Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mugunthan V N | 7589 | 41.97% | 51 | 23.39% |
Ivan Khoronzhuk | 6455 | 35.70% | 48 | 22.02% |
Grygorii Strashko | 1241 | 6.86% | 29 | 13.30% |
Richard Cochran | 825 | 4.56% | 8 | 3.67% |
Johan Hovold | 241 | 1.33% | 10 | 4.59% |
Yegor Yefremov | 236 | 1.31% | 2 | 0.92% |
George Cherian | 183 | 1.01% | 3 | 1.38% |
Ben Hutchings | 149 | 0.82% | 3 | 1.38% |
Matus Ujhelyi | 142 | 0.79% | 1 | 0.46% |
Sebastian Andrzej Siewior | 140 | 0.77% | 4 | 1.83% |
David Rivshin | 128 | 0.71% | 6 | 2.75% |
J Keerthy | 128 | 0.71% | 1 | 0.46% |
Daniel Mack | 126 | 0.70% | 7 | 3.21% |
Felipe Balbi | 110 | 0.61% | 4 | 1.83% |
Lennart Sorensen | 75 | 0.41% | 2 | 0.92% |
Markus Pargmann | 50 | 0.28% | 4 | 1.83% |
Heiko Schocher | 45 | 0.25% | 2 | 0.92% |
Markus Brunner | 28 | 0.15% | 1 | 0.46% |
Schuyler Patton | 24 | 0.13% | 1 | 0.46% |
Stefan Sörensen | 20 | 0.11% | 1 | 0.46% |
Philippe Reynes | 17 | 0.09% | 1 | 0.46% |
Julia Lawall | 15 | 0.08% | 1 | 0.46% |
Sekhar Nori | 9 | 0.05% | 1 | 0.46% |
Stefan Roese | 9 | 0.05% | 1 | 0.46% |
Patrick McHardy | 9 | 0.05% | 2 | 0.92% |
Vaibhav Hiremath | 9 | 0.05% | 1 | 0.46% |
Tobias Klauser | 8 | 0.04% | 1 | 0.46% |
SZ Lin | 8 | 0.04% | 1 | 0.46% |
Kees Cook | 7 | 0.04% | 1 | 0.46% |
Florian Fainelli | 6 | 0.03% | 1 | 0.46% |
Wei Yongjun | 6 | 0.03% | 1 | 0.46% |
Yuval Shaia | 6 | 0.03% | 1 | 0.46% |
Jiri Pirko | 5 | 0.03% | 1 | 0.46% |
Wolfram Sang | 4 | 0.02% | 1 | 0.46% |
Olof Johansson | 3 | 0.02% | 1 | 0.46% |
Randy Dunlap | 3 | 0.02% | 1 | 0.46% |
Joe Perches | 3 | 0.02% | 3 | 1.38% |
zhong jiang | 3 | 0.02% | 1 | 0.46% |
Eric Dumazet | 3 | 0.02% | 1 | 0.46% |
Wilfried Klaebe | 3 | 0.02% | 1 | 0.46% |
John Ogness | 3 | 0.02% | 1 | 0.46% |
Rob Herring | 2 | 0.01% | 1 | 0.46% |
George McCollister | 2 | 0.01% | 1 | 0.46% |
Uwe Kleine-König | 2 | 0.01% | 1 | 0.46% |
Arvind Yadav | 1 | 0.01% | 1 | 0.46% |
Andrew Lunn | 1 | 0.01% | 1 | 0.46% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.46% |
Total | 18083 | 218 |
/* * Texas Instruments Ethernet Switch Driver * * Copyright (C) 2012 Texas Instruments * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/kernel.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/timer.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/irqreturn.h> #include <linux/interrupt.h> #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <linux/netdevice.h> #include <linux/net_tstamp.h> #include <linux/phy.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/gpio/consumer.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/of_device.h> #include <linux/if_vlan.h> #include <linux/kmemleak.h> #include <linux/sys_soc.h> #include <linux/pinctrl/consumer.h> #include <net/pkt_cls.h> #include "cpsw.h" #include "cpsw_ale.h" #include "cpts.h" #include "davinci_cpdma.h" #include <net/pkt_sched.h> #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ NETIF_MSG_DRV | NETIF_MSG_LINK | \ NETIF_MSG_IFUP | NETIF_MSG_INTR | \ NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ NETIF_MSG_RX_STATUS) #define cpsw_info(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_info(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define cpsw_err(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_err(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define cpsw_dbg(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_dbg(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define cpsw_notice(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_notice(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define ALE_ALL_PORTS 0x7 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) #define CPSW_MINOR_VERSION(reg) (reg & 0xff) #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) #define CPSW_VERSION_1 0x19010a #define CPSW_VERSION_2 0x19010c #define CPSW_VERSION_3 0x19010f #define CPSW_VERSION_4 0x190112 #define HOST_PORT_NUM 0 #define CPSW_ALE_PORTS_NUM 3 #define SLIVER_SIZE 0x40 #define CPSW1_HOST_PORT_OFFSET 0x028 #define CPSW1_SLAVE_OFFSET 0x050 #define CPSW1_SLAVE_SIZE 0x040 #define CPSW1_CPDMA_OFFSET 0x100 #define CPSW1_STATERAM_OFFSET 0x200 #define CPSW1_HW_STATS 0x400 #define CPSW1_CPTS_OFFSET 0x500 #define CPSW1_ALE_OFFSET 0x600 #define CPSW1_SLIVER_OFFSET 0x700 #define CPSW2_HOST_PORT_OFFSET 0x108 #define CPSW2_SLAVE_OFFSET 0x200 #define CPSW2_SLAVE_SIZE 0x100 #define CPSW2_CPDMA_OFFSET 0x800 #define CPSW2_HW_STATS 0x900 #define CPSW2_STATERAM_OFFSET 0xa00 #define CPSW2_CPTS_OFFSET 0xc00 #define CPSW2_ALE_OFFSET 0xd00 #define CPSW2_SLIVER_OFFSET 0xd80 #define CPSW2_BD_OFFSET 0x2000 #define CPDMA_RXTHRESH 0x0c0 #define CPDMA_RXFREE 0x0e0 #define CPDMA_TXHDP 0x00 #define CPDMA_RXHDP 0x20 #define CPDMA_TXCP 0x40 #define CPDMA_RXCP 0x60 #define CPSW_POLL_WEIGHT 64 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ ETH_FCS_LEN +\ CPSW_RX_VLAN_ENCAP_HDR_SIZE) #define RX_PRIORITY_MAPPING 0x76543210 #define TX_PRIORITY_MAPPING 0x33221100 #define CPDMA_TX_PRIORITY_MAP 0x76543210 #define CPSW_VLAN_AWARE BIT(1) #define CPSW_RX_VLAN_ENCAP BIT(2) #define CPSW_ALE_VLAN_AWARE 1 #define CPSW_FIFO_NORMAL_MODE (0 << 16) #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) #define CPSW_INTPACEEN (0x3f << 16) #define CPSW_INTPRESCALE_MASK (0x7FF << 0) #define CPSW_CMINTMAX_CNT 63 #define CPSW_CMINTMIN_CNT 2 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) #define cpsw_slave_index(cpsw, priv) \ ((cpsw->data.dual_emac) ? priv->emac_port : \ cpsw->data.active_slave) #define IRQ_NUM 2 #define CPSW_MAX_QUEUES 8 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16 #define CPSW_FIFO_SHAPE_EN_SHIFT 16 #define CPSW_FIFO_RATE_EN_SHIFT 20 #define CPSW_TC_NUM 4 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1) #define CPSW_PCT_MASK 0x7f #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) enum { CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, }; static int debug_level; module_param(debug_level, int, 0); MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); static int ale_ageout = 10; module_param(ale_ageout, int, 0); MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); static int rx_packet_max = CPSW_MAX_PACKET_SIZE; module_param(rx_packet_max, int, 0); MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; module_param(descs_pool_size, int, 0444); MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); struct cpsw_wr_regs { u32 id_ver; u32 soft_reset; u32 control; u32 int_control; u32 rx_thresh_en; u32 rx_en; u32 tx_en; u32 misc_en; u32 mem_allign1[8]; u32 rx_thresh_stat; u32 rx_stat; u32 tx_stat; u32 misc_stat; u32 mem_allign2[8]; u32 rx_imax; u32 tx_imax; }; struct cpsw_ss_regs { u32 id_ver; u32 control; u32 soft_reset; u32 stat_port_en; u32 ptype; u32 soft_idle; u32 thru_rate; u32 gap_thresh; u32 tx_start_wds; u32 flow_control; u32 vlan_ltype; u32 ts_ltype; u32 dlr_ltype; }; /* CPSW_PORT_V1 */ #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ /* CPSW_PORT_V2 */ #define CPSW2_CONTROL 0x00 /* Control Register */ #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ /* CPSW_PORT_V1 and V2 */ #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ /* CPSW_PORT_V2 only */ #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ /* Bit definitions for the CPSW2_CONTROL register */ #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */ #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */ #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */ #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */ #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */ #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */ #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */ #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */ #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */ #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */ #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */ #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */ #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */ #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */ #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */ #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */ #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */ #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */ #define CTRL_V2_TS_BITS \ (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) #define CTRL_V3_TS_BITS \ (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ TS_LTYPE1_EN) #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ #define TS_SEQ_ID_OFFSET_MASK (0x3f) #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ #define TS_MSG_TYPE_EN_MASK (0xffff) /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) /* Bit definitions for the CPSW1_TS_CTL register */ #define CPSW_V1_TS_RX_EN BIT(0) #define CPSW_V1_TS_TX_EN BIT(4) #define CPSW_V1_MSG_TYPE_OFS 16 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 #define CPSW_MAX_BLKS_TX 15 #define CPSW_MAX_BLKS_TX_SHIFT 4 #define CPSW_MAX_BLKS_RX 5 struct cpsw_host_regs { u32 max_blks; u32 blk_cnt; u32 tx_in_ctl; u32 port_vlan; u32 tx_pri_map; u32 cpdma_tx_pri_map; u32 cpdma_rx_chan_map; }; struct cpsw_sliver_regs { u32 id_ver; u32 mac_control; u32 mac_status; u32 soft_reset; u32 rx_maxlen; u32 __reserved_0; u32 rx_pause; u32 tx_pause; u32 __reserved_1; u32 rx_pri_map; }; struct cpsw_hw_stats { u32 rxgoodframes; u32 rxbroadcastframes; u32 rxmulticastframes; u32 rxpauseframes; u32 rxcrcerrors; u32 rxaligncodeerrors; u32 rxoversizedframes; u32 rxjabberframes; u32 rxundersizedframes; u32 rxfragments; u32 __pad_0[2]; u32 rxoctets; u32 txgoodframes; u32 txbroadcastframes; u32 txmulticastframes; u32 txpauseframes; u32 txdeferredframes; u32 txcollisionframes; u32 txsinglecollframes; u32 txmultcollframes; u32 txexcessivecollisions; u32 txlatecollisions; u32 txunderrun; u32 txcarriersenseerrors; u32 txoctets; u32 octetframes64; u32 octetframes65t127; u32 octetframes128t255; u32 octetframes256t511; u32 octetframes512t1023; u32 octetframes1024tup; u32 netoctets; u32 rxsofoverruns; u32 rxmofoverruns; u32 rxdmaoverruns; }; struct cpsw_slave_data { struct device_node *phy_node; char phy_id[MII_BUS_ID_SIZE]; int phy_if; u8 mac_addr[ETH_ALEN]; u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ }; struct cpsw_platform_data { struct cpsw_slave_data *slave_data; u32 ss_reg_ofs; /* Subsystem control register offset */ u32 channels; /* number of cpdma channels (symmetric) */ u32 slaves; /* number of slave cpgmac ports */ u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ u32 ale_entries; /* ale table size */ u32 bd_ram_size; /*buffer descriptor ram size */ u32 mac_control; /* Mac control register */ u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ bool dual_emac; /* Enable Dual EMAC mode */ }; struct cpsw_slave { void __iomem *regs; struct cpsw_sliver_regs __iomem *sliver; int slave_num; u32 mac_control; struct cpsw_slave_data *data; struct phy_device *phy; struct net_device *ndev; u32 port_vlan; }; static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) { return readl_relaxed(slave->regs + offset); } static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) { writel_relaxed(val, slave->regs + offset); } struct cpsw_vector { struct cpdma_chan *ch; int budget; }; struct cpsw_common { struct device *dev; struct cpsw_platform_data data; struct napi_struct napi_rx; struct napi_struct napi_tx; struct cpsw_ss_regs __iomem *regs; struct cpsw_wr_regs __iomem *wr_regs; u8 __iomem *hw_stats; struct cpsw_host_regs __iomem *host_port_regs; u32 version; u32 coal_intvl; u32 bus_freq_mhz; int rx_packet_max; struct cpsw_slave *slaves; struct cpdma_ctlr *dma; struct cpsw_vector txv[CPSW_MAX_QUEUES]; struct cpsw_vector rxv[CPSW_MAX_QUEUES]; struct cpsw_ale *ale; bool quirk_irq; bool rx_irq_disabled; bool tx_irq_disabled; u32 irqs_table[IRQ_NUM]; struct cpts *cpts; int rx_ch_num, tx_ch_num; int speed; int usage_count; }; struct cpsw_priv { struct net_device *ndev; struct device *dev; u32 msg_enable; u8 mac_addr[ETH_ALEN]; bool rx_pause; bool tx_pause; bool mqprio_hw; int fifo_bw[CPSW_TC_NUM]; int shp_cfg_speed; u32 emac_port; struct cpsw_common *cpsw; }; struct cpsw_stats { char stat_string[ETH_GSTRING_LEN]; int type; int sizeof_stat; int stat_offset; }; enum { CPSW_STATS, CPDMA_RX_STATS, CPDMA_TX_STATS, }; #define CPSW_STAT(m) CPSW_STATS, \ FIELD_SIZEOF(struct cpsw_hw_stats, m), \ offsetof(struct cpsw_hw_stats, m) #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ FIELD_SIZEOF(struct cpdma_chan_stats, m), \ offsetof(struct cpdma_chan_stats, m) #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ FIELD_SIZEOF(struct cpdma_chan_stats, m), \ offsetof(struct cpdma_chan_stats, m) static const struct cpsw_stats cpsw_gstrings_stats[] = { { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, { "Rx Fragments", CPSW_STAT(rxfragments) }, { "Rx Octets", CPSW_STAT(rxoctets) }, { "Good Tx Frames", CPSW_STAT(txgoodframes) }, { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, { "Collisions", CPSW_STAT(txcollisionframes) }, { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, { "Late Collisions", CPSW_STAT(txlatecollisions) }, { "Tx Underrun", CPSW_STAT(txunderrun) }, { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, { "Tx Octets", CPSW_STAT(txoctets) }, { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, { "Net Octets", CPSW_STAT(netoctets) }, { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, }; static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, { "misqueued", CPDMA_RX_STAT(misqueued) }, { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, { "requeue", CPDMA_RX_STAT(requeue) }, { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, }; #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) #define for_each_slave(priv, func, arg...) \ do { \ struct cpsw_slave *slave; \ struct cpsw_common *cpsw = (priv)->cpsw; \ int n; \ if (cpsw->data.dual_emac) \ (func)((cpsw)->slaves + priv->emac_port, ##arg);\ else \ for (n = cpsw->data.slaves, \ slave = cpsw->slaves; \ n; n--) \ (func)(slave++, ##arg); \ } while (0) static inline int cpsw_get_slave_port(u32 slave_num) { return slave_num + 1; } static void cpsw_add_mcast(struct cpsw_priv *priv, const u8 *addr) { struct cpsw_common *cpsw = priv->cpsw; if (cpsw->data.dual_emac) { struct cpsw_slave *slave = cpsw->slaves + priv->emac_port; cpsw_ale_add_mcast(cpsw->ale, addr, ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); return; } cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0); } static void cpsw_set_promiscious(struct net_device *ndev, bool enable) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct cpsw_ale *ale = cpsw->ale; int i; if (cpsw->data.dual_emac) { bool flag = false; /* Enabling promiscuous mode for one interface will be * common for both the interface as the interface shares * the same hardware resource. */ for (i = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) flag = true; if (!enable && flag) { enable = true; dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); } if (enable) { /* Enable Bypass */ cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); dev_dbg(&ndev->dev, "promiscuity enabled\n"); } else { /* Disable Bypass */ cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); dev_dbg(&ndev->dev, "promiscuity disabled\n"); } } else { if (enable) { unsigned long timeout = jiffies + HZ; /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ for (i = 0; i <= cpsw->data.slaves; i++) { cpsw_ale_control_set(ale, i, ALE_PORT_NOLEARN, 1); cpsw_ale_control_set(ale, i, ALE_PORT_NO_SA_UPDATE, 1); } /* Clear All Untouched entries */ cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); do { cpu_relax(); if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) break; } while (time_after(timeout, jiffies)); cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); /* Clear all mcast from ALE */ cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); __dev_mc_unsync(ndev, NULL); /* Flood All Unicast Packets to Host port */ cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); dev_dbg(&ndev->dev, "promiscuity enabled\n"); } else { /* Don't Flood All Unicast Packets to Host port */ cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ for (i = 0; i <= cpsw->data.slaves; i++) { cpsw_ale_control_set(ale, i, ALE_PORT_NOLEARN, 0); cpsw_ale_control_set(ale, i, ALE_PORT_NO_SA_UPDATE, 0); } dev_dbg(&ndev->dev, "promiscuity disabled\n"); } } } static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr) { struct cpsw_priv *priv = netdev_priv(ndev); cpsw_add_mcast(priv, addr); return 0; } static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int vid, flags; if (cpsw->data.dual_emac) { vid = cpsw->slaves[priv->emac_port].port_vlan; flags = ALE_VLAN; } else { vid = 0; flags = 0; } cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); return 0; } static void cpsw_ndo_set_rx_mode(struct net_device *ndev) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); if (ndev->flags & IFF_PROMISC) { /* Enable promiscuous mode */ cpsw_set_promiscious(ndev, true); cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); return; } else { /* Disable promiscuous mode */ cpsw_set_promiscious(ndev, false); } /* Restore allmulti on vlans if necessary */ cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI); __dev_mc_sync(ndev, cpsw_add_mc_addr, cpsw_del_mc_addr); } static void cpsw_intr_enable(struct cpsw_common *cpsw) { writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); cpdma_ctlr_int_ctrl(cpsw->dma, true); return; } static void cpsw_intr_disable(struct cpsw_common *cpsw) { writel_relaxed(0, &cpsw->wr_regs->tx_en); writel_relaxed(0, &cpsw->wr_regs->rx_en); cpdma_ctlr_int_ctrl(cpsw->dma, false); return; } static void cpsw_tx_handler(void *token, int len, int status) { struct netdev_queue *txq; struct sk_buff *skb = token; struct net_device *ndev = skb->dev; struct cpsw_common *cpsw = ndev_to_cpsw(ndev); /* Check whether the queue is stopped due to stalled tx dma, if the * queue is stopped then start the queue as we have free desc for tx */ txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); if (unlikely(netif_tx_queue_stopped(txq))) netif_tx_wake_queue(txq); cpts_tx_timestamp(cpsw->cpts, skb); ndev->stats.tx_packets++; ndev->stats.tx_bytes += len; dev_kfree_skb_any(skb); } static void cpsw_rx_vlan_encap(struct sk_buff *skb) { struct cpsw_priv *priv = netdev_priv(skb->dev); struct cpsw_common *cpsw = priv->cpsw; u32 rx_vlan_encap_hdr = *((u32 *)skb->data); u16 vtag, vid, prio, pkt_type; /* Remove VLAN header encapsulation word */ skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); pkt_type = (rx_vlan_encap_hdr >> CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; /* Ignore unknown & Priority-tagged packets*/ if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) return; vid = (rx_vlan_encap_hdr >> CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & VLAN_VID_MASK; /* Ignore vid 0 and pass packet as is */ if (!vid) return; /* Ignore default vlans in dual mac mode */ if (cpsw->data.dual_emac && vid == cpsw->slaves[priv->emac_port].port_vlan) return; prio = (rx_vlan_encap_hdr >> CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; vtag = (prio << VLAN_PRIO_SHIFT) | vid; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); /* strip vlan tag for VLAN-tagged packet */ if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); skb_pull(skb, VLAN_HLEN); } } static void cpsw_rx_handler(void *token, int len, int status) { struct cpdma_chan *ch; struct sk_buff *skb = token; struct sk_buff *new_skb; struct net_device *ndev = skb->dev; int ret = 0, port; struct cpsw_common *cpsw = ndev_to_cpsw(ndev); if (cpsw->data.dual_emac) { port = CPDMA_RX_SOURCE_PORT(status); if (port) { ndev = cpsw->slaves[--port].ndev; skb->dev = ndev; } } if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { /* In dual emac mode check for all interfaces */ if (cpsw->data.dual_emac && cpsw->usage_count && (status >= 0)) { /* The packet received is for the interface which * is already down and the other interface is up * and running, instead of freeing which results * in reducing of the number of rx descriptor in * DMA engine, requeue skb back to cpdma. */ new_skb = skb; goto requeue; } /* the interface is going down, skbs are purged */ dev_kfree_skb_any(skb); return; } new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); if (new_skb) { skb_copy_queue_mapping(new_skb, skb); skb_put(skb, len); if (status & CPDMA_RX_VLAN_ENCAP) cpsw_rx_vlan_encap(skb); cpts_rx_timestamp(cpsw->cpts, skb); skb->protocol = eth_type_trans(skb, ndev); netif_receive_skb(skb); ndev->stats.rx_bytes += len; ndev->stats.rx_packets++; kmemleak_not_leak(new_skb); } else { ndev->stats.rx_dropped++; new_skb = skb; } requeue: if (netif_dormant(ndev)) { dev_kfree_skb_any(new_skb); return; } ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; ret = cpdma_chan_submit(ch, new_skb, new_skb->data, skb_tailroom(new_skb), 0); if (WARN_ON(ret < 0)) dev_kfree_skb_any(new_skb); } static void cpsw_split_res(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); u32 consumed_rate = 0, bigest_rate = 0; struct cpsw_common *cpsw = priv->cpsw; struct cpsw_vector *txv = cpsw->txv; int i, ch_weight, rlim_ch_num = 0; int budget, bigest_rate_ch = 0; u32 ch_rate, max_rate; int ch_budget = 0; for (i = 0; i < cpsw->tx_ch_num; i++) { ch_rate = cpdma_chan_get_rate(txv[i].ch); if (!ch_rate) continue; rlim_ch_num++; consumed_rate += ch_rate; } if (cpsw->tx_ch_num == rlim_ch_num) { max_rate = consumed_rate; } else if (!rlim_ch_num) { ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; bigest_rate = 0; max_rate = consumed_rate; } else { max_rate = cpsw->speed * 1000; /* if max_rate is less then expected due to reduced link speed, * split proportionally according next potential max speed */ if (max_rate < consumed_rate) max_rate *= 10; if (max_rate < consumed_rate) max_rate *= 10; ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / (cpsw->tx_ch_num - rlim_ch_num); bigest_rate = (max_rate - consumed_rate) / (cpsw->tx_ch_num - rlim_ch_num); } /* split tx weight/budget */ budget = CPSW_POLL_WEIGHT; for (i = 0; i < cpsw->tx_ch_num; i++) { ch_rate = cpdma_chan_get_rate(txv[i].ch); if (ch_rate) { txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; if (!txv[i].budget) txv[i].budget++; if (ch_rate > bigest_rate) { bigest_rate_ch = i; bigest_rate = ch_rate; } ch_weight = (ch_rate * 100) / max_rate; if (!ch_weight) ch_weight++; cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); } else { txv[i].budget = ch_budget; if (!bigest_rate_ch) bigest_rate_ch = i; cpdma_chan_set_weight(cpsw->txv[i].ch, 0); } budget -= txv[i].budget; } if (budget) txv[bigest_rate_ch].budget += budget; /* split rx budget */ budget = CPSW_POLL_WEIGHT; ch_budget = budget / cpsw->rx_ch_num; for (i = 0; i < cpsw->rx_ch_num; i++) { cpsw->rxv[i].budget = ch_budget; budget -= ch_budget; } if (budget) cpsw->rxv[0].budget += budget; } static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) { struct cpsw_common *cpsw = dev_id; writel(0, &cpsw->wr_regs->tx_en); cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); if (cpsw->quirk_irq) { disable_irq_nosync(cpsw->irqs_table[1]); cpsw->tx_irq_disabled = true; } napi_schedule(&cpsw->napi_tx); return IRQ_HANDLED; } static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) { struct cpsw_common *cpsw = dev_id; cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); writel(0, &cpsw->wr_regs->rx_en); if (cpsw->quirk_irq) { disable_irq_nosync(cpsw->irqs_table[0]); cpsw->rx_irq_disabled = true; } napi_schedule(&cpsw->napi_rx); return IRQ_HANDLED; } static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) { u32 ch_map; int num_tx, cur_budget, ch; struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); struct cpsw_vector *txv; /* process every unprocessed channel */ ch_map = cpdma_ctrl_txchs_state(cpsw->dma); for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { if (!(ch_map & 0x80)) continue; txv = &cpsw->txv[ch]; if (unlikely(txv->budget > budget - num_tx)) cur_budget = budget - num_tx; else cur_budget = txv->budget; num_tx += cpdma_chan_process(txv->ch, cur_budget); if (num_tx >= budget) break; } if (num_tx < budget) { napi_complete(napi_tx); writel(0xff, &cpsw->wr_regs->tx_en); } return num_tx; } static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) { struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); int num_tx; num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); if (num_tx < budget) { napi_complete(napi_tx); writel(0xff, &cpsw->wr_regs->tx_en); if (cpsw->tx_irq_disabled) { cpsw->tx_irq_disabled = false; enable_irq(cpsw->irqs_table[1]); } } return num_tx; } static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) { u32 ch_map; int num_rx, cur_budget, ch; struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); struct cpsw_vector *rxv; /* process every unprocessed channel */ ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { if (!(ch_map & 0x01)) continue; rxv = &cpsw->rxv[ch]; if (unlikely(rxv->budget > budget - num_rx)) cur_budget = budget - num_rx; else cur_budget = rxv->budget; num_rx += cpdma_chan_process(rxv->ch, cur_budget); if (num_rx >= budget) break; } if (num_rx < budget) { napi_complete_done(napi_rx, num_rx); writel(0xff, &cpsw->wr_regs->rx_en); } return num_rx; } static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) { struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); int num_rx; num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); if (num_rx < budget) { napi_complete_done(napi_rx, num_rx); writel(0xff, &cpsw->wr_regs->rx_en); if (cpsw->rx_irq_disabled) { cpsw->rx_irq_disabled = false; enable_irq(cpsw->irqs_table[0]); } } return num_rx; } static inline void soft_reset(const char *module, void __iomem *reg) { unsigned long timeout = jiffies + HZ; writel_relaxed(1, reg); do { cpu_relax(); } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); } static void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) { slave_write(slave, mac_hi(priv->mac_addr), SA_HI); slave_write(slave, mac_lo(priv->mac_addr), SA_LO); } static bool cpsw_shp_is_off(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 shift, mask, val; val = readl_relaxed(&cpsw->regs->ptype); slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; mask = 7 << shift; val = val & mask; return !val; } static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 shift, mask, val; val = readl_relaxed(&cpsw->regs->ptype); slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; mask = (1 << --fifo) << shift; val = on ? val | mask : val & ~mask; writel_relaxed(val, &cpsw->regs->ptype); } static void _cpsw_adjust_link(struct cpsw_slave *slave, struct cpsw_priv *priv, bool *link) { struct phy_device *phy = slave->phy; u32 mac_control = 0; u32 slave_port; struct cpsw_common *cpsw = priv->cpsw; if (!phy) return; slave_port = cpsw_get_slave_port(slave->slave_num); if (phy->link) { mac_control = cpsw->data.mac_control; /* enable forwarding */ cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); if (phy->speed == 1000) mac_control |= BIT(7); /* GIGABITEN */ if (phy->duplex) mac_control |= BIT(0); /* FULLDUPLEXEN */ /* set speed_in input in case RMII mode is used in 100Mbps */ if (phy->speed == 100) mac_control |= BIT(15); /* in band mode only works in 10Mbps RGMII mode */ else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) mac_control |= BIT(18); /* In Band mode */ if (priv->rx_pause) mac_control |= BIT(3); if (priv->tx_pause) mac_control |= BIT(4); *link = true; if (priv->shp_cfg_speed && priv->shp_cfg_speed != slave->phy->speed && !cpsw_shp_is_off(priv)) dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); } else { mac_control = 0; /* disable forwarding */ cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); } if (mac_control != slave->mac_control) { phy_print_status(phy); writel_relaxed(mac_control, &slave->sliver->mac_control); } slave->mac_control = mac_control; } static int cpsw_get_common_speed(struct cpsw_common *cpsw) { int i, speed; for (i = 0, speed = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) speed += cpsw->slaves[i].phy->speed; return speed; } static int cpsw_need_resplit(struct cpsw_common *cpsw) { int i, rlim_ch_num; int speed, ch_rate; /* re-split resources only in case speed was changed */ speed = cpsw_get_common_speed(cpsw); if (speed == cpsw->speed || !speed) return 0; cpsw->speed = speed; for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); if (!ch_rate) break; rlim_ch_num++; } /* cases not dependent on speed */ if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) return 0; return 1; } static void cpsw_adjust_link(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; bool link = false; for_each_slave(priv, _cpsw_adjust_link, priv, &link); if (link) { if (cpsw_need_resplit(cpsw)) cpsw_split_res(ndev); netif_carrier_on(ndev); if (netif_running(ndev)) netif_tx_wake_all_queues(ndev); } else { netif_carrier_off(ndev); netif_tx_stop_all_queues(ndev); } } static int cpsw_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *coal) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); coal->rx_coalesce_usecs = cpsw->coal_intvl; return 0; } static int cpsw_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *coal) { struct cpsw_priv *priv = netdev_priv(ndev); u32 int_ctrl; u32 num_interrupts = 0; u32 prescale = 0; u32 addnl_dvdr = 1; u32 coal_intvl = 0; struct cpsw_common *cpsw = priv->cpsw; coal_intvl = coal->rx_coalesce_usecs; int_ctrl = readl(&cpsw->wr_regs->int_control); prescale = cpsw->bus_freq_mhz * 4; if (!coal->rx_coalesce_usecs) { int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); goto update_return; } if (coal_intvl < CPSW_CMINTMIN_INTVL) coal_intvl = CPSW_CMINTMIN_INTVL; if (coal_intvl > CPSW_CMINTMAX_INTVL) { /* Interrupt pacer works with 4us Pulse, we can * throttle further by dilating the 4us pulse. */ addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; if (addnl_dvdr > 1) { prescale *= addnl_dvdr; if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) coal_intvl = (CPSW_CMINTMAX_INTVL * addnl_dvdr); } else { addnl_dvdr = 1; coal_intvl = CPSW_CMINTMAX_INTVL; } } num_interrupts = (1000 * addnl_dvdr) / coal_intvl; writel(num_interrupts, &cpsw->wr_regs->rx_imax); writel(num_interrupts, &cpsw->wr_regs->tx_imax); int_ctrl |= CPSW_INTPACEEN; int_ctrl &= (~CPSW_INTPRESCALE_MASK); int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); update_return: writel(int_ctrl, &cpsw->wr_regs->int_control); cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); cpsw->coal_intvl = coal_intvl; return 0; } static int cpsw_get_sset_count(struct net_device *ndev, int sset) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); switch (sset) { case ETH_SS_STATS: return (CPSW_STATS_COMMON_LEN + (cpsw->rx_ch_num + cpsw->tx_ch_num) * CPSW_STATS_CH_LEN); default: return -EOPNOTSUPP; } } static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) { int ch_stats_len; int line; int i; ch_stats_len = CPSW_STATS_CH_LEN * ch_num; for (i = 0; i < ch_stats_len; i++) { line = i % CPSW_STATS_CH_LEN; snprintf(*p, ETH_GSTRING_LEN, "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx", (long)(i / CPSW_STATS_CH_LEN), cpsw_gstrings_ch_stats[line].stat_string); *p += ETH_GSTRING_LEN; } } static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); u8 *p = data; int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { memcpy(p, cpsw_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); break; } } static void cpsw_get_ethtool_stats(struct net_device *ndev, struct ethtool_stats *stats, u64 *data) { u8 *p; struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct cpdma_chan_stats ch_stats; int i, l, ch; /* Collect Davinci CPDMA stats for Rx and Tx Channel */ for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) data[l] = readl(cpsw->hw_stats + cpsw_gstrings_stats[l].stat_offset); for (ch = 0; ch < cpsw->rx_ch_num; ch++) { cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { p = (u8 *)&ch_stats + cpsw_gstrings_ch_stats[i].stat_offset; data[l] = *(u32 *)p; } } for (ch = 0; ch < cpsw->tx_ch_num; ch++) { cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { p = (u8 *)&ch_stats + cpsw_gstrings_ch_stats[i].stat_offset; data[l] = *(u32 *)p; } } } static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, struct sk_buff *skb, struct cpdma_chan *txch) { struct cpsw_common *cpsw = priv->cpsw; skb_tx_timestamp(skb); return cpdma_chan_submit(txch, skb, skb->data, skb->len, priv->emac_port + cpsw->data.dual_emac); } static inline void cpsw_add_dual_emac_def_ale_entries( struct cpsw_priv *priv, struct cpsw_slave *slave, u32 slave_port) { struct cpsw_common *cpsw = priv->cpsw; u32 port_mask = 1 << slave_port | ALE_PORT_HOST; if (cpsw->version == CPSW_VERSION_1) slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); else slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, port_mask, port_mask, 0); cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan); cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_DROP_UNKNOWN_VLAN, 1); } static void soft_reset_slave(struct cpsw_slave *slave) { char name[32]; snprintf(name, sizeof(name), "slave-%d", slave->slave_num); soft_reset(name, &slave->sliver->soft_reset); } static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) { u32 slave_port; struct phy_device *phy; struct cpsw_common *cpsw = priv->cpsw; soft_reset_slave(slave); /* setup priority mapping */ writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); switch (cpsw->version) { case CPSW_VERSION_1: slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); /* Increase RX FIFO size to 5 for supporting fullduplex * flow control mode */ slave_write(slave, (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); break; case CPSW_VERSION_2: case CPSW_VERSION_3: case CPSW_VERSION_4: slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); /* Increase RX FIFO size to 5 for supporting fullduplex * flow control mode */ slave_write(slave, (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); break; } /* setup max packet size, and mac address */ writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); cpsw_set_slave_mac(slave, priv); slave->mac_control = 0; /* no link yet */ slave_port = cpsw_get_slave_port(slave->slave_num); if (cpsw->data.dual_emac) cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); else cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); if (slave->data->phy_node) { phy = of_phy_connect(priv->ndev, slave->data->phy_node, &cpsw_adjust_link, 0, slave->data->phy_if); if (!phy) { dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", slave->data->phy_node, slave->slave_num); return; } } else { phy = phy_connect(priv->ndev, slave->data->phy_id, &cpsw_adjust_link, slave->data->phy_if); if (IS_ERR(phy)) { dev_err(priv->dev, "phy \"%s\" not found on slave %d, err %ld\n", slave->data->phy_id, slave->slave_num, PTR_ERR(phy)); return; } } slave->phy = phy; phy_attached_info(slave->phy); phy_start(slave->phy); /* Configure GMII_SEL register */ cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); } static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; const int vlan = cpsw->data.default_vlan; u32 reg; int i; int unreg_mcast_mask; reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : CPSW2_PORT_VLAN; writel(vlan, &cpsw->host_port_regs->port_vlan); for (i = 0; i < cpsw->data.slaves; i++) slave_write(cpsw->slaves + i, vlan, reg); if (priv->ndev->flags & IFF_ALLMULTI) unreg_mcast_mask = ALE_ALL_PORTS; else unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, ALE_ALL_PORTS, unreg_mcast_mask); } static void cpsw_init_host_port(struct cpsw_priv *priv) { u32 fifo_mode; u32 control_reg; struct cpsw_common *cpsw = priv->cpsw; /* soft reset the controller and initialize ale */ soft_reset("cpsw", &cpsw->regs->soft_reset); cpsw_ale_start(cpsw->ale); /* switch to vlan unaware mode */ cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, CPSW_ALE_VLAN_AWARE); control_reg = readl(&cpsw->regs->control); control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; writel(control_reg, &cpsw->regs->control); fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : CPSW_FIFO_NORMAL_MODE; writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); /* setup host port priority mapping */ writel_relaxed(CPDMA_TX_PRIORITY_MAP, &cpsw->host_port_regs->cpdma_tx_pri_map); writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); if (!cpsw->data.dual_emac) { cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 0, 0); cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); } } static int cpsw_fill_rx_channels(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct sk_buff *skb; int ch_buf_num; int ch, i, ret; for (ch = 0; ch < cpsw->rx_ch_num; ch++) { ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); for (i = 0; i < ch_buf_num; i++) { skb = __netdev_alloc_skb_ip_align(priv->ndev, cpsw->rx_packet_max, GFP_KERNEL); if (!skb) { cpsw_err(priv, ifup, "cannot allocate skb\n"); return -ENOMEM; } skb_set_queue_mapping(skb, ch); ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, skb->data, skb_tailroom(skb), 0); if (ret < 0) { cpsw_err(priv, ifup, "cannot submit skb to channel %d rx, error %d\n", ch, ret); kfree_skb(skb); return ret; } kmemleak_not_leak(skb); } cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", ch, ch_buf_num); } return 0; } static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) { u32 slave_port; slave_port = cpsw_get_slave_port(slave->slave_num); if (!slave->phy) return; phy_stop(slave->phy); phy_disconnect(slave->phy); slave->phy = NULL; cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); soft_reset_slave(slave); } static int cpsw_tc_to_fifo(int tc, int num_tc) { if (tc == num_tc - 1) return 0; return CPSW_FIFO_SHAPERS_NUM - tc; } static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) { struct cpsw_common *cpsw = priv->cpsw; u32 val = 0, send_pct, shift; struct cpsw_slave *slave; int pct = 0, i; if (bw > priv->shp_cfg_speed * 1000) goto err; /* shaping has to stay enabled for highest fifos linearly * and fifo bw no more then interface can allow */ slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; send_pct = slave_read(slave, SEND_PERCENT); for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { if (!bw) { if (i >= fifo || !priv->fifo_bw[i]) continue; dev_warn(priv->dev, "Prev FIFO%d is shaped", i); continue; } if (!priv->fifo_bw[i] && i > fifo) { dev_err(priv->dev, "Upper FIFO%d is not shaped", i); return -EINVAL; } shift = (i - 1) * 8; if (i == fifo) { send_pct &= ~(CPSW_PCT_MASK << shift); val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); if (!val) val = 1; send_pct |= val << shift; pct += val; continue; } if (priv->fifo_bw[i]) pct += (send_pct >> shift) & CPSW_PCT_MASK; } if (pct >= 100) goto err; slave_write(slave, send_pct, SEND_PERCENT); priv->fifo_bw[fifo] = bw; dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); return 0; err: dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); return -EINVAL; } static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 tx_in_ctl_rg, val; int ret; ret = cpsw_set_fifo_bw(priv, fifo, bw); if (ret) return ret; slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; if (!bw) cpsw_fifo_shp_on(priv, fifo, bw); val = slave_read(slave, tx_in_ctl_rg); if (cpsw_shp_is_off(priv)) { /* disable FIFOs rate limited queues */ val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); /* set type of FIFO queues to normal priority mode */ val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); /* set type of FIFO queues to be rate limited */ if (bw) val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; else priv->shp_cfg_speed = 0; } /* toggle a FIFO rate limited queue */ if (bw) val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); else val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); slave_write(slave, val, tx_in_ctl_rg); /* FIFO transmit shape enable */ cpsw_fifo_shp_on(priv, fifo, bw); return 0; } /* Defaults: * class A - prio 3 * class B - prio 2 * shaping for class A should be set first */ static int cpsw_set_cbs(struct net_device *ndev, struct tc_cbs_qopt_offload *qopt) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; int prev_speed = 0; int tc, ret, fifo; u32 bw = 0; tc = netdev_txq_to_tc(priv->ndev, qopt->queue); /* enable channels in backward order, as highest FIFOs must be rate * limited first and for compliance with CPDMA rate limited channels * that also used in bacward order. FIFO0 cannot be rate limited. */ fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); if (!fifo) { dev_err(priv->dev, "Last tc%d can't be rate limited", tc); return -EINVAL; } /* do nothing, it's disabled anyway */ if (!qopt->enable && !priv->fifo_bw[fifo]) return 0; /* shapers can be set if link speed is known */ slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; if (slave->phy && slave->phy->link) { if (priv->shp_cfg_speed && priv->shp_cfg_speed != slave->phy->speed) prev_speed = priv->shp_cfg_speed; priv->shp_cfg_speed = slave->phy->speed; } if (!priv->shp_cfg_speed) { dev_err(priv->dev, "Link speed is not known"); return -1; } ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } bw = qopt->enable ? qopt->idleslope : 0; ret = cpsw_set_fifo_rlimit(priv, fifo, bw); if (ret) { priv->shp_cfg_speed = prev_speed; prev_speed = 0; } if (bw && prev_speed) dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); pm_runtime_put_sync(cpsw->dev); return ret; } static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) { int fifo, bw; for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { bw = priv->fifo_bw[fifo]; if (!bw) continue; cpsw_set_fifo_rlimit(priv, fifo, bw); } } static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; u32 tx_prio_map = 0; int i, tc, fifo; u32 tx_prio_rg; if (!priv->mqprio_hw) return; for (i = 0; i < 8; i++) { tc = netdev_get_prio_tc_map(priv->ndev, i); fifo = CPSW_FIFO_SHAPERS_NUM - tc; tx_prio_map |= fifo << (4 * i); } tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; slave_write(slave, tx_prio_map, tx_prio_rg); } /* restore resources after port reset */ static void cpsw_restore(struct cpsw_priv *priv) { /* restore MQPRIO offload */ for_each_slave(priv, cpsw_mqprio_resume, priv); /* restore CBS offload */ for_each_slave(priv, cpsw_cbs_resume, priv); } static int cpsw_ndo_open(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; u32 reg; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } netif_carrier_off(ndev); /* Notify the stack of the actual queue counts. */ ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); if (ret) { dev_err(priv->dev, "cannot set real number of tx queues\n"); goto err_cleanup; } ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); if (ret) { dev_err(priv->dev, "cannot set real number of rx queues\n"); goto err_cleanup; } reg = cpsw->version; dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), CPSW_RTL_VERSION(reg)); /* Initialize host and slave ports */ if (!cpsw->usage_count) cpsw_init_host_port(priv); for_each_slave(priv, cpsw_slave_open, priv); /* Add default VLAN */ if (!cpsw->data.dual_emac) cpsw_add_default_vlan(priv); else cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); /* initialize shared resources for every ndev */ if (!cpsw->usage_count) { /* disable priority elevation */ writel_relaxed(0, &cpsw->regs->ptype); /* enable statistics collection only on all ports */ writel_relaxed(0x7, &cpsw->regs->stat_port_en); /* Enable internal fifo flow control */ writel(0x7, &cpsw->regs->flow_control); napi_enable(&cpsw->napi_rx); napi_enable(&cpsw->napi_tx); if (cpsw->tx_irq_disabled) { cpsw->tx_irq_disabled = false; enable_irq(cpsw->irqs_table[1]); } if (cpsw->rx_irq_disabled) { cpsw->rx_irq_disabled = false; enable_irq(cpsw->irqs_table[0]); } ret = cpsw_fill_rx_channels(priv); if (ret < 0) goto err_cleanup; if (cpts_register(cpsw->cpts)) dev_err(priv->dev, "error registering cpts device\n"); } cpsw_restore(priv); /* Enable Interrupt pacing if configured */ if (cpsw->coal_intvl != 0) { struct ethtool_coalesce coal; coal.rx_coalesce_usecs = cpsw->coal_intvl; cpsw_set_coalesce(ndev, &coal); } cpdma_ctlr_start(cpsw->dma); cpsw_intr_enable(cpsw); cpsw->usage_count++; return 0; err_cleanup: cpdma_ctlr_stop(cpsw->dma); for_each_slave(priv, cpsw_slave_stop, cpsw); pm_runtime_put_sync(cpsw->dev); netif_carrier_off(priv->ndev); return ret; } static int cpsw_ndo_stop(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; cpsw_info(priv, ifdown, "shutting down cpsw device\n"); __dev_mc_unsync(priv->ndev, cpsw_del_mc_addr); netif_tx_stop_all_queues(priv->ndev); netif_carrier_off(priv->ndev); if (cpsw->usage_count <= 1) { napi_disable(&cpsw->napi_rx); napi_disable(&cpsw->napi_tx); cpts_unregister(cpsw->cpts); cpsw_intr_disable(cpsw); cpdma_ctlr_stop(cpsw->dma); cpsw_ale_stop(cpsw->ale); } for_each_slave(priv, cpsw_slave_stop, cpsw); if (cpsw_need_resplit(cpsw)) cpsw_split_res(ndev); cpsw->usage_count--; pm_runtime_put_sync(cpsw->dev); return 0; } static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpts *cpts = cpsw->cpts; struct netdev_queue *txq; struct cpdma_chan *txch; int ret, q_idx; if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { cpsw_err(priv, tx_err, "packet pad failed\n"); ndev->stats.tx_dropped++; return NET_XMIT_DROP; } if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; q_idx = skb_get_queue_mapping(skb); if (q_idx >= cpsw->tx_ch_num) q_idx = q_idx % cpsw->tx_ch_num; txch = cpsw->txv[q_idx].ch; txq = netdev_get_tx_queue(ndev, q_idx); ret = cpsw_tx_packet_submit(priv, skb, txch); if (unlikely(ret != 0)) { cpsw_err(priv, tx_err, "desc submit failed\n"); goto fail; } /* If there is no more tx desc left free then we need to * tell the kernel to stop sending us tx frames. */ if (unlikely(!cpdma_check_free_tx_desc(txch))) { netif_tx_stop_queue(txq); /* Barrier, so that stop_queue visible to other cpus */ smp_mb__after_atomic(); if (cpdma_check_free_tx_desc(txch)) netif_tx_wake_queue(txq); } return NETDEV_TX_OK; fail: ndev->stats.tx_dropped++; netif_tx_stop_queue(txq); /* Barrier, so that stop_queue visible to other cpus */ smp_mb__after_atomic(); if (cpdma_check_free_tx_desc(txch)) netif_tx_wake_queue(txq); return NETDEV_TX_BUSY; } #if IS_ENABLED(CONFIG_TI_CPTS) static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) { struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; u32 ts_en, seq_id; if (!cpts_is_tx_enabled(cpsw->cpts) && !cpts_is_rx_enabled(cpsw->cpts)) { slave_write(slave, 0, CPSW1_TS_CTL); return; } seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; if (cpts_is_tx_enabled(cpsw->cpts)) ts_en |= CPSW_V1_TS_TX_EN; if (cpts_is_rx_enabled(cpsw->cpts)) ts_en |= CPSW_V1_TS_RX_EN; slave_write(slave, ts_en, CPSW1_TS_CTL); slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); } static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) { struct cpsw_slave *slave; struct cpsw_common *cpsw = priv->cpsw; u32 ctrl, mtype; slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; ctrl = slave_read(slave, CPSW2_CONTROL); switch (cpsw->version) { case CPSW_VERSION_2: ctrl &= ~CTRL_V2_ALL_TS_MASK; if (cpts_is_tx_enabled(cpsw->cpts)) ctrl |= CTRL_V2_TX_TS_BITS; if (cpts_is_rx_enabled(cpsw->cpts)) ctrl |= CTRL_V2_RX_TS_BITS; break; case CPSW_VERSION_3: default: ctrl &= ~CTRL_V3_ALL_TS_MASK; if (cpts_is_tx_enabled(cpsw->cpts)) ctrl |= CTRL_V3_TX_TS_BITS; if (cpts_is_rx_enabled(cpsw->cpts)) ctrl |= CTRL_V3_RX_TS_BITS; break; } mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); slave_write(slave, ctrl, CPSW2_CONTROL); writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); } static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { struct cpsw_priv *priv = netdev_priv(dev); struct hwtstamp_config cfg; struct cpsw_common *cpsw = priv->cpsw; struct cpts *cpts = cpsw->cpts; if (cpsw->version != CPSW_VERSION_1 && cpsw->version != CPSW_VERSION_2 && cpsw->version != CPSW_VERSION_3) return -EOPNOTSUPP; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; /* reserved for future extensions */ if (cfg.flags) return -EINVAL; if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) return -ERANGE; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: cpts_rx_enable(cpts, 0); break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_NTP_ALL: return -ERANGE; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; break; default: return -ERANGE; } cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); switch (cpsw->version) { case CPSW_VERSION_1: cpsw_hwtstamp_v1(cpsw); break; case CPSW_VERSION_2: case CPSW_VERSION_3: cpsw_hwtstamp_v2(priv); break; default: WARN_ON(1); } return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { struct cpsw_common *cpsw = ndev_to_cpsw(dev); struct cpts *cpts = cpsw->cpts; struct hwtstamp_config cfg; if (cpsw->version != CPSW_VERSION_1 && cpsw->version != CPSW_VERSION_2 && cpsw->version != CPSW_VERSION_3) return -EOPNOTSUPP; cfg.flags = 0; cfg.tx_type = cpts_is_tx_enabled(cpts) ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? cpts->rx_enable : HWTSTAMP_FILTER_NONE); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } #else static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { return -EOPNOTSUPP; } static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { return -EOPNOTSUPP; } #endif /*CONFIG_TI_CPTS*/ static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct cpsw_priv *priv = netdev_priv(dev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCSHWTSTAMP: return cpsw_hwtstamp_set(dev, req); case SIOCGHWTSTAMP: return cpsw_hwtstamp_get(dev, req); } if (!cpsw->slaves[slave_no].phy) return -EOPNOTSUPP; return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); } static void cpsw_ndo_tx_timeout(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ch; cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); ndev->stats.tx_errors++; cpsw_intr_disable(cpsw); for (ch = 0; ch < cpsw->tx_ch_num; ch++) { cpdma_chan_stop(cpsw->txv[ch].ch); cpdma_chan_start(cpsw->txv[ch].ch); } cpsw_intr_enable(cpsw); netif_trans_update(ndev); netif_tx_wake_all_queues(ndev); } static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) { struct cpsw_priv *priv = netdev_priv(ndev); struct sockaddr *addr = (struct sockaddr *)p; struct cpsw_common *cpsw = priv->cpsw; int flags = 0; u16 vid = 0; int ret; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (cpsw->data.dual_emac) { vid = cpsw->slaves[priv->emac_port].port_vlan; flags = ALE_VLAN; } cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, flags, vid); cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, flags, vid); memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); for_each_slave(priv, cpsw_set_slave_mac, priv); pm_runtime_put(cpsw->dev); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void cpsw_ndo_poll_controller(struct net_device *ndev) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); cpsw_intr_disable(cpsw); cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); cpsw_intr_enable(cpsw); } #endif static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, unsigned short vid) { int ret; int unreg_mcast_mask = 0; int mcast_mask; u32 port_mask; struct cpsw_common *cpsw = priv->cpsw; if (cpsw->data.dual_emac) { port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; mcast_mask = ALE_PORT_HOST; if (priv->ndev->flags & IFF_ALLMULTI) unreg_mcast_mask = mcast_mask; } else { port_mask = ALE_ALL_PORTS; mcast_mask = port_mask; if (priv->ndev->flags & IFF_ALLMULTI) unreg_mcast_mask = ALE_ALL_PORTS; else unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; } ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, unreg_mcast_mask); if (ret != 0) return ret; ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN, vid); if (ret != 0) goto clean_vid; ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, mcast_mask, ALE_VLAN, vid, 0); if (ret != 0) goto clean_vlan_ucast; return 0; clean_vlan_ucast: cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN, vid); clean_vid: cpsw_ale_del_vlan(cpsw->ale, vid, 0); return ret; } static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; if (vid == cpsw->data.default_vlan) return 0; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (cpsw->data.dual_emac) { /* In dual EMAC, reserved VLAN id should not be used for * creating VLAN interfaces as this can break the dual * EMAC port separation */ int i; for (i = 0; i < cpsw->data.slaves; i++) { if (vid == cpsw->slaves[i].port_vlan) { ret = -EINVAL; goto err; } } } dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); ret = cpsw_add_vlan_ale_entry(priv, vid); err: pm_runtime_put(cpsw->dev); return ret; } static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; if (vid == cpsw->data.default_vlan) return 0; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (cpsw->data.dual_emac) { int i; for (i = 0; i < cpsw->data.slaves; i++) { if (vid == cpsw->slaves[i].port_vlan) goto err; } } dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN, vid); ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 0, ALE_VLAN, vid); err: pm_runtime_put(cpsw->dev); return ret; } static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 min_rate; u32 ch_rate; int i, ret; ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; if (ch_rate == rate) return 0; ch_rate = rate * 1000; min_rate = cpdma_chan_get_min_rate(cpsw->dma); if ((ch_rate < min_rate && ch_rate)) { dev_err(priv->dev, "The channel rate cannot be less than %dMbps", min_rate); return -EINVAL; } if (rate > cpsw->speed) { dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); return -EINVAL; } ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); pm_runtime_put(cpsw->dev); if (ret) return ret; /* update rates for slaves tx queues */ for (i = 0; i < cpsw->data.slaves; i++) { slave = &cpsw->slaves[i]; if (!slave->ndev) continue; netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; } cpsw_split_res(ndev); return ret; } static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio = type_data; struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int fifo, num_tc, count, offset; struct cpsw_slave *slave; u32 tx_prio_map = 0; int i, tc, ret; num_tc = mqprio->qopt.num_tc; if (num_tc > CPSW_TC_NUM) return -EINVAL; if (mqprio->mode != TC_MQPRIO_MODE_DCB) return -EINVAL; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (num_tc) { for (i = 0; i < 8; i++) { tc = mqprio->qopt.prio_tc_map[i]; fifo = cpsw_tc_to_fifo(tc, num_tc); tx_prio_map |= fifo << (4 * i); } netdev_set_num_tc(ndev, num_tc); for (i = 0; i < num_tc; i++) { count = mqprio->qopt.count[i]; offset = mqprio->qopt.offset[i]; netdev_set_tc_queue(ndev, i, count, offset); } } if (!mqprio->qopt.hw) { /* restore default configuration */ netdev_reset_tc(ndev); tx_prio_map = TX_PRIORITY_MAPPING; } priv->mqprio_hw = mqprio->qopt.hw; offset = cpsw->version == CPSW_VERSION_1 ? CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; slave_write(slave, tx_prio_map, offset); pm_runtime_put_sync(cpsw->dev); return 0; } static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_CBS: return cpsw_set_cbs(ndev, type_data); case TC_SETUP_QDISC_MQPRIO: return cpsw_set_mqprio(ndev, type_data); default: return -EOPNOTSUPP; } } static const struct net_device_ops cpsw_netdev_ops = { .ndo_open = cpsw_ndo_open, .ndo_stop = cpsw_ndo_stop, .ndo_start_xmit = cpsw_ndo_start_xmit, .ndo_set_mac_address = cpsw_ndo_set_mac_address, .ndo_do_ioctl = cpsw_ndo_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = cpsw_ndo_tx_timeout, .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = cpsw_ndo_poll_controller, #endif .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, .ndo_setup_tc = cpsw_ndo_setup_tc, }; static int cpsw_get_regs_len(struct net_device *ndev) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); } static void cpsw_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *p) { u32 *reg = p; struct cpsw_common *cpsw = ndev_to_cpsw(ndev); /* update CPSW IP version */ regs->version = cpsw->version; cpsw_ale_dump(cpsw->ale, reg); } static void cpsw_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct platform_device *pdev = to_platform_device(cpsw->dev); strlcpy(info->driver, "cpsw", sizeof(info->driver)); strlcpy(info->version, "1.0", sizeof(info->version)); strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); } static u32 cpsw_get_msglevel(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); return priv->msg_enable; } static void cpsw_set_msglevel(struct net_device *ndev, u32 value) { struct cpsw_priv *priv = netdev_priv(ndev); priv->msg_enable = value; } #if IS_ENABLED(CONFIG_TI_CPTS) static int cpsw_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = cpsw->cpts->phc_index; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; } #else static int cpsw_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; info->phc_index = -1; info->tx_types = 0; info->rx_filters = 0; return 0; } #endif static int cpsw_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *ecmd) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (!cpsw->slaves[slave_no].phy) return -EOPNOTSUPP; phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); return 0; } static int cpsw_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *ecmd) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (cpsw->slaves[slave_no].phy) return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, ecmd); else return -EOPNOTSUPP; } static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); wol->supported = 0; wol->wolopts = 0; if (cpsw->slaves[slave_no].phy) phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); } static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (cpsw->slaves[slave_no].phy) return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); else return -EOPNOTSUPP; } static void cpsw_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct cpsw_priv *priv = netdev_priv(ndev); pause->autoneg = AUTONEG_DISABLE; pause->rx_pause = priv->rx_pause ? true : false; pause->tx_pause = priv->tx_pause ? true : false; } static int cpsw_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct cpsw_priv *priv = netdev_priv(ndev); bool link; priv->rx_pause = pause->rx_pause ? true : false; priv->tx_pause = pause->tx_pause ? true : false; for_each_slave(priv, _cpsw_adjust_link, priv, &link); return 0; } static int cpsw_ethtool_op_begin(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); pm_runtime_put_noidle(cpsw->dev); } return ret; } static void cpsw_ethtool_op_complete(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); int ret; ret = pm_runtime_put(priv->cpsw->dev); if (ret < 0) cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); } static void cpsw_get_channels(struct net_device *ndev, struct ethtool_channels *ch) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; ch->max_combined = 0; ch->max_other = 0; ch->other_count = 0; ch->rx_count = cpsw->rx_ch_num; ch->tx_count = cpsw->tx_ch_num; ch->combined_count = 0; } static int cpsw_check_ch_settings(struct cpsw_common *cpsw, struct ethtool_channels *ch) { if (cpsw->quirk_irq) { dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed"); return -EOPNOTSUPP; } if (ch->combined_count) return -EINVAL; /* verify we have at least one channel in each direction */ if (!ch->rx_count || !ch->tx_count) return -EINVAL; if (ch->rx_count > cpsw->data.channels || ch->tx_count > cpsw->data.channels) return -EINVAL; return 0; } static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) { struct cpsw_common *cpsw = priv->cpsw; void (*handler)(void *, int, int); struct netdev_queue *queue; struct cpsw_vector *vec; int ret, *ch, vch; if (rx) { ch = &cpsw->rx_ch_num; vec = cpsw->rxv; handler = cpsw_rx_handler; } else { ch = &cpsw->tx_ch_num; vec = cpsw->txv; handler = cpsw_tx_handler; } while (*ch < ch_num) { vch = rx ? *ch : 7 - *ch; vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx); queue = netdev_get_tx_queue(priv->ndev, *ch); queue->tx_maxrate = 0; if (IS_ERR(vec[*ch].ch)) return PTR_ERR(vec[*ch].ch); if (!vec[*ch].ch) return -EINVAL; cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, (rx ? "rx" : "tx")); (*ch)++; } while (*ch > ch_num) { (*ch)--; ret = cpdma_chan_destroy(vec[*ch].ch); if (ret) return ret; cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, (rx ? "rx" : "tx")); } return 0; } static int cpsw_update_channels(struct cpsw_priv *priv, struct ethtool_channels *ch) { int ret; ret = cpsw_update_channels_res(priv, ch->rx_count, 1); if (ret) return ret; ret = cpsw_update_channels_res(priv, ch->tx_count, 0); if (ret) return ret; return 0; } static void cpsw_suspend_data_pass(struct net_device *ndev) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct cpsw_slave *slave; int i; /* Disable NAPI scheduling */ cpsw_intr_disable(cpsw); /* Stop all transmit queues for every network device. * Disable re-using rx descriptors with dormant_on. */ for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { if (!(slave->ndev && netif_running(slave->ndev))) continue; netif_tx_stop_all_queues(slave->ndev); netif_dormant_on(slave->ndev); } /* Handle rest of tx packets and stop cpdma channels */ cpdma_ctlr_stop(cpsw->dma); } static int cpsw_resume_data_pass(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; int i, ret; /* Allow rx packets handling */ for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) if (slave->ndev && netif_running(slave->ndev)) netif_dormant_off(slave->ndev); /* After this receive is started */ if (cpsw->usage_count) { ret = cpsw_fill_rx_channels(priv); if (ret) return ret; cpdma_ctlr_start(cpsw->dma); cpsw_intr_enable(cpsw); } /* Resume transmit for every affected interface */ for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) if (slave->ndev && netif_running(slave->ndev)) netif_tx_start_all_queues(slave->ndev); return 0; } static int cpsw_set_channels(struct net_device *ndev, struct ethtool_channels *chs) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; int i, ret; ret = cpsw_check_ch_settings(cpsw, chs); if (ret < 0) return ret; cpsw_suspend_data_pass(ndev); ret = cpsw_update_channels(priv, chs); if (ret) goto err; for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { if (!(slave->ndev && netif_running(slave->ndev))) continue; /* Inform stack about new count of queues */ ret = netif_set_real_num_tx_queues(slave->ndev, cpsw->tx_ch_num); if (ret) { dev_err(priv->dev, "cannot set real number of tx queues\n"); goto err; } ret = netif_set_real_num_rx_queues(slave->ndev, cpsw->rx_ch_num); if (ret) { dev_err(priv->dev, "cannot set real number of rx queues\n"); goto err; } } if (cpsw->usage_count) cpsw_split_res(ndev); ret = cpsw_resume_data_pass(ndev); if (!ret) return 0; err: dev_err(priv->dev, "cannot update channels number, closing device\n"); dev_close(ndev); return ret; } static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (cpsw->slaves[slave_no].phy) return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); else return -EOPNOTSUPP; } static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (cpsw->slaves[slave_no].phy) return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); else return -EOPNOTSUPP; } static int cpsw_nway_reset(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); if (cpsw->slaves[slave_no].phy) return genphy_restart_aneg(cpsw->slaves[slave_no].phy); else return -EOPNOTSUPP; } static void cpsw_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ering) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; /* not supported */ ering->tx_max_pending = 0; ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); } static int cpsw_set_ringparam(struct net_device *ndev, struct ethtool_ringparam *ering) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; /* ignore ering->tx_pending - only rx_pending adjustment is supported */ if (ering->rx_mini_pending || ering->rx_jumbo_pending || ering->rx_pending < CPSW_MAX_QUEUES || ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) return -EINVAL; if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) return 0; cpsw_suspend_data_pass(ndev); cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); if (cpsw->usage_count) cpdma_chan_split_pool(cpsw->dma); ret = cpsw_resume_data_pass(ndev); if (!ret) return 0; dev_err(&ndev->dev, "cannot set ring params, closing device\n"); dev_close(ndev); return ret; } static const struct ethtool_ops cpsw_ethtool_ops = { .get_drvinfo = cpsw_get_drvinfo, .get_msglevel = cpsw_get_msglevel, .set_msglevel = cpsw_set_msglevel, .get_link = ethtool_op_get_link, .get_ts_info = cpsw_get_ts_info, .get_coalesce = cpsw_get_coalesce, .set_coalesce = cpsw_set_coalesce, .get_sset_count = cpsw_get_sset_count, .get_strings = cpsw_get_strings, .get_ethtool_stats = cpsw_get_ethtool_stats, .get_pauseparam = cpsw_get_pauseparam, .set_pauseparam = cpsw_set_pauseparam, .get_wol = cpsw_get_wol, .set_wol = cpsw_set_wol, .get_regs_len = cpsw_get_regs_len, .get_regs = cpsw_get_regs, .begin = cpsw_ethtool_op_begin, .complete = cpsw_ethtool_op_complete, .get_channels = cpsw_get_channels, .set_channels = cpsw_set_channels, .get_link_ksettings = cpsw_get_link_ksettings, .set_link_ksettings = cpsw_set_link_ksettings, .get_eee = cpsw_get_eee, .set_eee = cpsw_set_eee, .nway_reset = cpsw_nway_reset, .get_ringparam = cpsw_get_ringparam, .set_ringparam = cpsw_set_ringparam, }; static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, u32 slave_reg_ofs, u32 sliver_reg_ofs) { void __iomem *regs = cpsw->regs; int slave_num = slave->slave_num; struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; slave->data = data; slave->regs = regs + slave_reg_ofs; slave->sliver = regs + sliver_reg_ofs; slave->port_vlan = data->dual_emac_res_vlan; } static int cpsw_probe_dt(struct cpsw_platform_data *data, struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device_node *slave_node; int i = 0, ret; u32 prop; if (!node) return -EINVAL; if (of_property_read_u32(node, "slaves", &prop)) { dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); return -EINVAL; } data->slaves = prop; if (of_property_read_u32(node, "active_slave", &prop)) { dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); return -EINVAL; } data->active_slave = prop; data->slave_data = devm_kcalloc(&pdev->dev, data->slaves, sizeof(struct cpsw_slave_data), GFP_KERNEL); if (!data->slave_data) return -ENOMEM; if (of_property_read_u32(node, "cpdma_channels", &prop)) { dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); return -EINVAL; } data->channels = prop; if (of_property_read_u32(node, "ale_entries", &prop)) { dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); return -EINVAL; } data->ale_entries = prop; if (of_property_read_u32(node, "bd_ram_size", &prop)) { dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); return -EINVAL; } data->bd_ram_size = prop; if (of_property_read_u32(node, "mac_control", &prop)) { dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); return -EINVAL; } data->mac_control = prop; if (of_property_read_bool(node, "dual_emac")) data->dual_emac = 1; /* * Populate all the child nodes here... */ ret = of_platform_populate(node, NULL, NULL, &pdev->dev); /* We do not want to force this, as in some cases may not have child */ if (ret) dev_warn(&pdev->dev, "Doesn't have any child node\n"); for_each_available_child_of_node(node, slave_node) { struct cpsw_slave_data *slave_data = data->slave_data + i; const void *mac_addr = NULL; int lenp; const __be32 *parp; /* This is no slave child node, continue */ if (strcmp(slave_node->name, "slave")) continue; slave_data->phy_node = of_parse_phandle(slave_node, "phy-handle", 0); parp = of_get_property(slave_node, "phy_id", &lenp); if (slave_data->phy_node) { dev_dbg(&pdev->dev, "slave[%d] using phy-handle=\"%pOF\"\n", i, slave_data->phy_node); } else if (of_phy_is_fixed_link(slave_node)) { /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ ret = of_phy_register_fixed_link(slave_node); if (ret) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); return ret; } slave_data->phy_node = of_node_get(slave_node); } else if (parp) { u32 phyid; struct device_node *mdio_node; struct platform_device *mdio; if (lenp != (sizeof(__be32) * 2)) { dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); goto no_phy_slave; } mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); phyid = be32_to_cpup(parp+1); mdio = of_find_device_by_node(mdio_node); of_node_put(mdio_node); if (!mdio) { dev_err(&pdev->dev, "Missing mdio platform device\n"); return -EINVAL; } snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), PHY_ID_FMT, mdio->name, phyid); put_device(&mdio->dev); } else { dev_err(&pdev->dev, "No slave[%d] phy_id, phy-handle, or fixed-link property\n", i); goto no_phy_slave; } slave_data->phy_if = of_get_phy_mode(slave_node); if (slave_data->phy_if < 0) { dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", i); return slave_data->phy_if; } no_phy_slave: mac_addr = of_get_mac_address(slave_node); if (mac_addr) { memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); } else { ret = ti_cm_get_macid(&pdev->dev, i, slave_data->mac_addr); if (ret) return ret; } if (data->dual_emac) { if (of_property_read_u32(slave_node, "dual_emac_res_vlan", &prop)) { dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); slave_data->dual_emac_res_vlan = i+1; dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", slave_data->dual_emac_res_vlan, i); } else { slave_data->dual_emac_res_vlan = prop; } } i++; if (i == data->slaves) break; } return 0; } static void cpsw_remove_dt(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct cpsw_platform_data *data = &cpsw->data; struct device_node *node = pdev->dev.of_node; struct device_node *slave_node; int i = 0; for_each_available_child_of_node(node, slave_node) { struct cpsw_slave_data *slave_data = &data->slave_data[i]; if (strcmp(slave_node->name, "slave")) continue; if (of_phy_is_fixed_link(slave_node)) of_phy_deregister_fixed_link(slave_node); of_node_put(slave_data->phy_node); i++; if (i == data->slaves) break; } of_platform_depopulate(&pdev->dev); } static int cpsw_probe_dual_emac(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_platform_data *data = &cpsw->data; struct net_device *ndev; struct cpsw_priv *priv_sl2; int ret = 0; ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); if (!ndev) { dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); return -ENOMEM; } priv_sl2 = netdev_priv(ndev); priv_sl2->cpsw = cpsw; priv_sl2->ndev = ndev; priv_sl2->dev = &ndev->dev; priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, ETH_ALEN); dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); } else { eth_random_addr(priv_sl2->mac_addr); dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); } memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); priv_sl2->emac_port = 1; cpsw->slaves[1].ndev = ndev; ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; ndev->netdev_ops = &cpsw_netdev_ops; ndev->ethtool_ops = &cpsw_ethtool_ops; /* register the network device */ SET_NETDEV_DEV(ndev, cpsw->dev); ret = register_netdev(ndev); if (ret) { dev_err(cpsw->dev, "cpsw: error registering net device\n"); free_netdev(ndev); ret = -ENODEV; } return ret; } static const struct of_device_id cpsw_of_mtable[] = { { .compatible = "ti,cpsw"}, { .compatible = "ti,am335x-cpsw"}, { .compatible = "ti,am4372-cpsw"}, { .compatible = "ti,dra7-cpsw"}, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, cpsw_of_mtable); static const struct soc_device_attribute cpsw_soc_devices[] = { { .family = "AM33xx", .revision = "ES1.0"}, { /* sentinel */ } }; static int cpsw_probe(struct platform_device *pdev) { struct clk *clk; struct cpsw_platform_data *data; struct net_device *ndev; struct cpsw_priv *priv; struct cpdma_params dma_params; struct cpsw_ale_params ale_params; void __iomem *ss_regs; void __iomem *cpts_regs; struct resource *res, *ss_res; struct gpio_descs *mode; u32 slave_offset, sliver_offset, slave_size; const struct soc_device_attribute *soc; struct cpsw_common *cpsw; int ret = 0, i, ch; int irq; cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); if (!cpsw) return -ENOMEM; cpsw->dev = &pdev->dev; ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); if (!ndev) { dev_err(&pdev->dev, "error allocating net_device\n"); return -ENOMEM; } platform_set_drvdata(pdev, ndev); priv = netdev_priv(ndev); priv->cpsw = cpsw; priv->ndev = ndev; priv->dev = &ndev->dev; priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); cpsw->rx_packet_max = max(rx_packet_max, 128); mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); if (IS_ERR(mode)) { ret = PTR_ERR(mode); dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); goto clean_ndev_ret; } /* * This may be required here for child devices. */ pm_runtime_enable(&pdev->dev); /* Select default pin state */ pinctrl_pm_select_default_state(&pdev->dev); /* Need to enable clocks with runtime PM api to access module * registers */ ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { pm_runtime_put_noidle(&pdev->dev); goto clean_runtime_disable_ret; } ret = cpsw_probe_dt(&cpsw->data, pdev); if (ret) goto clean_dt_ret; data = &cpsw->data; cpsw->rx_ch_num = 1; cpsw->tx_ch_num = 1; if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); } else { eth_random_addr(priv->mac_addr); dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); } memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); cpsw->slaves = devm_kcalloc(&pdev->dev, data->slaves, sizeof(struct cpsw_slave), GFP_KERNEL); if (!cpsw->slaves) { ret = -ENOMEM; goto clean_dt_ret; } for (i = 0; i < data->slaves; i++) cpsw->slaves[i].slave_num = i; cpsw->slaves[0].ndev = ndev; priv->emac_port = 0; clk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(clk)) { dev_err(priv->dev, "fck is not found\n"); ret = -ENODEV; goto clean_dt_ret; } cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); if (IS_ERR(ss_regs)) { ret = PTR_ERR(ss_regs); goto clean_dt_ret; } cpsw->regs = ss_regs; cpsw->version = readl(&cpsw->regs->id_ver); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(cpsw->wr_regs)) { ret = PTR_ERR(cpsw->wr_regs); goto clean_dt_ret; } memset(&dma_params, 0, sizeof(dma_params)); memset(&ale_params, 0, sizeof(ale_params)); switch (cpsw->version) { case CPSW_VERSION_1: cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; slave_offset = CPSW1_SLAVE_OFFSET; slave_size = CPSW1_SLAVE_SIZE; sliver_offset = CPSW1_SLIVER_OFFSET; dma_params.desc_mem_phys = 0; break; case CPSW_VERSION_2: case CPSW_VERSION_3: case CPSW_VERSION_4: cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; slave_offset = CPSW2_SLAVE_OFFSET; slave_size = CPSW2_SLAVE_SIZE; sliver_offset = CPSW2_SLIVER_OFFSET; dma_params.desc_mem_phys = (u32 __force) ss_res->start + CPSW2_BD_OFFSET; break; default: dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); ret = -ENODEV; goto clean_dt_ret; } for (i = 0; i < cpsw->data.slaves; i++) { struct cpsw_slave *slave = &cpsw->slaves[i]; cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); slave_offset += slave_size; sliver_offset += SLIVER_SIZE; } dma_params.dev = &pdev->dev; dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; dma_params.num_chan = data->channels; dma_params.has_soft_reset = true; dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; dma_params.desc_mem_size = data->bd_ram_size; dma_params.desc_align = 16; dma_params.has_ext_regs = true; dma_params.desc_hw_addr = dma_params.desc_mem_phys; dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; dma_params.descs_pool_size = descs_pool_size; cpsw->dma = cpdma_ctlr_create(&dma_params); if (!cpsw->dma) { dev_err(priv->dev, "error initializing dma\n"); ret = -ENOMEM; goto clean_dt_ret; } soc = soc_device_match(cpsw_soc_devices); if (soc) cpsw->quirk_irq = 1; ch = cpsw->quirk_irq ? 0 : 7; cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); if (IS_ERR(cpsw->txv[0].ch)) { dev_err(priv->dev, "error initializing tx dma channel\n"); ret = PTR_ERR(cpsw->txv[0].ch); goto clean_dma_ret; } cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); if (IS_ERR(cpsw->rxv[0].ch)) { dev_err(priv->dev, "error initializing rx dma channel\n"); ret = PTR_ERR(cpsw->rxv[0].ch); goto clean_dma_ret; } ale_params.dev = &pdev->dev; ale_params.ale_ageout = ale_ageout; ale_params.ale_entries = data->ale_entries; ale_params.ale_ports = CPSW_ALE_PORTS_NUM; cpsw->ale = cpsw_ale_create(&ale_params); if (!cpsw->ale) { dev_err(priv->dev, "error initializing ale engine\n"); ret = -ENODEV; goto clean_dma_ret; } cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); if (IS_ERR(cpsw->cpts)) { ret = PTR_ERR(cpsw->cpts); goto clean_dma_ret; } ndev->irq = platform_get_irq(pdev, 1); if (ndev->irq < 0) { dev_err(priv->dev, "error getting irq resource\n"); ret = ndev->irq; goto clean_dma_ret; } ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; ndev->netdev_ops = &cpsw_netdev_ops; ndev->ethtool_ops = &cpsw_ethtool_ops; netif_napi_add(ndev, &cpsw->napi_rx, cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, CPSW_POLL_WEIGHT); netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, CPSW_POLL_WEIGHT); cpsw_split_res(ndev); /* register the network device */ SET_NETDEV_DEV(ndev, &pdev->dev); ret = register_netdev(ndev); if (ret) { dev_err(priv->dev, "error registering net device\n"); ret = -ENODEV; goto clean_dma_ret; } if (cpsw->data.dual_emac) { ret = cpsw_probe_dual_emac(priv); if (ret) { cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); goto clean_unregister_netdev_ret; } } /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and * MISC IRQs which are always kept disabled with this driver so * we will not request them. * * If anyone wants to implement support for those, make sure to * first request and append them to irqs_table array. */ /* RX IRQ */ irq = platform_get_irq(pdev, 1); if (irq < 0) { ret = irq; goto clean_dma_ret; } cpsw->irqs_table[0] = irq; ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 0, dev_name(&pdev->dev), cpsw); if (ret < 0) { dev_err(priv->dev, "error attaching irq (%d)\n", ret); goto clean_dma_ret; } /* TX IRQ */ irq = platform_get_irq(pdev, 2); if (irq < 0) { ret = irq; goto clean_dma_ret; } cpsw->irqs_table[1] = irq; ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 0, dev_name(&pdev->dev), cpsw); if (ret < 0) { dev_err(priv->dev, "error attaching irq (%d)\n", ret); goto clean_dma_ret; } cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d, pool size %d)\n", &ss_res->start, ndev->irq, dma_params.descs_pool_size); pm_runtime_put(&pdev->dev); return 0; clean_unregister_netdev_ret: unregister_netdev(ndev); clean_dma_ret: cpdma_ctlr_destroy(cpsw->dma); clean_dt_ret: cpsw_remove_dt(pdev); pm_runtime_put_sync(&pdev->dev); clean_runtime_disable_ret: pm_runtime_disable(&pdev->dev); clean_ndev_ret: free_netdev(priv->ndev); return ret; } static int cpsw_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct cpsw_common *cpsw = ndev_to_cpsw(ndev); int ret; ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { pm_runtime_put_noidle(&pdev->dev); return ret; } if (cpsw->data.dual_emac) unregister_netdev(cpsw->slaves[1].ndev); unregister_netdev(ndev); cpts_release(cpsw->cpts); cpdma_ctlr_destroy(cpsw->dma); cpsw_remove_dt(pdev); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); if (cpsw->data.dual_emac) free_netdev(cpsw->slaves[1].ndev); free_netdev(ndev); return 0; } #ifdef CONFIG_PM_SLEEP static int cpsw_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct cpsw_common *cpsw = ndev_to_cpsw(ndev); if (cpsw->data.dual_emac) { int i; for (i = 0; i < cpsw->data.slaves; i++) { if (netif_running(cpsw->slaves[i].ndev)) cpsw_ndo_stop(cpsw->slaves[i].ndev); } } else { if (netif_running(ndev)) cpsw_ndo_stop(ndev); } /* Select sleep pin state */ pinctrl_pm_select_sleep_state(dev); return 0; } static int cpsw_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct cpsw_common *cpsw = ndev_to_cpsw(ndev); /* Select default pin state */ pinctrl_pm_select_default_state(dev); /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ rtnl_lock(); if (cpsw->data.dual_emac) { int i; for (i = 0; i < cpsw->data.slaves; i++) { if (netif_running(cpsw->slaves[i].ndev)) cpsw_ndo_open(cpsw->slaves[i].ndev); } } else { if (netif_running(ndev)) cpsw_ndo_open(ndev); } rtnl_unlock(); return 0; } #endif static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); static struct platform_driver cpsw_driver = { .driver = { .name = "cpsw", .pm = &cpsw_pm_ops, .of_match_table = cpsw_of_mtable, }, .probe = cpsw_probe, .remove = cpsw_remove, }; module_platform_driver(cpsw_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); MODULE_DESCRIPTION("TI CPSW Ethernet driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1