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
		goto err_locked;
	}

	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);

	spin_unlock(&adapter->nfc_lock);

	return 0;

err_locked:
	spin_unlock(&adapter->nfc_lock);

err_parse:
	kfree(filter);

	return err;
}

static int igb_delete_clsflower(struct igb_adapter *adapter,
				struct tc_cls_flower_offload *cls_flower)
{
	struct igb_nfc_filter *filter;
	int err;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
		if (filter->cookie == cls_flower->cookie)
			break;

	if (!filter) {
		err = -ENOENT;
		goto out;
	}

	err = igb_erase_filter(adapter, filter);
	if (err < 0)
		goto out;

	hlist_del(&filter->nfc_node);
	kfree(filter);

out:
	spin_unlock(&adapter->nfc_lock);

	return err;
}

static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
				   struct tc_cls_flower_offload *cls_flower)
{
	switch (cls_flower->command) {
	case TC_CLSFLOWER_REPLACE:
		return igb_configure_clsflower(adapter, cls_flower);
	case TC_CLSFLOWER_DESTROY:
		return igb_delete_clsflower(adapter, cls_flower);
	case TC_CLSFLOWER_STATS:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
				 void *cb_priv)
{
	struct igb_adapter *adapter = cb_priv;

	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
		return -EOPNOTSUPP;

	switch (type) {
	case TC_SETUP_CLSFLOWER:
		return igb_setup_tc_cls_flower(adapter, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

static int igb_setup_tc_block(struct igb_adapter *adapter,
			      struct tc_block_offload *f)
{
	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
		return -EOPNOTSUPP;

	switch (f->command) {
	case TC_BLOCK_BIND:
		return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
					     adapter, adapter, f->extack);
	case TC_BLOCK_UNBIND:
		tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
					adapter);
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int igb_offload_txtime(struct igb_adapter *adapter,
			      struct tc_etf_qopt_offload *qopt)
{
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* Launchtime offloading is only supported by i210 controller. */
	if (hw->mac.type != e1000_i210)
		return -EOPNOTSUPP;

	/* Launchtime offloading is only supported by queues 0 and 1. */
	if (qopt->queue < 0 || qopt->queue > 1)
		return -EINVAL;

	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
	if (err)
		return err;

	igb_offload_apply(adapter, qopt->queue);

	return 0;
}

static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
			void *type_data)
{
	struct igb_adapter *adapter = netdev_priv(dev);

	switch (type) {
	case TC_SETUP_QDISC_CBS:
		return igb_offload_cbs(adapter, type_data);
	case TC_SETUP_BLOCK:
		return igb_setup_tc_block(adapter, type_data);
	case TC_SETUP_QDISC_ETF:
		return igb_offload_txtime(adapter, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

static const struct net_device_ops igb_netdev_ops = {
	.ndo_open		= igb_open,
	.ndo_stop		= igb_close,
	.ndo_start_xmit		= igb_xmit_frame,
	.ndo_get_stats64	= igb_get_stats64,
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
	.ndo_fdb_add		= igb_ndo_fdb_add,
	.ndo_features_check	= igb_features_check,
	.ndo_setup_tc		= igb_setup_tc,
};

/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		/* fall through */
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else if (fw.etrack_id != 0X0000) {
			snprintf(adapter->fw_version,
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
		}
		break;
	}
}

/**
 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 *
 * @adapter: adapter struct
 **/
static void igb_init_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 eeprom_data;

	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
	switch (hw->bus.func) {
	case E1000_FUNC_0:
		if (eeprom_data & IGB_MAS_ENABLE_0) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_1:
		if (eeprom_data & IGB_MAS_ENABLE_1) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_2:
		if (eeprom_data & IGB_MAS_ENABLE_2) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_3:
		if (eeprom_data & IGB_MAS_ENABLE_3) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	default:
		/* Shouldn't get here */
		netdev_err(adapter->netdev,
			"MAS: Invalid port configuration, returning\n");
		break;
	}
}

/**
 *  igb_init_i2c - Init I2C interface
 *  @adapter: pointer to adapter structure
 **/
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = 0;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return 0;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

/**
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
 *
 *  Returns 0 on success, negative on failure
 *
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
 **/
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	u16 eeprom_data = 0;
	s32 ret_val;
	static int global_quad_port_a; /* global quad port a indication */
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	int err, pci_using_dac;
	u8 part_str[E1000_PBANUM_LENGTH];

	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
			pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

	err = pci_enable_device_mem(pdev);
	if (err)
		return err;

	pci_using_dac = 0;
	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (!err) {
		pci_using_dac = 1;
	} else {
		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev,
				"No usable DMA configuration, aborting\n");
			goto err_dma;
		}
	}

	err = pci_request_mem_regions(pdev, igb_driver_name);
	if (err)
		goto err_pci_reg;

	pci_enable_pcie_error_reporting(pdev);

	pci_set_master(pdev);
	pci_save_state(pdev);

	err = -ENOMEM;
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
				   IGB_MAX_TX_QUEUES);
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);

	err = -EIO;
	adapter->io_addr = pci_iomap(pdev, 0, 0);
	if (!adapter->io_addr)
		goto err_ioremap;
	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
	hw->hw_addr = adapter->io_addr;

	netdev->netdev_ops = &igb_netdev_ops;
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = pci_resource_start(pdev, 0);
	netdev->mem_end = pci_resource_end(pdev, 0);

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
		goto err_sw_init;

	/* setup the private structure */
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	/* features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM;

	if (hw->mac.type >= e1000_82576)
		netdev->features |= NETIF_F_SCTP_CRC;

	if (hw->mac.type >= e1000_i350)
		netdev->features |= NETIF_F_HW_TC;

#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
				  NETIF_F_GSO_GRE_CSUM | \
				  NETIF_F_GSO_IPXIP4 | \
				  NETIF_F_GSO_IPXIP6 | \
				  NETIF_F_GSO_UDP_TUNNEL | \
				  NETIF_F_GSO_UDP_TUNNEL_CSUM)

	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features |
			       NETIF_F_HW_VLAN_CTAG_RX |
			       NETIF_F_HW_VLAN_CTAG_TX |
			       NETIF_F_RXALL;

	if (hw->mac.type >= e1000_i350)
		netdev->hw_features |= NETIF_F_NTUPLE;

	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
	netdev->mpls_features |= NETIF_F_HW_CSUM;
	netdev->hw_enc_features |= netdev->vlan_features;

	/* set this bit last since it cannot be part of vlan_features */
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;

	netdev->priv_flags |= IFF_SUPP_NOFCS;

	netdev->priv_flags |= IFF_UNICAST_FLT;

	/* MTU range: 68 - 9216 */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;

	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state
	 */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
	 */
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
		break;
	}

	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
		/* copy the MAC address out of the NVM */
		if (hw->mac.ops.read_mac_addr(hw))
			dev_err(&pdev->dev, "NVM Read Error\n");
	}

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->dev_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

	igb_set_default_mac_filter(adapter);

	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

	/* configure RXPBSIZE and TXPBSIZE */
	if (hw->mac.type == e1000_i210) {
		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
	}

	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

	/* Initialize link properties that are user-changeable */
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;

	igb_validate_mdi_setting(hw);

	/* By default, support wake on port A */
	if (hw->bus.func == 0)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);

	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port
	 */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting
		 */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
		break;
	case E1000_DEV_ID_82576_QUAD_COPPER:
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
	}

	/* initialize the wol settings based on the eeprom settings */
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	/* Some vendors want the ability to Use the EEPROM setting as
	 * enable/disable only, and not for capability
	 */
	if (((hw->mac.type == e1000_i350) ||
	     (hw->mac.type == e1000_i354)) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}
	if (hw->mac.type == e1000_i350) {
		if (((pdev->subsystem_device == 0x5001) ||
		     (pdev->subsystem_device == 0x5002)) &&
				(hw->bus.func == 0)) {
			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
			adapter->wol = 0;
		}
		if (pdev->subsystem_device == 0x1F52)
			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

	/* let the f/w know that the h/w is now under the control of the
	 * driver.
	 */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

#ifdef CONFIG_IGB_DCA
	if (dca_add_requester(&pdev->dev) == 0) {
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

#endif
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;

		/* Read the NVM to determine if this i350 device supports an
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
	/* Check if Media Autosense is enabled */
	adapter->ei = *ei;
	if (hw->dev_spec._82575.mas_capable)
		igb_init_mas(adapter);

	/* do hw tstamp init after resetting */
	igb_ptp_init(adapter);

	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}

	if ((hw->mac.type >= e1000_i210 ||
	     igb_get_flash_presence_i210(hw))) {
		ret_val = igb_read_part_string(hw, part_str,
					       E1000_PBANUM_LENGTH);
	} else {
		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	}

	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
		adapter->num_rx_queues, adapter->num_tx_queues);
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (hw->mac.type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			/* Enable EEE for internal copper PHY devices */
			err = igb_set_eee_i350(hw, true, true);
			if ((!err) &&
			    (!hw->dev_spec._82575.eee_disable)) {
				adapter->eee_advert =
					MDIO_EEE_100TX | MDIO_EEE_1000T;
				adapter->flags |= IGB_FLAG_EEE;
			}
			break;
		case e1000_i354:
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
				err = igb_set_eee_i354(hw, true, true);
				if ((!err) &&
					(!hw->dev_spec._82575.eee_disable)) {
					adapter->eee_advert =
					   MDIO_EEE_100TX | MDIO_EEE_1000T;
					adapter->flags |= IGB_FLAG_EEE;
				}
			}
			break;
		default:
			break;
		}
	}
	pm_runtime_put_noidle(&pdev->dev);
	return 0;

err_register:
	igb_release_hw_control(adapter);
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
err_eeprom:
	if (!igb_check_reset_block(hw))
		igb_reset_phy(hw);

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
	kfree(adapter->mac_table);
	kfree(adapter->shadow_vfta);
	igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PCI_IOV
	igb_disable_sriov(pdev);
#endif
	pci_iounmap(pdev, adapter->io_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	pci_release_mem_regions(pdev);
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

#ifdef CONFIG_PCI_IOV
static int igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (pci_vfs_assigned(pdev)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_mac_list);
		adapter->vf_mac_list = NULL;
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	struct vf_mac_filter *mac_list;
	int err = 0;
	int num_vf_mac_filters, i;

	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
		err = -EPERM;
		goto out;
	}
	if (!num_vfs)
		goto out;

	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
			 old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
	} else
		adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		err = -ENOMEM;
		goto out;
	}

	/* Due to the limited number of RAR entries calculate potential
	 * number of MAC filters available for the VFs. Reserve entries
	 * for PF default MAC, PF MAC filters and at least one RAR entry
	 * for each VF for VF MAC.
	 */
	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
			      adapter->vfs_allocated_count);

	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
				       sizeof(struct vf_mac_filter),
				       GFP_KERNEL);

	mac_list = adapter->vf_mac_list;
	INIT_LIST_HEAD(&adapter->vf_macs.l);

	if (adapter->vf_mac_list) {
		/* Initialize list of VF MAC filters */
		for (i = 0; i < num_vf_mac_filters; i++) {
			mac_list->vf = -1;
			mac_list->free = true;
			list_add(&mac_list->l, &adapter->vf_macs.l);
			mac_list++;
		}
	} else {
		/* If we could not allocate memory for the VF MAC filters
		 * we can continue without this feature but warn user.
		 */
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF MAC filter list\n");
	}

	/* only call pci_enable_sriov() if no VFs are allocated already */
	if (!old_vfs) {
		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
		if (err)
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_mac_list);
	adapter->vf_mac_list = NULL;
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
/**
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
 **/
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

/**
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
 *
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
 **/
static void igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pm_runtime_get_noresume(&pdev->dev);
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
	igb_remove_i2c(adapter);
	igb_ptp_stop(adapter);
	/* The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);

#ifdef CONFIG_IGB_DCA
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
	}
#endif

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
	igb_release_hw_control(adapter);

#ifdef CONFIG_PCI_IOV
	igb_disable_sriov(pdev);
#endif

	unregister_netdev(netdev);

	igb_clear_interrupt_scheme(adapter);

	pci_iounmap(pdev, adapter->io_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
	pci_release_mem_regions(pdev);

	kfree(adapter->mac_table);
	kfree(adapter->shadow_vfta);
	free_netdev(netdev);

	pci_disable_pcie_error_reporting(pdev);

	pci_disable_device(pdev);
}

/**
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
 *
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
 **/
static void igb_probe_vfs(struct igb_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;

	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

	/* Of the below we really only want the effect of getting
	 * IGB_FLAG_HAS_MSIX set (if available), without which
	 * igb_enable_sriov() has no effect.
	 */
	igb_set_interrupt_capability(adapter, true);
	igb_reset_interrupt_capability(adapter);

	pci_sriov_set_totalvfs(pdev, 7);
	igb_enable_sriov(pdev, max_vfs);

#endif /* CONFIG_PCI_IOV */
}

unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned int max_rss_queues;

	/* Determine the maximum number of RSS queues supported. */
	switch (hw->mac.type) {
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
	case e1000_i210:
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	case e1000_i354:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
		break;
	}

	return max_rss_queues;
}

static void igb_init_queue_configuration(struct igb_adapter *adapter)
{
	u32 max_rss_queues;

	max_rss_queues = igb_get_max_rss_queues(adapter);
	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	igb_set_flag_queue_pairs(adapter, max_rss_queues);
}

void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
			      const u32 max_rss_queues)
{
	struct e1000_hw *hw = &adapter->hw;

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_i211:
		/* Device supports enough interrupts without queue pairing. */
		break;
	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	default:
		/* If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		else
			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
		break;
	}
}

/**
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
 *
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->nfc_lock);
	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			max_vfs = adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
	adapter->flags |= IGB_FLAG_HAS_MSIX;

	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
				     sizeof(struct igb_mac_addr),
				     GFP_KERNEL);
	if (!adapter->mac_table)
		return -ENOMEM;

	igb_probe_vfs(adapter);

	igb_init_queue_configuration(adapter);

	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_KERNEL);
	if (!adapter->shadow_vfta)
		return -ENOMEM;

	/* This call may decrease the number of queues */
	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	if (hw->mac.type >= e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
 *
 *  Returns 0 on success, negative value on failure
 *
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
 **/
static int __igb_open(struct net_device *netdev, bool resuming)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
		return -EBUSY;
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);

	netif_carrier_off(netdev);

	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	igb_power_up_link(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.
	 */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

	/* Clear any pending interrupts. */
	rd32(E1000_TSICR);
	rd32(E1000_ICR);

	igb_irq_enable(adapter);

	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);

		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

	netif_tx_start_all_queues(netdev);

	if (!resuming)
		pm_runtime_put(&pdev->dev);

	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

	return 0;

err_set_queues:
	igb_free_irq(adapter);
err_req_irq:
	igb_release_hw_control(adapter);
	igb_power_down_link(adapter);
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
	if (!resuming)
		pm_runtime_put(&pdev->dev);

	return err;
}

int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

/**
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
 *
 *  Returns 0, this is not allowed to fail
 *
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
 **/
static int __igb_close(struct net_device *netdev, bool suspending)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
	return 0;
}

int igb_close(struct net_device *netdev)
{
	if (netif_device_present(netdev) || netdev->dismantle)
		return __igb_close(netdev, false);
	return 0;
}

/**
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 *  Return 0 on success, negative on failure
 **/
int igb_setup_tx_resources(struct igb_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int size;

	size = sizeof(struct igb_tx_buffer) * tx_ring->count;

	tx_ring->tx_buffer_info = vmalloc(size);
	if (!tx_ring->tx_buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;

err:
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
	return -ENOMEM;
}

/**
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
 *
 *  Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
		if (err) {
			dev_err(&pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
				igb_free_tx_resources(adapter->tx_ring[i]);
			break;
		}
	}

	return err;
}

/**
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
 **/
void igb_setup_tctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

/**
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
 *
 *  Configure a transmit ring after a reset.
 **/
void igb_configure_tx_ring(struct igb_adapter *adapter,
			   struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl = 0;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	wr32(E1000_TDLEN(reg_idx),
	     ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	     tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
	wr32(E1000_TDH(reg_idx), 0);
	writel(0, ring->tail);

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	/* reinitialize tx_buffer_info */
	memset(ring->tx_buffer_info, 0,
	       sizeof(struct igb_tx_buffer) * ring->count);

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
 *
 *  Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* disable the queues */
	for (i = 0; i < adapter->num_tx_queues; i++)
		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);

	wrfl();
	usleep_range(10000, 20000);

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
}

/**
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 *  Returns 0 on success, negative on failure
 **/
int igb_setup_rx_resources(struct igb_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int size;

	size = sizeof(struct igb_rx_buffer) * rx_ring->count;

	rx_ring->rx_buffer_info = vmalloc(size);
	if (!rx_ring->rx_buffer_info)
		goto err;

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
	return -ENOMEM;
}

/**
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
 *
 *  Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
		if (err) {
			dev_err(&pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
				igb_free_rx_resources(adapter->rx_ring[i]);
			break;
		}
	}

	return err;
}

/**
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues;
	u32 rss_key[10];

	netdev_rss_key_fill(rss_key, sizeof(rss_key));
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rss_key[j]);

	num_rx_queues = adapter->rss_queues;

	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count)
			num_rx_queues = 2;
		break;
	default:
		break;
	}

	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
			adapter->rss_indir_tbl[j] =
			(j * num_rx_queues) / IGB_RETA_SIZE;
		adapter->rss_indir_tbl_init = num_rx_queues;
	}
	igb_write_rss_indir_tbl(adapter);

	/* Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;

	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue
	 */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);

			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
		if (adapter->rss_queues > 1)
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
		else
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
	} else {
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

/**
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
 **/
void igb_setup_rctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);

	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
	 */
	rctl |= E1000_RCTL_SECRC;

	/* disable store bad packets and clear size bits. */
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);

	/* enable LPE to allow for reception of jumbo frames */
	rctl |= E1000_RCTL_LPE;

	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);

	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode
		 */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

	wr32(E1000_RCTL, rctl);
}

static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
				   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	if (size > MAX_JUMBO_FRAME_SIZE)
		size = MAX_JUMBO_FRAME_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
					 int vfn, bool enable)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 val, reg;

	if (hw->mac.type < e1000_82576)
		return;

	if (hw->mac.type == e1000_i350)
		reg = E1000_DVMOLR(vfn);
	else
		reg = E1000_VMOLR(vfn);

	val = rd32(reg);
	if (enable)
		val |= E1000_VMOLR_STRVLAN;
	else
		val &= ~(E1000_VMOLR_STRVLAN);
	wr32(reg, val);
}

static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

/**
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
 *
 *  Configure the Rx unit of the MAC after a reset.
 **/
void igb_configure_rx_ring(struct igb_adapter *adapter,
			   struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	union e1000_adv_rx_desc *rx_desc;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
	u32 srrctl = 0, rxdctl = 0;

	/* disable the queue */
	wr32(E1000_RXDCTL(reg_idx), 0);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	     ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
	wr32(E1000_RDH(reg_idx), 0);
	writel(0, ring->tail);

	/* set descriptor configuration */
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
	if (ring_uses_large_buffer(ring))
		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
	else
		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	if (hw->mac.type >= e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;

	wr32(E1000_SRRCTL(reg_idx), srrctl);

	/* set filtering for VMDQ pools */
	igb_set_vmolr(adapter, reg_idx & 0x7, true);

	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;

	/* initialize rx_buffer_info */
	memset(ring->rx_buffer_info, 0,
	       sizeof(struct igb_rx_buffer) * ring->count);

	/* initialize Rx descriptor 0 */
	rx_desc = IGB_RX_DESC(ring, 0);
	rx_desc->wb.upper.length = 0;

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
				  struct igb_ring *rx_ring)
{
	/* set build_skb and buffer size flags */
	clear_ring_build_skb_enabled(rx_ring);
	clear_ring_uses_large_buffer(rx_ring);

	if (adapter->flags & IGB_FLAG_RX_LEGACY)
		return;

	set_ring_build_skb_enabled(rx_ring);

#if (PAGE_SIZE < 8192)
	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
		return;

	set_ring_uses_large_buffer(rx_ring);
#endif
}

/**
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
 *
 *  Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
	int i;

	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_set_default_mac_filter(adapter);

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = adapter->rx_ring[i];

		igb_set_rx_buffer_len(adapter, rx_ring);
		igb_configure_rx_ring(adapter, rx_ring);
	}
}

/**
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
 *
 *  Free all transmit software resources
 **/
void igb_free_tx_resources(struct igb_ring *tx_ring)
{
	igb_clean_tx_ring(tx_ring);

	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;

	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);

	tx_ring->desc = NULL;
}

/**
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
 *
 *  Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		if (adapter->tx_ring[i])
			igb_free_tx_resources(adapter->tx_ring[i]);
}

/**
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
 **/
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
	u16 i = tx_ring->next_to_clean;
	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];

	while (i != tx_ring->next_to_use) {
		union e1000_adv_tx_desc *eop_desc, *tx_desc;

		/* Free all the Tx ring sk_buffs */
		dev_kfree_skb_any(tx_buffer->skb);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);

		/* check for eop_desc to determine the end of the packet */
		eop_desc = tx_buffer->next_to_watch;
		tx_desc = IGB_TX_DESC(tx_ring, i);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer++;
			tx_desc++;
			i++;
			if (unlikely(i == tx_ring->count)) {
				i = 0;
				tx_buffer = tx_ring->tx_buffer_info;
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buffer, len))
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
					       DMA_TO_DEVICE);
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		i++;
		if (unlikely(i == tx_ring->count)) {
			i = 0;
			tx_buffer = tx_ring->tx_buffer_info;
		}
	}

	/* reset BQL for queue */
	netdev_tx_reset_queue(txring_txq(tx_ring));

	/* reset next_to_use and next_to_clean */
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		if (adapter->tx_ring[i])
			igb_clean_tx_ring(adapter->tx_ring[i]);
}

/**
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
 *
 *  Free all receive software resources
 **/
void igb_free_rx_resources(struct igb_ring *rx_ring)
{
	igb_clean_rx_ring(rx_ring);

	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;

	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);

	rx_ring->desc = NULL;
}

/**
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
 *
 *  Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
		if (adapter->rx_ring[i])
			igb_free_rx_resources(adapter->rx_ring[i]);
}

/**
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
 **/
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
	u16 i = rx_ring->next_to_clean;

	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

	/* Free all the Rx ring sk_buffs */
	while (i != rx_ring->next_to_alloc) {
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];

		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      buffer_info->dma,
					      buffer_info->page_offset,
					      igb_rx_bufsz(rx_ring),
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev,
				     buffer_info->dma,
				     igb_rx_pg_size(rx_ring),
				     DMA_FROM_DEVICE,
				     IGB_RX_DMA_ATTR);
		__page_frag_cache_drain(buffer_info->page,
					buffer_info->pagecnt_bias);

		i++;
		if (i == rx_ring->count)
			i = 0;
	}

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
		if (adapter->rx_ring[i])
			igb_clean_rx_ring(adapter->rx_ring[i]);
}

/**
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
 *
 *  Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);

	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_set_default_mac_filter(adapter);

	return 0;
}

/**
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
 *
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
 **/
static int igb_write_mc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8  *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}

	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* The shared function expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, pf_id;

	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
	case e1000_i350:
		/* VLAN filtering needed for VLAN prio filter */
		if (adapter->netdev->features & NETIF_F_NTUPLE)
			break;
		/* fall through */
	case e1000_82576:
	case e1000_82580:
	case e1000_i354:
		/* VLAN filtering needed for pool filtering */
		if (adapter->vfs_allocated_count)
			break;
		/* fall through */
	default:
		return 1;
	}

	/* We are already in VLAN promisc, nothing to do */
	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
		return 0;

	if (!adapter->vfs_allocated_count)
		goto set_vfta;

	/* Add PF to all active pools */
	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;

	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
		u32 vlvf = rd32(E1000_VLVF(i));

		vlvf |= BIT(pf_id);
		wr32(E1000_VLVF(i), vlvf);
	}

set_vfta:
	/* Set all bits in the VLAN filter table array */
	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
		hw->mac.ops.write_vfta(hw, i, ~0U);

	/* Set flag so we don't redo unnecessary work */
	adapter->flags |= IGB_FLAG_VLAN_PROMISC;

	return 0;
}

#define VFTA_BLOCK_SIZE 8
static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
	u32 vid_start = vfta_offset * 32;
	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
	u32 i, vid, word, bits, pf_id;

	/* guarantee that we don't scrub out management VLAN */
	vid = adapter->mng_vlan_id;
	if (vid >= vid_start && vid < vid_end)
		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);

	if (!adapter->vfs_allocated_count)
		goto set_vfta;

	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;

	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
		u32 vlvf = rd32(E1000_VLVF(i));

		/* pull VLAN ID from VLVF */
		vid = vlvf & VLAN_VID_MASK;

		/* only concern ourselves with a certain range */
		if (vid < vid_start || vid >= vid_end)
			continue;

		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
			/* record VLAN ID in VFTA */
			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);

			/* if PF is part of this then continue */
			if (test_bit(vid, adapter->active_vlans))
				continue;
		}

		/* remove PF from the pool */
		bits = ~BIT(pf_id);
		bits &= rd32(E1000_VLVF(i));
		wr32(E1000_VLVF(i), bits);
	}

set_vfta:
	/* extract values from active_vlans and write back to VFTA */
	for (i = VFTA_BLOCK_SIZE; i--;) {
		vid = (vfta_offset + i) * 32;
		word = vid / BITS_PER_LONG;
		bits = vid % BITS_PER_LONG;

		vfta[i] |= adapter->active_vlans[word] >> bits;

		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
	}
}

static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
{
	u32 i;

	/* We are not in VLAN promisc, nothing to do */
	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
		return;

	/* Set flag so we don't redo unnecessary work */
	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;

	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
		igb_scrub_vfta(adapter, i);
}

/**
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
 *
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	if (netdev->flags & IFF_PROMISC) {
		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
		vmolr |= E1000_VMOLR_MPME;

		/* enable use of UTA filter to force packets to default pool */
		if (hw->mac.type == e1000_82576)
			vmolr |= E1000_VMOLR_ROPE;
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/* Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
	}

	/* Write addresses to available RAR registers, if there is not
	 * sufficient space to store all the addresses then enable
	 * unicast promiscuous mode
	 */
	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
		rctl |= E1000_RCTL_UPE;
		vmolr |= E1000_VMOLR_ROPE;
	}

	/* enable VLAN filtering by default */
	rctl |= E1000_RCTL_VFE;

	/* disable VLAN filtering for modes that require it */
	if ((netdev->flags & IFF_PROMISC) ||
	    (netdev->features & NETIF_F_RXALL)) {
		/* if we fail to set all rules then just clear VFE */
		if (igb_vlan_promisc_enable(adapter))
			rctl &= ~E1000_RCTL_VFE;
	} else {
		igb_vlan_promisc_disable(adapter);
	}

	/* update state of unicast, multicast, and VLAN filtering modes */
	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
				     E1000_RCTL_VFE);
	wr32(E1000_RCTL, rctl);

#if (PAGE_SIZE < 8192)
	if (!adapter->vfs_allocated_count) {
		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
			rlpml = IGB_MAX_FRAME_BUILD_SKB;
	}
#endif
	wr32(E1000_RLPML, rlpml);

	/* In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
		return;

	/* set UTA to appropriate mode */
	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));

	vmolr |= rd32(E1000_VMOLR(vfn)) &
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);

	/* enable Rx jumbo frames, restrict as needed to support build_skb */
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
#if (PAGE_SIZE < 8192)
	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
	else
#endif
		vmolr |= MAX_JUMBO_FRAME_SIZE;
	vmolr |= E1000_VMOLR_LPE;

	wr32(E1000_VMOLR(vfn), vmolr);

	igb_restore_vf_multicasts(adapter);
}

static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		wvbr = rd32(E1000_WVBR);
		if (!wvbr)
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for (j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & BIT(j) ||
		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~(BIT(j) |
				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
		}
	}
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
static void igb_update_phy_info(struct timer_list *t)
{
	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
	igb_get_phy_info(&adapter->hw);
}

/**
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
 **/
bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (!hw->mac.get_link_status)
			return true;
		/* fall through */
	case e1000_media_type_internal_serdes:
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if (((hw->mac.type == e1000_i210) ||
	     (hw->mac.type == e1000_i211)) &&
	     (hw->phy.id == I210_I_PHY_ID)) {
		if (!netif_carrier_ok(adapter->netdev)) {
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
			adapter->link_check_timeout = jiffies;
		}
	}

	return link_active;
}

static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350 copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
			ret = !!(thstat & event);
	}

	return ret;
}

/**
 *  igb_check_lvmmc - check for malformed packets received
 *  and indicated in LVMMC register
 *  @adapter: pointer to adapter
 **/
static void igb_check_lvmmc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 lvmmc;

	lvmmc = rd32(E1000_LVMMC);
	if (lvmmc) {
		if (unlikely(net_ratelimit())) {
			netdev_warn(adapter->netdev,
				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
				    lvmmc);
		}
	}
}

/**
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(struct timer_list *t)
{
	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
						   struct igb_adapter,
						   watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_info *phy = &hw->phy;
	struct net_device *netdev = adapter->netdev;
	u32 link;
	int i;
	u32 connsw;
	u16 phy_data, retry_count = 20;

	link = igb_has_link(adapter);

	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		else
			link = false;
	}

	/* Force link down if we have fiber to swap to */
	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
		if (hw->phy.media_type == e1000_media_type_copper) {
			connsw = rd32(E1000_CONNSW);
			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
				link = 0;
		}
	}
	if (link) {
		/* Perform a reset if the media type changed. */
		if (hw->dev_spec._82575.media_changed) {
			hw->dev_spec._82575.media_changed = false;
			adapter->flags |= IGB_FLAG_MEDIA_RESET;
			igb_reset(adapter);
		}
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;

			hw->mac.ops.get_speed_and_duplex(hw,
							 &adapter->link_speed,
							 &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
			/* Links status message must follow this format */
			netdev_info(netdev,
			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");

			/* disable EEE if enabled */
			if ((adapter->flags & IGB_FLAG_EEE) &&
				(adapter->link_duplex == HALF_DUPLEX)) {
				dev_info(&adapter->pdev->dev,
				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
				adapter->hw.dev_spec._82575.eee_disable = true;
				adapter->flags &= ~IGB_FLAG_EEE;
			}

			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE))
				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");

			/* adjust timeout factor according to speed/duplex */
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			if (adapter->link_speed != SPEED_1000)
				goto no_wait;

			/* wait for Remote receiver status OK */
retry_read_status:
			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
					      &phy_data)) {
				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
				    retry_count) {
					msleep(100);
					retry_count--;
					goto retry_read_status;
				} else if (!retry_count) {
					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
				}
			} else {
				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
			}
no_wait:
			netif_carrier_on(netdev);

			igb_ping_all_vfs(adapter);
			igb_check_vf_rate_limit(adapter);

			/* link state has changed, schedule phy info update */
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
			}

			/* Links status message must follow this format */
			netdev_info(netdev, "igb: %s NIC Link is Down\n",
			       netdev->name);
			netif_carrier_off(netdev);

			igb_ping_all_vfs(adapter);

			/* link state has changed, schedule phy info update */
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			/* link is down, time to check for alternate media */
			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
				igb_check_swap_media(adapter);
				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
					schedule_work(&adapter->reset_task);
					/* return immediately */
					return;
				}
			}
			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);

		/* also check for alternate media here */
		} else if (!netif_carrier_ok(netdev) &&
			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
			igb_check_swap_media(adapter);
			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
				schedule_work(&adapter->reset_task);
				/* return immediately */
				return;
			}
		}
	}

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = adapter->tx_ring[i];
		if (!netif_carrier_ok(netdev)) {
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context).
			 */
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
		}

		/* Force detection of hung controller every watchdog period */
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
	}

	/* Cause software interrupt to ensure Rx ring is cleaned */
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		u32 eics = 0;

		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}

	igb_spoof_check(adapter);
	igb_ptp_rx_hang(adapter);
	igb_ptp_tx_hang(adapter);

	/* Check LVMMC register on i350/i354 only */
	if ((adapter->hw.mac.type == e1000_i350) ||
	    (adapter->hw.mac.type == e1000_i354))
		igb_check_lvmmc(adapter);

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies +  HZ));
		else
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies + 2 * HZ));
	}
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

/**
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
 *
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by ethtool's coalescing settings.
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
 **/
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
{
	int new_val = q_vector->itr_val;
	int avg_wire_size = 0;
	struct igb_adapter *adapter = q_vector->adapter;
	unsigned int packets;

	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
		new_val = IGB_4K_ITR;
		goto set_itr_val;
	}

	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;

	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;

	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);

	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;

	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;

set_itr_val:
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
	}
clear_counts:
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
}

/**
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  This functionality is controlled by ethtool's coalescing settings.
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
 **/
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
{
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;

	/* no packets, exit with status unchanged */
	if (packets == 0)
		return;

	switch (itrval) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			itrval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			itrval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000)
				itrval = bulk_latency;
			else if ((packets < 10) || ((bytes/packets) > 1200))
				itrval = bulk_latency;
			else if ((packets > 35))
				itrval = lowest_latency;
		} else if (bytes/packets > 2000) {
			itrval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			itrval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				itrval = low_latency;
		} else if (bytes < 1500) {
			itrval = low_latency;
		}
		break;
	}

	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
}

static void igb_set_itr(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	u32 new_itr = q_vector->itr_val;
	u8 current_itr = 0;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = IGB_4K_ITR;
		goto set_itr_now;
	}

	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);

	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);

	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		current_itr = low_latency;

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
		break;
	case low_latency:
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
		break;
	case bulk_latency:
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != q_vector->itr_val) {
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing
		 */
		new_itr = new_itr > q_vector->itr_val ?
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
	}
}

static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
			    struct igb_tx_buffer *first,
			    u32 vlan_macip_lens, u32 type_tucmd,
			    u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;
	struct timespec64 ts;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);

	/* We assume there is always a valid tx time available. Invalid times
	 * should have been handled by the upper layers.
	 */
	if (tx_ring->launchtime_enable) {
		ts = ns_to_timespec64(first->skb->tstamp);
		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
	} else {
		context_desc->seqnum_seed = 0;
	}
}

static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
{
	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
	int err;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_checksum_start(skb);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;

	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		unsigned char *csum_start = skb_checksum_start(skb);
		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);

		/* IP header will have to cancel out any data that
		 * is not a part of the outer IP header
		 */
		ip.v4->check = csum_fold(csum_partial(trans_start,
						      csum_start - trans_start,
						      0));
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;

		ip.v4->tot_len = 0;
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
	} else {
		ip.v6->payload_len = 0;
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
	}

	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;

	/* remove payload length from inner checksum */
	paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));

	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

	/* MSS L4LEN IDX */
	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;

	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = l4.hdr - ip.hdr;
	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;

	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
			type_tucmd, mss_l4len_idx);

	return 1;
}

static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
{
	unsigned int offset = 0;

	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);

	return offset == skb_checksum_start_offset(skb);
}

static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
{
	struct sk_buff *skb = first->skb;
	u32 vlan_macip_lens = 0;
	u32 type_tucmd = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL) {
csum_failed:
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
		    !tx_ring->launchtime_enable)
			return;
		goto no_csum;
	}

	switch (skb->csum_offset) {
	case offsetof(struct tcphdr, check):
		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
		/* fall through */
	case offsetof(struct udphdr, check):
		break;
	case offsetof(struct sctphdr, checksum):
		/* validate that this is actually an SCTP request */
		if (((first->protocol == htons(ETH_P_IP)) &&
		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
		    ((first->protocol == htons(ETH_P_IPV6)) &&
		     igb_ipv6_csum_is_sctp(skb))) {
			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
			break;
		}
		/* fall through */
	default:
		skb_checksum_help(skb);
		goto csum_failed;
	}

	/* update TX checksum flag */
	first->tx_flags |= IGB_TX_FLAGS_CSUM;
	vlan_macip_lens = skb_checksum_start_offset(skb) -
			  skb_network_offset(skb);
no_csum:
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;

	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
}

#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;

	/* set HW vlan bit if vlan is present */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));

	/* set timestamp bit if present */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));

	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);

	return cmd_type;
}

static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));

	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));

	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}

static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
	struct net_device *netdev = tx_ring->netdev;

	netif_stop_subqueue(netdev, tx_ring->queue_index);

	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it.
	 */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available.
	 */
	if (igb_desc_unused(tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_wake_subqueue(netdev, tx_ring->queue_index);

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

	return 0;
}

static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
	if (igb_desc_unused(tx_ring) >= size)
		return 0;
	return __igb_maybe_stop_tx(tx_ring, size);
}

static int igb_tx_map(struct igb_ring *tx_ring,
		      struct igb_tx_buffer *first,
		      const u8 hdr_len)
{
	struct sk_buff *skb = first->skb;
	struct igb_tx_buffer *tx_buffer;
	union e1000_adv_tx_desc *tx_desc;
	struct skb_frag_struct *frag;
	dma_addr_t dma;
	unsigned int data_len, size;
	u32 tx_flags = first->tx_flags;
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
			tx_desc->read.olinfo_status = 0;

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);

		i++;
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
			i = 0;
		}
		tx_desc->read.olinfo_status = 0;

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				       size, DMA_TO_DEVICE);

		tx_buffer = &tx_ring->tx_buffer_info[i];
	}

	/* write last descriptor with RS and EOP bits */
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);

	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* set the timestamp */
	first->time_stamp = jiffies;

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	dma_wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	/* Make sure there is space in the ring for the next send. */
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);

	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
		writel(i, tx_ring->tail);

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
	}
	return 0;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");
	tx_buffer = &tx_ring->tx_buffer_info[i];

	/* clear dma mappings for failed tx_buffer_info map */
	while (tx_buffer != first) {
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_page(tx_ring->dev,
				       dma_unmap_addr(tx_buffer, dma),
				       dma_unmap_len(tx_buffer, len),
				       DMA_TO_DEVICE);
		dma_unmap_len_set(tx_buffer, len, 0);

		if (i-- == 0)
			i += tx_ring->count;
		tx_buffer = &tx_ring->tx_buffer_info[i];
	}

	if (dma_unmap_len(tx_buffer, len))
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);
	dma_unmap_len_set(tx_buffer, len, 0);

	dev_kfree_skb_any(tx_buffer->skb);
	tx_buffer->skb = NULL;

	tx_ring->next_to_use = i;

	return -1;
}

netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
{
	struct igb_tx_buffer *first;
	int tso;
	u32 tx_flags = 0;
	unsigned short f;
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
	__be16 protocol = vlan_get_protocol(skb);
	u8 hdr_len = 0;

	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);

		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
					   &adapter->state)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		} else {
			adapter->tx_hwtstamp_skipped++;
		}
	}

	if (skb_vlan_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;

	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
		goto out_drop;
	else if (!tso)
		igb_tx_csum(tx_ring, first);

	skb_tx_timestamp(skb);

	if (igb_tx_map(tx_ring, first, hdr_len))
		goto cleanup_tx_tstamp;

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
cleanup_tx_tstamp:
	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);

		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
		if (adapter->hw.mac.type == e1000_82576)
			cancel_work_sync(&adapter->ptp_tx_work);
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
	}

	return NETDEV_TX_OK;
}

static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb_put_padto(skb, 17))
		return NETDEV_TX_OK;

	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
}

/**
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;

	if (hw->mac.type >= e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

	schedule_work(&adapter->reset_task);
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
	igb_reinit_locked(adapter);
}

/**
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
 **/
static void igb_get_stats64(struct net_device *netdev,
			    struct rtnl_link_stats64 *stats)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);
}

/**
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
 *
 *  Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;

	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);

	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;

	if (netif_running(netdev))
		igb_down(adapter);

	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
 **/
void igb_update_stats(struct igb_adapter *adapter)
{
	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u32 reg, mpc;
	int i;
	u64 bytes, packets;
	unsigned int start;
	u64 _bytes, _packets;

	/* Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	bytes = 0;
	packets = 0;

	rcu_read_lock();
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = adapter->rx_ring[i];
		u32 rqdpc = rd32(E1000_RQDPC(i));
		if (hw->mac.type >= e1000_i210)
			wr32(E1000_RQDPC(i), 0);

		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}

		do {
			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
	}

	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = adapter->tx_ring[i];
		do {
			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
	}
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
	rcu_read_unlock();

	/* read stats registers */
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	net_stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
}

static void igb_tsync_interrupt(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct ptp_clock_event event;
	struct timespec64 ts;
	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);

	if (tsicr & TSINTR_SYS_WRAP) {
		event.type = PTP_CLOCK_PPS;
		if (adapter->ptp_caps.pps)
			ptp_clock_event(adapter->ptp_clock, &event);
		ack |= TSINTR_SYS_WRAP;
	}

	if (tsicr & E1000_TSICR_TXTS) {
		/* retrieve hardware timestamp */
		schedule_work(&adapter->ptp_tx_work);
		ack |= E1000_TSICR_TXTS;
	}

	if (tsicr & TSINTR_TT0) {
		spin_lock(&adapter->tmreg_lock);
		ts = timespec64_add(adapter->perout[0].start,
				    adapter->perout[0].period);
		/* u32 conversion of tv_sec is safe until y2106 */
		wr32(E1000_TRGTTIML0, ts.tv_nsec);
		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
		tsauxc = rd32(E1000_TSAUXC);
		tsauxc |= TSAUXC_EN_TT0;
		wr32(E1000_TSAUXC, tsauxc);
		adapter->perout[0].start = ts;
		spin_unlock(&adapter->tmreg_lock);
		ack |= TSINTR_TT0;
	}

	if (tsicr & TSINTR_TT1) {
		spin_lock(&adapter->tmreg_lock);
		ts = timespec64_add(adapter->perout[1].start,
				    adapter->perout[1].period);
		wr32(E1000_TRGTTIML1, ts.tv_nsec);
		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
		tsauxc = rd32(E1000_TSAUXC);
		tsauxc |= TSAUXC_EN_TT1;
		wr32(E1000_TSAUXC, tsauxc);
		adapter->perout[1].start = ts;
		spin_unlock(&adapter->tmreg_lock);
		ack |= TSINTR_TT1;
	}

	if (tsicr & TSINTR_AUTT0) {
		nsec = rd32(E1000_AUXSTMPL0);
		sec  = rd32(E1000_AUXSTMPH0);
		event.type = PTP_CLOCK_EXTTS;
		event.index = 0;
		event.timestamp = sec * 1000000000ULL + nsec;
		ptp_clock_event(adapter->ptp_clock, &event);
		ack |= TSINTR_AUTT0;
	}

	if (tsicr & TSINTR_AUTT1) {
		nsec = rd32(E1000_AUXSTMPL1);
		sec  = rd32(E1000_AUXSTMPH1);
		event.type = PTP_CLOCK_EXTTS;
		event.index = 1;
		event.timestamp = sec * 1000000000ULL + nsec;
		ptp_clock_event(adapter->ptp_clock, &event);
		ack |= TSINTR_AUTT1;
	}

	/* acknowledge the interrupts */
	wr32(E1000_TSICR, ack);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
	struct igb_adapter *adapter = data;
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */

	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

	if (icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event.
		 */
		igb_check_wvbr(adapter);
	}

	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	if (icr & E1000_ICR_TS)
		igb_tsync_interrupt(adapter);

	wr32(E1000_EIMS, adapter->eims_other);

	return IRQ_HANDLED;
}

static void igb_write_itr(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	u32 itr_val = q_vector->itr_val & 0x7FFC;

	if (!q_vector->set_itr)
		return;

	if (!itr_val)
		itr_val = 0x4;

	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
	else
		itr_val |= E1000_EITR_CNT_IGNR;

	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
}

static irqreturn_t igb_msix_ring(int irq, void *data)
{
	struct igb_q_vector *q_vector = data;

	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

#ifdef CONFIG_IGB_DCA
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

	/* We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

	/* We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

static void igb_update_dca(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	int cpu = get_cpu();

	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

	q_vector->cpu = cpu;
out_no_update:
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
		return;

	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

	for (i = 0; i < adapter->num_q_vectors; i++) {
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
			break;
		if (dca_add_requester(dev) == 0) {
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
			dev_info(&pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
			/* without this a class_device is left
			 * hanging around in the sysfs model
			 */
			dca_remove_requester(dev);
			dev_info(&pdev->dev, "DCA disabled\n");
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
		}
		break;
	}

	return 0;
}

static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
			  void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
					 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
#endif /* CONFIG_IGB_DCA */

#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

	eth_zero_addr(mac_addr);
	igb_set_vf_mac(adapter, vf, mac_addr);

	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

	/* By default VFs are not trusted */
	adapter->vf_data[vf].trusted = false;

	return 0;
}

#endif
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
			    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/* if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;

			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* salt away the number of multicast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
	for (i = 0; i < n; i++)
		vf_data->vf_mc_hashes[i] = hash_list[i];

	/* Flush and reset the mta with the new values */
	igb_set_rx_mode(adapter->netdev);

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		u32 vmolr = rd32(E1000_VMOLR(i));

		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

		vf_data = &adapter->vf_data[i];

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, vlvf_mask, i;

	/* create mask for VF and other pools */
	pool_mask = E1000_VLVF_POOLSEL_MASK;
	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);

	/* drop PF from pool bits */
	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
			     adapter->vfs_allocated_count);

	/* Find the vlan filter for this id */
	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
		u32 vlvf = rd32(E1000_VLVF(i));
		u32 vfta_mask, vid, vfta;

		/* remove the vf from the pool */
		if (!(vlvf & vlvf_mask))
			continue;

		/* clear out bit from VLVF */
		vlvf ^= vlvf_mask;

		/* if other pools are present, just remove ourselves */
		if (vlvf & pool_mask)
			goto update_vlvfb;

		/* if PF is present, leave VFTA */
		if (vlvf & E1000_VLVF_POOLSEL_MASK)
			goto update_vlvf;

		vid = vlvf & E1000_VLVF_VLANID_MASK;
		vfta_mask = BIT(vid % 32);

		/* clear bit from VFTA */
		vfta = adapter->shadow_vfta[vid / 32];
		if (vfta & vfta_mask)
			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
update_vlvf:
		/* clear pool selection enable */
		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
			vlvf &= E1000_VLVF_POOLSEL_MASK;
		else
			vlvf = 0;
update_vlvfb:
		/* clear pool bits */
		wr32(E1000_VLVF(i), vlvf);
	}
}

static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
{
	u32 vlvf;
	int idx;

	/* short cut the special case */
	if (vlan == 0)
		return 0;

	/* Search for the VLAN id in the VLVF entries */
	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
		vlvf = rd32(E1000_VLVF(idx));
		if ((vlvf & VLAN_VID_MASK) == vlan)
			break;
	}

	return idx;
}

static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 bits, pf_id;
	int idx;

	idx = igb_find_vlvf_entry(hw, vid);
	if (!idx)
		return;

	/* See if any other pools are set for this VLAN filter
	 * entry other than the PF.
	 */
	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
	bits &= rd32(E1000_VLVF(idx));

	/* Disable the filter so this falls into the default pool. */
	if (!bits) {
		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
			wr32(E1000_VLVF(idx), BIT(pf_id));
		else
			wr32(E1000_VLVF(idx), 0);
	}
}

static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
			   bool add, u32 vf)
{
	int pf_id = adapter->vfs_allocated_count;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* If VLAN overlaps with one the PF is currently monitoring make
	 * sure that we are able to allocate a VLVF entry.  This may be
	 * redundant but it guarantees PF will maintain visibility to
	 * the VLAN.
	 */
	if (add && test_bit(vid, adapter->active_vlans)) {
		err = igb_vfta_set(hw, vid, pf_id, true, false);
		if (err)
			return err;
	}

	err = igb_vfta_set(hw, vid, vf, add, false);

	if (add && !err)
		return err;

	/* If we failed to add the VF VLAN or we are removing the VF VLAN
	 * we may need to drop the PF pool bit in order to allow us to free
	 * up the VLVF resources.
	 */
	if (test_bit(vid, adapter->active_vlans) ||
	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
		igb_update_pf_vlvf(adapter, vid);

	return err;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
				u16 vlan, u8 qos)
{
	int err;

	err = igb_set_vf_vlan(adapter, vlan, true, vf);
	if (err)
		return err;

	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
	igb_set_vmolr(adapter, vf, !vlan);

	/* revoke access to previous VLAN */
	if (vlan != adapter->vf_data[vf].pf_vlan)
		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
				false, vf);

	adapter->vf_data[vf].pf_vlan = vlan;
	adapter->vf_data[vf].pf_qos = qos;
	igb_set_vf_vlan_strip(adapter, vf, true);
	dev_info(&adapter->pdev->dev,
		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev,
			 "The VF VLAN has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
	}

	return err;
}

static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
{
	/* Restore tagless access via VLAN 0 */
	igb_set_vf_vlan(adapter, 0, true, vf);

	igb_set_vmvir(adapter, 0, vf);
	igb_set_vmolr(adapter, vf, true);

	/* Remove any PF assigned VLAN */
	if (adapter->vf_data[vf].pf_vlan)
		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
				false, vf);

	adapter->vf_data[vf].pf_vlan = 0;
	adapter->vf_data[vf].pf_qos = 0;
	igb_set_vf_vlan_strip(adapter, vf, false);

	return 0;
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
			       u16 vlan, u8 qos, __be16 vlan_proto)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;

	if (vlan_proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
			       igb_disable_port_vlan(adapter, vf);
}

static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
	int ret;

	if (adapter->vf_data[vf].pf_vlan)
		return -1;

	/* VLAN 0 is a special case, don't allow it to be removed */
	if (!vid && !add)
		return 0;

	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
	if (!ret)
		igb_set_vf_vlan_strip(adapter, vf, !!vid);
	return ret;
}

static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
{
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	/* clear flags - except flag that indicates PF has set the MAC */
	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
	vf_data->last_nack = jiffies;

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
	igb_set_vmvir(adapter, vf_data->pf_vlan |
			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
	igb_set_rx_mode(adapter->netdev);
}

static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* clear mac address as we were hotplug removed/added */
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		eth_zero_addr(vf_mac);

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset(adapter, vf);

	/* set vf mac address */
	igb_set_vf_mac(adapter, vf, vf_mac);

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | BIT(vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | BIT(vf));

	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;

	/* reply to reset with ack and vf mac address */
	if (!is_zero_ether_addr(vf_mac)) {
		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
		memcpy(addr, vf_mac, ETH_ALEN);
	} else {
		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
	}
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static void igb_flush_mac_table(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	for (i = 0; i < hw->mac.rar_entry_count; i++) {
		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
		adapter->mac_table[i].queue = 0;
		igb_rar_set_index(adapter, i);
	}
}

static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
{
	struct e1000_hw *hw = &adapter->hw;
	/* do not count rar entries reserved for VFs MAC addresses */
	int rar_entries = hw->mac.rar_entry_count -
			  adapter->vfs_allocated_count;
	int i, count = 0;

	for (i = 0; i < rar_entries; i++) {
		/* do not count default entries */
		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
			continue;

		/* do not count "in use" entries for different queues */
		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
		    (adapter->mac_table[i].queue != queue))
			continue;

		count++;
	}

	return count;
}

/* Set default MAC address for the PF in the first RAR entry */
static void igb_set_default_mac_filter(struct igb_adapter *adapter)
{
	struct igb_mac_addr *mac_table = &adapter->mac_table[0];

	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
	mac_table->queue = adapter->vfs_allocated_count;
	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;

	igb_rar_set_index(adapter, 0);
}

/* If the filter to be added and an already existing filter express
 * the same address and address type, it should be possible to only
 * override the other configurations, for example the queue to steer
 * traffic.
 */
static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
				      const u8 *addr, const u8 flags)
{
	if (!(entry->state & IGB_MAC_STATE_IN_USE))
		return true;

	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
	    (flags & IGB_MAC_STATE_SRC_ADDR))
		return false;

	if (!ether_addr_equal(addr, entry->addr))
		return false;

	return true;
}

/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
 * 'flags' is used to indicate what kind of match is made, match is by
 * default for the destination address, if matching by source address
 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
 */
static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
				    const u8 *addr, const u8 queue,
				    const u8 flags)
{
	struct e1000_hw *hw = &adapter->hw;
	int rar_entries = hw->mac.rar_entry_count -
			  adapter->vfs_allocated_count;
	int i;

	if (is_zero_ether_addr(addr))
		return -EINVAL;

	/* Search for the first empty entry in the MAC table.
	 * Do not touch entries at the end of the table reserved for the VF MAC
	 * addresses.
	 */
	for (i = 0; i < rar_entries; i++) {
		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
					       addr, flags))
			continue;

		ether_addr_copy(adapter->mac_table[i].addr, addr);
		adapter->mac_table[i].queue = queue;
		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;

		igb_rar_set_index(adapter, i);
		return i;
	}

	return -ENOSPC;
}

static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
			      const u8 queue)
{
	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
}

/* Remove a MAC filter for 'addr' directing matching traffic to
 * 'queue', 'flags' is used to indicate what kind of match need to be
 * removed, match is by default for the destination address, if
 * matching by source address is to be removed the flag
 * IGB_MAC_STATE_SRC_ADDR can be used.
 */
static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
				    const u8 *addr, const u8 queue,
				    const u8 flags)
{
	struct e1000_hw *hw = &adapter->hw;
	int rar_entries = hw->mac.rar_entry_count -
			  adapter->vfs_allocated_count;
	int i;

	if (is_zero_ether_addr(addr))
		return -EINVAL;

	/* Search for matching entry in the MAC table based on given address
	 * and queue. Do not touch entries at the end of the table reserved
	 * for the VF MAC addresses.
	 */
	for (i = 0; i < rar_entries; i++) {
		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
			continue;
		if ((adapter->mac_table[i].state & flags) != flags)
			continue;
		if (adapter->mac_table[i].queue != queue)
			continue;
		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
			continue;

		/* When a filter for the default address is "deleted",
		 * we return it to its initial configuration
		 */
		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
			adapter->mac_table[i].state =
				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
			adapter->mac_table[i].queue =
				adapter->vfs_allocated_count;
		} else {
			adapter->mac_table[i].state = 0;
			adapter->mac_table[i].queue = 0;
			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
		}

		igb_rar_set_index(adapter, i);
		return 0;
	}

	return -ENOENT;
}

static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
			      const u8 queue)
{
	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
}

int igb_add_mac_steering_filter(struct igb_adapter *adapter,
				const u8 *addr, u8 queue, u8 flags)
{
	struct e1000_hw *hw = &adapter->hw;

	/* In theory, this should be supported on 82575 as well, but
	 * that part wasn't easily accessible during development.
	 */
	if (hw->mac.type != e1000_i210)
		return -EOPNOTSUPP;

	return igb_add_mac_filter_flags(adapter, addr, queue,
					IGB_MAC_STATE_QUEUE_STEERING | flags);
}

int igb_del_mac_steering_filter(struct igb_adapter *adapter,
				const u8 *addr, u8 queue, u8 flags)
{
	return igb_del_mac_filter_flags(adapter, addr, queue,
					IGB_MAC_STATE_QUEUE_STEERING | flags);
}

static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int ret;

	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);

	return min_t(int, ret, 0);
}

static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);

	return 0;
}

static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
				 const u32 info, const u8 *addr)
{
	struct pci_dev *pdev = adapter->pdev;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	struct list_head *pos;
	struct vf_mac_filter *entry = NULL;
	int ret = 0;

	switch (info) {
	case E1000_VF_MAC_FILTER_CLR:
		/* remove all unicast MAC filters related to the current VF */
		list_for_each(pos, &adapter->vf_macs.l) {
			entry = list_entry(pos, struct vf_mac_filter, l);
			if (entry->vf == vf) {
				entry->vf = -1;
				entry->free = true;
				igb_del_mac_filter(adapter, entry->vf_mac, vf);
			}
		}
		break;
	case E1000_VF_MAC_FILTER_ADD:
		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
		    !vf_data->trusted) {
			dev_warn(&pdev->dev,
				 "VF %d requested MAC filter but is administratively denied\n",
				 vf);
			return -EINVAL;
		}
		if (!is_valid_ether_addr(addr)) {
			dev_warn(&pdev->dev,
				 "VF %d attempted to set invalid MAC filter\n",
				 vf);
			return -EINVAL;
		}

		/* try to find empty slot in the list */
		list_for_each(pos, &adapter->vf_macs.l) {
			entry = list_entry(pos, struct vf_mac_filter, l);
			if (entry->free)
				break;
		}

		if (entry && entry->free) {
			entry->free = false;
			entry->vf = vf;
			ether_addr_copy(entry->vf_mac, addr);

			ret = igb_add_mac_filter(adapter, addr, vf);
			ret = min_t(int, ret, 0);
		} else {
			ret = -ENOSPC;
		}

		if (ret == -ENOSPC)
			dev_warn(&pdev->dev,
				 "VF %d has requested MAC filter but there is no space for it\n",
				 vf);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
	struct pci_dev *pdev = adapter->pdev;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;

	/* The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
	unsigned char *addr = (unsigned char *)&msg[1];
	int ret = 0;

	if (!info) {
		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
		    !vf_data->trusted) {
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
			return -EINVAL;
		}

		if (!is_valid_ether_addr(addr)) {
			dev_warn(&pdev->dev,
				 "VF %d attempted to set invalid MAC\n",
				 vf);
			return -EINVAL;
		}

		ret = igb_set_vf_mac(adapter, vf, addr);
	} else {
		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
	}

	return ret;
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
		igb_write_mbx(hw, &msg, 1, vf);
		vf_data->last_nack = jiffies;
	}
}

static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);

	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
		dev_err(&pdev->dev, "Error receiving message from VF\n");
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			goto unlock;
		goto out;
	}

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		goto unlock;

	/* until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		/* unlocks mailbox */
		igb_vf_reset_msg(adapter, vf);
		return;
	}

	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			goto unlock;
		retval = -1;
		goto out;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
		else
			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	/* unlocks mailbox */
	igb_write_mbx(hw, msgbuf, 1, vf);
	return;

unlock:
	igb_unlock_mbx(hw, vf);
}

static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
}

/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *  @set: boolean indicating if we are setting or clearing bits
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter, bool set)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 uta = set ? ~0 : 0;
	int i;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = hw->mac.uta_reg_count; i--;)
		array_wr32(E1000_UTA, i, uta);
}

/**
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

	igb_write_itr(q_vector);

	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

	if (icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	if (icr & E1000_ICR_TS)
		igb_tsync_interrupt(adapter);

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

/**
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write
	 */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

	igb_write_itr(q_vector);

	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

	if (icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	if (icr & E1000_ICR_TS)
		igb_tsync_interrupt(adapter);

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;

	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
		else
			igb_update_ring_itr(q_vector);
	}

	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_HAS_MSIX)
			wr32(E1000_EIMS, q_vector->eims_value);
		else
			igb_irq_enable(adapter);
	}
}

/**
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
{
	struct igb_q_vector *q_vector = container_of(napi,
						     struct igb_q_vector,
						     napi);
	bool clean_complete = true;
	int work_done = 0;

#ifdef CONFIG_IGB_DCA
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
#endif
	if (q_vector->tx.ring)
		clean_complete = igb_clean_tx_irq(q_vector, budget);

	if (q_vector->rx.ring) {
		int cleaned = igb_clean_rx_irq(q_vector, budget);

		work_done += cleaned;
		if (cleaned >= budget)
			clean_complete = false;
	}

	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;

	/* If not enough Rx work done, exit the polling mode */
	napi_complete_done(napi, work_done);
	igb_ring_irq_enable(q_vector);

	return 0;
}

/**
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
 *  @napi_budget: Used to determine if we are in netpoll
 *
 *  returns true if ring is completely cleaned
 **/
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx.ring;
	struct igb_tx_buffer *tx_buffer;
	union e1000_adv_tx_desc *tx_desc;
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = q_vector->tx.work_limit;
	unsigned int i = tx_ring->next_to_clean;

	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;

	tx_buffer = &tx_ring->tx_buffer_info[i];
	tx_desc = IGB_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		smp_rmb();

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;

		/* free the skb */
		napi_consume_skb(tx_buffer->skb, napi_budget);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		dma_unmap_len_set(tx_buffer, len, 0);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buffer = tx_ring->tx_buffer_info;
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buffer, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buffer, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;

	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
		struct e1000_hw *hw = &adapter->hw;

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
		if (tx_buffer->next_to_watch &&
		    time_after(jiffies, tx_buffer->time_stamp +
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
			dev_err(tx_ring->dev,
				"Detected Tx Unit Hang\n"
				"  Tx Queue             <%d>\n"
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
				"  next_to_watch        <%p>\n"
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
				tx_ring->queue_index,
				rd32(E1000_TDH(tx_ring->reg_idx)),
				readl(tx_ring->tail),
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_buffer->time_stamp,
				tx_buffer->next_to_watch,
				jiffies,
				tx_buffer->next_to_watch->wb.status);
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
		}
	}

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets &&
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
}

/**
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
 *
 *  Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* Transfer page from old buffer to new buffer.
	 * Move each member individually to avoid possible store
	 * forwarding stalls.
	 */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
}

static inline bool igb_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
{
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;

	/* avoid re-using remote pages */
	if (unlikely(igb_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
		return false;
#else
#define IGB_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)

	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
		return false;
#endif

	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
	if (unlikely(!pagecnt_bias)) {
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}

	return true;
}

/**
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @skb: sk_buff to place the data into
 *  @size: size of buffer to be added
 *
 *  This function will add the data contained in rx_buffer->page to the skb.
 **/
static void igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    struct sk_buff *skb,
			    unsigned int size)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
				SKB_DATA_ALIGN(size);
#endif
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
}

static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
					 struct igb_rx_buffer *rx_buffer,
					 union e1000_adv_rx_desc *rx_desc,
					 unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif

	/* allocate a skb to store the frags */
	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
	if (unlikely(!skb))
		return NULL;

	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
		va += IGB_TS_HDR_LEN;
		size -= IGB_TS_HDR_LEN;
	}

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > IGB_RX_HDR_LEN)
		headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				(va + headlen) - page_address(rx_buffer->page),
				size, truesize);
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		rx_buffer->pagecnt_bias++;
	}

	return skb;
}

static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
				     struct igb_rx_buffer *rx_buffer,
				     union e1000_adv_rx_desc *rx_desc,
				     unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif

	/* build an skb around the page buffer */
	skb = build_skb(va - IGB_SKB_PAD, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, IGB_SKB_PAD);
	__skb_put(skb, size);

	/* pull timestamp out of packet data */
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
		__skb_pull(skb, IGB_TS_HDR_LEN);
	}

	/* update buffer offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

static inline void igb_rx_checksum(struct igb_ring *ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	/* Ignore Checksum bit is set */
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
		return;

	/* TCP/UDP checksum error bit is set */
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
		/* work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
			u64_stats_update_begin(&ring->rx_syncp);
			ring->rx_stats.csum_err++;
			u64_stats_update_end(&ring->rx_syncp);
		}
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
}

static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb_set_hash(skb,
			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
			     PKT_HASH_TYPE_L3);
}

/**
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
 *
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

/**
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
 *
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
 *
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
 *
 *  Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
 *
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);

	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;

		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
					       const unsigned int size)
{
	struct igb_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

	rx_buffer->pagecnt_bias--;

	return rx_buffer;
}

static void igb_put_rx_buffer(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *rx_buffer)
{
	if (igb_can_reuse_rx_page(rx_buffer)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* We are not reusing the buffer so unmap it and free
		 * any references we are holding to it
		 */
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
				     IGB_RX_DMA_ATTR);
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;
}

static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
{
	struct igb_ring *rx_ring = q_vector->rx.ring;
	struct sk_buff *skb = rx_ring->skb;
	unsigned int total_bytes = 0, total_packets = 0;
	u16 cleaned_count = igb_desc_unused(rx_ring);

	while (likely(total_packets < budget)) {
		union e1000_adv_rx_desc *rx_desc;
		struct igb_rx_buffer *rx_buffer;
		unsigned int size;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
		size = le16_to_cpu(rx_desc->wb.upper.length);
		if (!size)
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * descriptor has been written back
		 */
		dma_rmb();

		rx_buffer = igb_get_rx_buffer(rx_ring, size);

		/* retrieve a buffer from the ring */
		if (skb)
			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
		else if (ring_uses_build_skb(rx_ring))
			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
		else
			skb = igb_construct_skb(rx_ring, rx_buffer,
						rx_desc, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			rx_buffer->pagecnt_bias++;
			break;
		}

		igb_put_rx_buffer(rx_ring, rx_buffer);
		cleaned_count++;

		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
		}

		/* probably a little skewed due to removing CRC */
		total_bytes += skb->len;

		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);

		napi_gro_receive(&q_vector->napi, skb);

		/* reset skb pointer */
		skb = NULL;

		/* update budget accounting */
		total_packets++;
	}

	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

	u64_stats_update_begin(&rx_ring->rx_syncp);
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	u64_stats_update_end(&rx_ring->rx_syncp);
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;

	if (cleaned_count)
		igb_alloc_rx_buffers(rx_ring, cleaned_count);

	return total_packets;
}

static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
				  struct igb_rx_buffer *bi)
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
		return true;

	/* alloc new page for storage */
	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	/* map page for use */
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 igb_rx_pg_size(rx_ring),
				 DMA_FROM_DEVICE,
				 IGB_RX_DMA_ATTR);

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, igb_rx_pg_order(rx_ring));

		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	bi->page = page;
	bi->page_offset = igb_rx_offset(rx_ring);
	bi->pagecnt_bias = 1;

	return true;
}

/**
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
 **/
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
{
	union e1000_adv_rx_desc *rx_desc;
	struct igb_rx_buffer *bi;
	u16 i = rx_ring->next_to_use;
	u16 bufsz;

	/* nothing to do */
	if (!cleaned_count)
		return;

	rx_desc = IGB_RX_DESC(rx_ring, i);
	bi = &rx_ring->rx_buffer_info[i];
	i -= rx_ring->count;

	bufsz = igb_rx_bufsz(rx_ring);

	do {
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset, bufsz,
						 DMA_FROM_DEVICE);

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		i++;
		if (unlikely(!i)) {
			rx_desc = IGB_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buffer_info;
			i -= rx_ring->count;
		}

		/* clear the length for the next_to_use descriptor */
		rx_desc->wb.upper.length = 0;

		cleaned_count--;
	} while (cleaned_count);

	i += rx_ring->count;

	if (rx_ring->next_to_use != i) {
		/* record the next descriptor to use */
		rx_ring->next_to_use = i;

		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		dma_wmb();
		writel(i, rx_ring->tail);
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
				     &data->val_out))
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
	case SIOCGHWTSTAMP:
		return igb_ptp_get_ts_config(netdev, ifr);
	case SIOCSHWTSTAMP:
		return igb_ptp_set_ts_config(netdev, ifr);
	default:
		return -EOPNOTSUPP;
	}
}

void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	pci_read_config_word(adapter->pdev, reg, value);
}

void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	pci_write_config_word(adapter->pdev, reg, *value);
}

s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	if (pcie_capability_read_word(adapter->pdev, reg, value))
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	if (pcie_capability_write_word(adapter->pdev, reg, *value))
		return -E1000_ERR_CONFIG;

	return 0;
}

static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);

	if (enable) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* Disable CFI check */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
}

static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int pf_id = adapter->vfs_allocated_count;

	/* add the filter since PF can receive vlans w/o entry in vlvf */
	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
		igb_vfta_set(hw, vid, pf_id, true, !!vid);

	set_bit(vid, adapter->active_vlans);

	return 0;
}

static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int pf_id = adapter->vfs_allocated_count;
	struct e1000_hw *hw = &adapter->hw;

	/* remove VID from filter table */
	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
		igb_vfta_set(hw, vid, pf_id, false, true);

	clear_bit(vid, adapter->active_vlans);

	return 0;
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	u16 vid = 1;

	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);

	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work
	 */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}

	switch (spd + dplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		goto err_inval;
	}

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

	return 0;

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
}

static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl, status;
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	rtnl_lock();
	netif_device_detach(netdev);

	if (netif_running(netdev))
		__igb_close(netdev, true);

	igb_ptp_suspend(adapter);

	igb_clear_interrupt_scheme(adapter);
	rtnl_unlock();

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
		igb_set_rx_mode(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

static void igb_deliver_wake_packet(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct sk_buff *skb;
	u32 wupl;

	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;

	/* WUPM stores only the first 128 bytes of the wake packet.
	 * Read the packet only if we have the whole thing.
	 */
	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
		return;

	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
	if (!skb)
		return;

	skb_put(skb, wupl);

	/* Ensure reads are 32-bit aligned */
	wupl = roundup(wupl, 4);

	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);

	skb->protocol = eth_type_trans(skb, netdev);
	netif_rx(skb);
}

static int __maybe_unused igb_suspend(struct device *dev)
{
	int retval;
	bool wake;
	struct pci_dev *pdev = to_pci_dev(dev);

	retval = __igb_shutdown(pdev, &wake, 0);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

static int __maybe_unused igb_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err, val;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_save_state(pdev);

	if (!pci_device_is_present(pdev))
		return -ENODEV;
	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver.
	 */
	igb_get_hw_control(adapter);

	val = rd32(E1000_WUS);
	if (val & WAKE_PKT_WUS)
		igb_deliver_wake_packet(netdev);

	wr32(E1000_WUS, ~0);

	rtnl_lock();
	if (!err && netif_running(netdev))
		err = __igb_open(netdev, true);

	if (!err)
		netif_device_attach(netdev);
	rtnl_unlock();

	return err;
}

static int __maybe_unused igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int __maybe_unused igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

static int __maybe_unused igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}

static void igb_shutdown(struct pci_dev *pdev)
{
	bool wake;

	__igb_shutdown(pdev, &wake, 0);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
}

#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);
	else
		igb_reset(adapter);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		rtnl_unlock();
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

/**
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
 *
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
 *
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	pci_ers_result_t result;

	if (pci_enable_device_mem(pdev)) {
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
		pci_save_state(pdev);

		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);

		/* In case of PCI error, adapter lose its HW address
		 * so we should re-assign it here.
		 */
		hw->hw_addr = adapter->io_addr;

		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}

	return result;
}

/**
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
 *
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver.
	 */
	igb_get_hw_control(adapter);
}

/**
 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
 *  @adapter: Pointer to adapter structure
 *  @index: Index of the RAR entry which need to be synced with MAC table
 **/
static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rar_low, rar_high;
	u8 *addr = adapter->mac_table[index].addr;

	/* HW expects these to be in network order when they are plugged
	 * into the registers which are little endian.  In order to guarantee
	 * that ordering we need to do an leXX_to_cpup here in order to be
	 * ready for the byteswap that occurs with writel
	 */
	rar_low = le32_to_cpup((__le32 *)(addr));
	rar_high = le16_to_cpup((__le16 *)(addr + 4));

	/* Indicate to hardware the Address is Valid. */
	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
		if (is_valid_ether_addr(addr))
			rar_high |= E1000_RAH_AV;

		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
			rar_high |= E1000_RAH_ASEL_SRC_ADDR;

		switch (hw->mac.type) {
		case e1000_82575:
		case e1000_i210:
			if (adapter->mac_table[index].state &
			    IGB_MAC_STATE_QUEUE_STEERING)
				rar_high |= E1000_RAH_QSEL_ENABLE;

			rar_high |= E1000_RAH_POOL_1 *
				    adapter->mac_table[index].queue;
			break;
		default:
			rar_high |= E1000_RAH_POOL_1 <<
				    adapter->mac_table[index].queue;
			break;
		}
	}

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

static int igb_set_vf_mac(struct igb_adapter *adapter,
			  int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
	/* VF MAC addresses start at end of receive addresses and moves
	 * towards the first, as a result a collision should not be possible
	 */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;

	ether_addr_copy(vf_mac_addr, mac_addr);
	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
	adapter->mac_table[rar_entry].queue = vf;
	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
	igb_rar_set_index(adapter, rar_entry);

	return 0;
}

static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
	 * flag and allows to overwrite the MAC via VF netdev.  This
	 * is necessary to allow libvirt a way to restore the original
	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
	 * down a VM.
	 */
	if (is_zero_ether_addr(mac)) {
		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
		dev_info(&adapter->pdev->dev,
			 "remove administratively set MAC on VF %d\n",
			 vf);
	} else if (is_valid_ether_addr(mac)) {
		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
			 mac, vf);
		dev_info(&adapter->pdev->dev,
			 "Reload the VF driver to make this change effective.");
		/* Generate additional warning if PF is down */
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF MAC address has been set, but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before attempting to use the VF device.\n");
		}
	} else {
		return -EINVAL;
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
			 "Link speed has been changed. VF Transmit rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
	}
}

static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
			     int min_tx_rate, int max_tx_rate)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	if (min_tx_rate)
		return -EINVAL;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (max_tx_rate < 0) ||
	    (max_tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);

	return 0;
}

static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= (BIT(vf) |
			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
	else
		reg_val &= ~(BIT(vf) |
			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return 0;
}

static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	if (adapter->vf_data[vf].trusted == setting)
		return 0;

	adapter->vf_data[vf].trusted = setting;

	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
		 vf, setting ? "" : "not ");
	return 0;
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
	ivi->min_tx_rate = 0;
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
	ivi->trusted = adapter->vf_data[vf].trusted;
	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg;

	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_i210:
	case e1000_i211:
	case e1000_i354:
	default:
		/* replication is not supported for 82575 */
		return;
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
		/* Fall through */
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
		/* Fall through */
	case e1000_i350:
		/* none of the above registers are supported by i350 */
		break;
	}

	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
		igb_vmdq_set_anti_spoofing_pf(hw, true,
					      adapter->vfs_allocated_count);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
}

static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/* DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
			 */
			hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - 10;
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);

			/* Disable BMC-to-OS Watchdog Enable */
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

			wr32(E1000_DMACR, reg);

			/* no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/* free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/* make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);

		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
 **/
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
		      u8 dev_addr, u8 *data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = adapter->i2c_client;
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return 0;
	}
}

/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
 **/
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
		       u8 dev_addr, u8 data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = adapter->i2c_client;
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return 0;

}

int igb_reinit_queues(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (netif_running(netdev))
		igb_close(netdev);

	igb_reset_interrupt_capability(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		err = igb_open(netdev);

	return err;
}

static void igb_nfc_filter_exit(struct igb_adapter *adapter)
{
	struct igb_nfc_filter *rule;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
		igb_erase_filter(adapter, rule);

	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
		igb_erase_filter(adapter, rule);

	spin_unlock(&adapter->nfc_lock);
}

static void igb_nfc_filter_restore(struct igb_adapter *adapter)
{
	struct igb_nfc_filter *rule;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
		igb_add_filter(adapter, rule);

	spin_unlock(&adapter->nfc_lock);
}
/* igb_main.c */