Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ryan Hsu | 1207 | 26.00% | 2 | 7.41% |
Govind Singh | 685 | 14.76% | 2 | 7.41% |
Carl Huang | 676 | 14.56% | 1 | 3.70% |
Sarada Prasanna Garnayak | 612 | 13.18% | 1 | 3.70% |
Benjamin Berg | 566 | 12.19% | 1 | 3.70% |
Vasanthakumar Thiagarajan | 389 | 8.38% | 9 | 33.33% |
Michal Kazior | 268 | 5.77% | 2 | 7.41% |
Raja Mani | 135 | 2.91% | 1 | 3.70% |
Anilkumar Kolli | 37 | 0.80% | 1 | 3.70% |
Ben Greear | 28 | 0.60% | 1 | 3.70% |
Brian Norris | 27 | 0.58% | 1 | 3.70% |
Rakesh Pillai | 7 | 0.15% | 1 | 3.70% |
Bhumika Goyal | 2 | 0.04% | 1 | 3.70% |
Bartosz Markowski | 1 | 0.02% | 1 | 3.70% |
Kalle Valo | 1 | 0.02% | 1 | 3.70% |
Joe Perches | 1 | 0.02% | 1 | 3.70% |
Total | 4642 | 27 |
/* * Copyright (c) 2014-2017 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/types.h> #include <linux/bitops.h> #include <linux/bitfield.h> #include "core.h" #include "hw.h" #include "hif.h" #include "wmi-ops.h" #include "bmi.h" const struct ath10k_hw_regs qca988x_regs = { .rtc_soc_base_address = 0x00004000, .rtc_wmac_base_address = 0x00005000, .soc_core_base_address = 0x00009000, .wlan_mac_base_address = 0x00020000, .ce_wrapper_base_address = 0x00057000, .ce0_base_address = 0x00057400, .ce1_base_address = 0x00057800, .ce2_base_address = 0x00057c00, .ce3_base_address = 0x00058000, .ce4_base_address = 0x00058400, .ce5_base_address = 0x00058800, .ce6_base_address = 0x00058c00, .ce7_base_address = 0x00059000, .soc_reset_control_si0_rst_mask = 0x00000001, .soc_reset_control_ce_rst_mask = 0x00040000, .soc_chip_id_address = 0x000000ec, .scratch_3_address = 0x00000030, .fw_indicator_address = 0x00009030, .pcie_local_base_address = 0x00080000, .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, .pcie_intr_fw_mask = 0x00000400, .pcie_intr_ce_mask_all = 0x0007f800, .pcie_intr_clr_address = 0x00000014, }; const struct ath10k_hw_regs qca6174_regs = { .rtc_soc_base_address = 0x00000800, .rtc_wmac_base_address = 0x00001000, .soc_core_base_address = 0x0003a000, .wlan_mac_base_address = 0x00010000, .ce_wrapper_base_address = 0x00034000, .ce0_base_address = 0x00034400, .ce1_base_address = 0x00034800, .ce2_base_address = 0x00034c00, .ce3_base_address = 0x00035000, .ce4_base_address = 0x00035400, .ce5_base_address = 0x00035800, .ce6_base_address = 0x00035c00, .ce7_base_address = 0x00036000, .soc_reset_control_si0_rst_mask = 0x00000000, .soc_reset_control_ce_rst_mask = 0x00000001, .soc_chip_id_address = 0x000000f0, .scratch_3_address = 0x00000028, .fw_indicator_address = 0x0003a028, .pcie_local_base_address = 0x00080000, .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, .pcie_intr_fw_mask = 0x00000400, .pcie_intr_ce_mask_all = 0x0007f800, .pcie_intr_clr_address = 0x00000014, .cpu_pll_init_address = 0x00404020, .cpu_speed_address = 0x00404024, .core_clk_div_address = 0x00404028, }; const struct ath10k_hw_regs qca99x0_regs = { .rtc_soc_base_address = 0x00080000, .rtc_wmac_base_address = 0x00000000, .soc_core_base_address = 0x00082000, .wlan_mac_base_address = 0x00030000, .ce_wrapper_base_address = 0x0004d000, .ce0_base_address = 0x0004a000, .ce1_base_address = 0x0004a400, .ce2_base_address = 0x0004a800, .ce3_base_address = 0x0004ac00, .ce4_base_address = 0x0004b000, .ce5_base_address = 0x0004b400, .ce6_base_address = 0x0004b800, .ce7_base_address = 0x0004bc00, /* Note: qca99x0 supports upto 12 Copy Engines. Other than address of * CE0 and CE1 no other copy engine is directly referred in the code. * It is not really necessary to assign address for newly supported * CEs in this address table. * Copy Engine Address * CE8 0x0004c000 * CE9 0x0004c400 * CE10 0x0004c800 * CE11 0x0004cc00 */ .soc_reset_control_si0_rst_mask = 0x00000001, .soc_reset_control_ce_rst_mask = 0x00000100, .soc_chip_id_address = 0x000000ec, .scratch_3_address = 0x00040050, .fw_indicator_address = 0x00040050, .pcie_local_base_address = 0x00000000, .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, .pcie_intr_fw_mask = 0x00100000, .pcie_intr_ce_mask_all = 0x000fff00, .pcie_intr_clr_address = 0x00000010, }; const struct ath10k_hw_regs qca4019_regs = { .rtc_soc_base_address = 0x00080000, .soc_core_base_address = 0x00082000, .wlan_mac_base_address = 0x00030000, .ce_wrapper_base_address = 0x0004d000, .ce0_base_address = 0x0004a000, .ce1_base_address = 0x0004a400, .ce2_base_address = 0x0004a800, .ce3_base_address = 0x0004ac00, .ce4_base_address = 0x0004b000, .ce5_base_address = 0x0004b400, .ce6_base_address = 0x0004b800, .ce7_base_address = 0x0004bc00, /* qca4019 supports upto 12 copy engines. Since base address * of ce8 to ce11 are not directly referred in the code, * no need have them in separate members in this table. * Copy Engine Address * CE8 0x0004c000 * CE9 0x0004c400 * CE10 0x0004c800 * CE11 0x0004cc00 */ .soc_reset_control_si0_rst_mask = 0x00000001, .soc_reset_control_ce_rst_mask = 0x00000100, .soc_chip_id_address = 0x000000ec, .fw_indicator_address = 0x0004f00c, .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, .pcie_intr_fw_mask = 0x00100000, .pcie_intr_ce_mask_all = 0x000fff00, .pcie_intr_clr_address = 0x00000010, }; const struct ath10k_hw_values qca988x_values = { .rtc_state_val_on = 3, .ce_count = 8, .msi_assign_ce_max = 7, .num_target_ce_config_wlan = 7, .ce_desc_meta_data_mask = 0xFFFC, .ce_desc_meta_data_lsb = 2, }; const struct ath10k_hw_values qca6174_values = { .rtc_state_val_on = 3, .ce_count = 8, .msi_assign_ce_max = 7, .num_target_ce_config_wlan = 7, .ce_desc_meta_data_mask = 0xFFFC, .ce_desc_meta_data_lsb = 2, }; const struct ath10k_hw_values qca99x0_values = { .rtc_state_val_on = 5, .ce_count = 12, .msi_assign_ce_max = 12, .num_target_ce_config_wlan = 10, .ce_desc_meta_data_mask = 0xFFF0, .ce_desc_meta_data_lsb = 4, }; const struct ath10k_hw_values qca9888_values = { .rtc_state_val_on = 3, .ce_count = 12, .msi_assign_ce_max = 12, .num_target_ce_config_wlan = 10, .ce_desc_meta_data_mask = 0xFFF0, .ce_desc_meta_data_lsb = 4, }; const struct ath10k_hw_values qca4019_values = { .ce_count = 12, .num_target_ce_config_wlan = 10, .ce_desc_meta_data_mask = 0xFFF0, .ce_desc_meta_data_lsb = 4, }; const struct ath10k_hw_regs wcn3990_regs = { .rtc_soc_base_address = 0x00000000, .rtc_wmac_base_address = 0x00000000, .soc_core_base_address = 0x00000000, .ce_wrapper_base_address = 0x0024C000, .ce0_base_address = 0x00240000, .ce1_base_address = 0x00241000, .ce2_base_address = 0x00242000, .ce3_base_address = 0x00243000, .ce4_base_address = 0x00244000, .ce5_base_address = 0x00245000, .ce6_base_address = 0x00246000, .ce7_base_address = 0x00247000, .ce8_base_address = 0x00248000, .ce9_base_address = 0x00249000, .ce10_base_address = 0x0024A000, .ce11_base_address = 0x0024B000, .soc_chip_id_address = 0x000000f0, .soc_reset_control_si0_rst_mask = 0x00000001, .soc_reset_control_ce_rst_mask = 0x00000100, .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, .pcie_intr_fw_mask = 0x00100000, }; static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = { .msb = 0x00000010, .lsb = 0x00000010, .mask = GENMASK(17, 17), }; static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = { .msb = 0x00000012, .lsb = 0x00000012, .mask = GENMASK(18, 18), }; static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = { .msb = 0x00000000, .lsb = 0x00000000, .mask = GENMASK(15, 0), }; static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = { .addr = 0x00000018, .src_ring = &wcn3990_src_ring, .dst_ring = &wcn3990_dst_ring, .dmax = &wcn3990_dmax, }; static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = { .mask = GENMASK(0, 0), }; static struct ath10k_hw_ce_host_ie wcn3990_host_ie = { .copy_complete = &wcn3990_host_ie_cc, }; static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = { .dstr_lmask = 0x00000010, .dstr_hmask = 0x00000008, .srcr_lmask = 0x00000004, .srcr_hmask = 0x00000002, .cc_mask = 0x00000001, .wm_mask = 0x0000001E, .addr = 0x00000030, }; static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = { .axi_err = 0x00000100, .dstr_add_err = 0x00000200, .srcr_len_err = 0x00000100, .dstr_mlen_vio = 0x00000080, .dstr_overflow = 0x00000040, .srcr_overflow = 0x00000020, .err_mask = 0x000003E0, .addr = 0x00000038, }; static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = { .msb = 0x00000000, .lsb = 0x00000010, .mask = GENMASK(31, 16), }; static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = { .msb = 0x0000000f, .lsb = 0x00000000, .mask = GENMASK(15, 0), }; static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = { .addr = 0x0000004c, .low_rst = 0x00000000, .high_rst = 0x00000000, .wm_low = &wcn3990_src_wm_low, .wm_high = &wcn3990_src_wm_high, }; static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = { .lsb = 0x00000010, .mask = GENMASK(31, 16), }; static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = { .msb = 0x0000000f, .lsb = 0x00000000, .mask = GENMASK(15, 0), }; static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = { .addr = 0x00000050, .low_rst = 0x00000000, .high_rst = 0x00000000, .wm_low = &wcn3990_dst_wm_low, .wm_high = &wcn3990_dst_wm_high, }; static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = { .shift = 19, .mask = 0x00080000, .enable = 0x00000000, }; const struct ath10k_hw_ce_regs wcn3990_ce_regs = { .sr_base_addr = 0x00000000, .sr_size_addr = 0x00000008, .dr_base_addr = 0x0000000c, .dr_size_addr = 0x00000014, .misc_ie_addr = 0x00000034, .sr_wr_index_addr = 0x0000003c, .dst_wr_index_addr = 0x00000040, .current_srri_addr = 0x00000044, .current_drri_addr = 0x00000048, .ce_rri_low = 0x0024C004, .ce_rri_high = 0x0024C008, .host_ie_addr = 0x0000002c, .ctrl1_regs = &wcn3990_ctrl1, .host_ie = &wcn3990_host_ie, .wm_regs = &wcn3990_wm_reg, .misc_regs = &wcn3990_misc_reg, .wm_srcr = &wcn3990_wm_src_ring, .wm_dstr = &wcn3990_wm_dst_ring, .upd = &wcn3990_ctrl1_upd, }; const struct ath10k_hw_values wcn3990_values = { .rtc_state_val_on = 5, .ce_count = 12, .msi_assign_ce_max = 12, .num_target_ce_config_wlan = 12, .ce_desc_meta_data_mask = 0xFFF0, .ce_desc_meta_data_lsb = 4, }; static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = { .msb = 0x00000010, .lsb = 0x00000010, .mask = GENMASK(16, 16), }; static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = { .msb = 0x00000011, .lsb = 0x00000011, .mask = GENMASK(17, 17), }; static struct ath10k_hw_ce_regs_addr_map qcax_dmax = { .msb = 0x0000000f, .lsb = 0x00000000, .mask = GENMASK(15, 0), }; static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = { .addr = 0x00000010, .hw_mask = 0x0007ffff, .sw_mask = 0x0007ffff, .hw_wr_mask = 0x00000000, .sw_wr_mask = 0x0007ffff, .reset_mask = 0xffffffff, .reset = 0x00000080, .src_ring = &qcax_src_ring, .dst_ring = &qcax_dst_ring, .dmax = &qcax_dmax, }; static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = { .msb = 0x00000003, .lsb = 0x00000003, .mask = GENMASK(3, 3), }; static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = { .msb = 0x00000000, .mask = GENMASK(0, 0), .status_reset = 0x00000000, .status = &qcax_cmd_halt_status, }; static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = { .msb = 0x00000000, .lsb = 0x00000000, .mask = GENMASK(0, 0), }; static struct ath10k_hw_ce_host_ie qcax_host_ie = { .copy_complete_reset = 0x00000000, .copy_complete = &qcax_host_ie_cc, }; static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = { .dstr_lmask = 0x00000010, .dstr_hmask = 0x00000008, .srcr_lmask = 0x00000004, .srcr_hmask = 0x00000002, .cc_mask = 0x00000001, .wm_mask = 0x0000001E, .addr = 0x00000030, }; static struct ath10k_hw_ce_misc_regs qcax_misc_reg = { .axi_err = 0x00000400, .dstr_add_err = 0x00000200, .srcr_len_err = 0x00000100, .dstr_mlen_vio = 0x00000080, .dstr_overflow = 0x00000040, .srcr_overflow = 0x00000020, .err_mask = 0x000007E0, .addr = 0x00000038, }; static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = { .msb = 0x0000001f, .lsb = 0x00000010, .mask = GENMASK(31, 16), }; static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = { .msb = 0x0000000f, .lsb = 0x00000000, .mask = GENMASK(15, 0), }; static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = { .addr = 0x0000004c, .low_rst = 0x00000000, .high_rst = 0x00000000, .wm_low = &qcax_src_wm_low, .wm_high = &qcax_src_wm_high, }; static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = { .lsb = 0x00000010, .mask = GENMASK(31, 16), }; static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = { .msb = 0x0000000f, .lsb = 0x00000000, .mask = GENMASK(15, 0), }; static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = { .addr = 0x00000050, .low_rst = 0x00000000, .high_rst = 0x00000000, .wm_low = &qcax_dst_wm_low, .wm_high = &qcax_dst_wm_high, }; const struct ath10k_hw_ce_regs qcax_ce_regs = { .sr_base_addr = 0x00000000, .sr_size_addr = 0x00000004, .dr_base_addr = 0x00000008, .dr_size_addr = 0x0000000c, .ce_cmd_addr = 0x00000018, .misc_ie_addr = 0x00000034, .sr_wr_index_addr = 0x0000003c, .dst_wr_index_addr = 0x00000040, .current_srri_addr = 0x00000044, .current_drri_addr = 0x00000048, .host_ie_addr = 0x0000002c, .ctrl1_regs = &qcax_ctrl1, .cmd_halt = &qcax_cmd_halt, .host_ie = &qcax_host_ie, .wm_regs = &qcax_wm_reg, .misc_regs = &qcax_misc_reg, .wm_srcr = &qcax_wm_src_ring, .wm_dstr = &qcax_wm_dst_ring, }; const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = { { .refclk = 48000000, .div = 0xe, .rnfrac = 0x2aaa8, .settle_time = 2400, .refdiv = 0, .outdiv = 1, }, { .refclk = 19200000, .div = 0x24, .rnfrac = 0x2aaa8, .settle_time = 960, .refdiv = 0, .outdiv = 1, }, { .refclk = 24000000, .div = 0x1d, .rnfrac = 0x15551, .settle_time = 1200, .refdiv = 0, .outdiv = 1, }, { .refclk = 26000000, .div = 0x1b, .rnfrac = 0x4ec4, .settle_time = 1300, .refdiv = 0, .outdiv = 1, }, { .refclk = 37400000, .div = 0x12, .rnfrac = 0x34b49, .settle_time = 1870, .refdiv = 0, .outdiv = 1, }, { .refclk = 38400000, .div = 0x12, .rnfrac = 0x15551, .settle_time = 1920, .refdiv = 0, .outdiv = 1, }, { .refclk = 40000000, .div = 0x12, .rnfrac = 0x26665, .settle_time = 2000, .refdiv = 0, .outdiv = 1, }, { .refclk = 52000000, .div = 0x1b, .rnfrac = 0x4ec4, .settle_time = 2600, .refdiv = 0, .outdiv = 1, }, }; void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey, u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev) { u32 cc_fix = 0; u32 rcc_fix = 0; enum ath10k_hw_cc_wraparound_type wraparound_type; survey->filled |= SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; wraparound_type = ar->hw_params.cc_wraparound_type; if (cc < cc_prev || rcc < rcc_prev) { switch (wraparound_type) { case ATH10K_HW_CC_WRAP_SHIFTED_ALL: if (cc < cc_prev) { cc_fix = 0x7fffffff; survey->filled &= ~SURVEY_INFO_TIME_BUSY; } break; case ATH10K_HW_CC_WRAP_SHIFTED_EACH: if (cc < cc_prev) cc_fix = 0x7fffffff; if (rcc < rcc_prev) rcc_fix = 0x7fffffff; break; case ATH10K_HW_CC_WRAP_DISABLED: break; } } cc -= cc_prev - cc_fix; rcc -= rcc_prev - rcc_fix; survey->time = CCNT_TO_MSEC(ar, cc); survey->time_busy = CCNT_TO_MSEC(ar, rcc); } /* The firmware does not support setting the coverage class. Instead this * function monitors and modifies the corresponding MAC registers. */ static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar, s16 value) { u32 slottime_reg; u32 slottime; u32 timeout_reg; u32 ack_timeout; u32 cts_timeout; u32 phyclk_reg; u32 phyclk; u64 fw_dbglog_mask; u32 fw_dbglog_level; mutex_lock(&ar->conf_mutex); /* Only modify registers if the core is started. */ if ((ar->state != ATH10K_STATE_ON) && (ar->state != ATH10K_STATE_RESTARTED)) { spin_lock_bh(&ar->data_lock); /* Store config value for when radio boots up */ ar->fw_coverage.coverage_class = value; spin_unlock_bh(&ar->data_lock); goto unlock; } /* Retrieve the current values of the two registers that need to be * adjusted. */ slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT); timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT); phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + WAVE1_PHYCLK); phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1; if (value < 0) value = ar->fw_coverage.coverage_class; /* Break out if the coverage class and registers have the expected * value. */ if (value == ar->fw_coverage.coverage_class && slottime_reg == ar->fw_coverage.reg_slottime_conf && timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf && phyclk_reg == ar->fw_coverage.reg_phyclk) goto unlock; /* Store new initial register values from the firmware. */ if (slottime_reg != ar->fw_coverage.reg_slottime_conf) ar->fw_coverage.reg_slottime_orig = slottime_reg; if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf) ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg; ar->fw_coverage.reg_phyclk = phyclk_reg; /* Calculate new value based on the (original) firmware calculation. */ slottime_reg = ar->fw_coverage.reg_slottime_orig; timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig; /* Do some sanity checks on the slottime register. */ if (slottime_reg % phyclk) { ath10k_warn(ar, "failed to set coverage class: expected integer microsecond value in register\n"); goto store_regs; } slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); slottime = slottime / phyclk; if (slottime != 9 && slottime != 20) { ath10k_warn(ar, "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n", slottime); goto store_regs; } /* Recalculate the register values by adding the additional propagation * delay (3us per coverage class). */ slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); slottime += value * 3 * phyclk; slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX); slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT); slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime; /* Update ack timeout (lower halfword). */ ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); ack_timeout += 3 * value * phyclk; ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); /* Update cts timeout (upper halfword). */ cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); cts_timeout += 3 * value * phyclk; cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); timeout_reg = ack_timeout | cts_timeout; ath10k_hif_write32(ar, WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT, slottime_reg); ath10k_hif_write32(ar, WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT, timeout_reg); /* Ensure we have a debug level of WARN set for the case that the * coverage class is larger than 0. This is important as we need to * set the registers again if the firmware does an internal reset and * this way we will be notified of the event. */ fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar); fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar); if (value > 0) { if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN) fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN; fw_dbglog_mask = ~0; } ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level); store_regs: /* After an error we will not retry setting the coverage class. */ spin_lock_bh(&ar->data_lock); ar->fw_coverage.coverage_class = value; spin_unlock_bh(&ar->data_lock); ar->fw_coverage.reg_slottime_conf = slottime_reg; ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg; unlock: mutex_unlock(&ar->conf_mutex); } /** * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock * @ar: the ath10k blob * * This function is very hardware specific, the clock initialization * steps is very sensitive and could lead to unknown crash, so they * should be done in sequence. * * *** Be aware if you planned to refactor them. *** * * Return: 0 if successfully enable the pll, otherwise EINVAL */ static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar) { int ret, wait_limit; u32 clk_div_addr, pll_init_addr, speed_addr; u32 addr, reg_val, mem_val; struct ath10k_hw_params *hw; const struct ath10k_hw_clk_params *hw_clk; hw = &ar->hw_params; if (ar->regs->core_clk_div_address == 0 || ar->regs->cpu_pll_init_address == 0 || ar->regs->cpu_speed_address == 0) return -EINVAL; clk_div_addr = ar->regs->core_clk_div_address; pll_init_addr = ar->regs->cpu_pll_init_address; speed_addr = ar->regs->cpu_speed_address; /* Read efuse register to find out the right hw clock configuration */ addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; /* sanitize if the hw refclk index is out of the boundary */ if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT) return -EINVAL; hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)]; /* Set the rnfrac and outdiv params to bb_pll register */ addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK); reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) | SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV)); ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* Set the correct settle time value to pll_settle register */ addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK; reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME); ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* Set the clock_ctrl div to core_clk_ctrl register */ addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK; reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV); ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* Set the clock_div register */ mem_val = 1; ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val, sizeof(mem_val)); if (ret) return -EINVAL; /* Configure the pll_control register */ addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) | SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) | SM(1, WLAN_PLL_CONTROL_NOPWD)); ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* busy wait (max 1s) the rtc_sync status register indicate ready */ wait_limit = 100000; addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); do { ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) break; wait_limit--; udelay(10); } while (wait_limit > 0); if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) return -EINVAL; /* Unset the pll_bypass in pll_control register */ addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK; reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS); ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* busy wait (max 1s) the rtc_sync status register indicate ready */ wait_limit = 100000; addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); do { ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) break; wait_limit--; udelay(10); } while (wait_limit > 0); if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) return -EINVAL; /* Enable the hardware cpu clock register */ addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK; reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD); ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* unset the nopwd from pll_control register */ addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); if (ret) return -EINVAL; reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK; ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); if (ret) return -EINVAL; /* enable the pll_init register */ mem_val = 1; ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val, sizeof(mem_val)); if (ret) return -EINVAL; /* set the target clock frequency to speed register */ ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq, sizeof(hw->target_cpu_freq)); if (ret) return -EINVAL; return 0; } /* Program CPU_ADDR_MSB to allow different memory * region access. */ static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb) { u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS; ath10k_hif_write32(ar, address, msb); } /* 1. Write to memory region of target, such as IRAM adn DRAM. * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000) * can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too. * 3. In order to access the region other than the above, * we need to set the value of register CPU_ADDR_MSB. * 4. Target memory access space is limited to 1M size. If the size is larger * than 1M, need to split it and program CPU_ADDR_MSB accordingly. */ static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar, const void *buffer, u32 address, u32 length) { u32 addr = address & REGION_ACCESS_SIZE_MASK; int ret, remain_size, size; const u8 *buf; ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address)); if (addr + length > REGION_ACCESS_SIZE_LIMIT) { size = REGION_ACCESS_SIZE_LIMIT - addr; remain_size = length - size; ret = ath10k_hif_diag_write(ar, address, buffer, size); if (ret) { ath10k_warn(ar, "failed to download the first %d bytes segment to address:0x%x: %d\n", size, address, ret); goto done; } /* Change msb to the next memory region*/ ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address) + 1); buf = buffer + size; ret = ath10k_hif_diag_write(ar, address & ~REGION_ACCESS_SIZE_MASK, buf, remain_size); if (ret) { ath10k_warn(ar, "failed to download the second %d bytes segment to address:0x%x: %d\n", remain_size, address & ~REGION_ACCESS_SIZE_MASK, ret); goto done; } } else { ret = ath10k_hif_diag_write(ar, address, buffer, length); if (ret) { ath10k_warn(ar, "failed to download the only %d bytes segment to address:0x%x: %d\n", length, address, ret); goto done; } } done: /* Change msb to DRAM */ ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS)); return ret; } static int ath10k_hw_diag_segment_download(struct ath10k *ar, const void *buffer, u32 address, u32 length) { if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT) /* Needs to change MSB for memory write */ return ath10k_hw_diag_segment_msb_download(ar, buffer, address, length); else return ath10k_hif_diag_write(ar, address, buffer, length); } int ath10k_hw_diag_fast_download(struct ath10k *ar, u32 address, const void *buffer, u32 length) { const u8 *buf = buffer; bool sgmt_end = false; u32 base_addr = 0; u32 base_len = 0; u32 left = 0; struct bmi_segmented_file_header *hdr; struct bmi_segmented_metadata *metadata; int ret = 0; if (length < sizeof(*hdr)) return -EINVAL; /* check firmware header. If it has no correct magic number * or it's compressed, returns error. */ hdr = (struct bmi_segmented_file_header *)buf; if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "Not a supported firmware, magic_num:0x%x\n", hdr->magic_num); return -EINVAL; } if (hdr->file_flags != 0) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "Not a supported firmware, file_flags:0x%x\n", hdr->file_flags); return -EINVAL; } metadata = (struct bmi_segmented_metadata *)hdr->data; left = length - sizeof(*hdr); while (left > 0) { if (left < sizeof(*metadata)) { ath10k_warn(ar, "firmware segment is truncated: %d\n", left); ret = -EINVAL; break; } base_addr = __le32_to_cpu(metadata->addr); base_len = __le32_to_cpu(metadata->length); buf = metadata->data; left -= sizeof(*metadata); switch (base_len) { case BMI_SGMTFILE_BEGINADDR: /* base_addr is the start address to run */ ret = ath10k_bmi_set_start(ar, base_addr); base_len = 0; break; case BMI_SGMTFILE_DONE: /* no more segment */ base_len = 0; sgmt_end = true; ret = 0; break; case BMI_SGMTFILE_BDDATA: case BMI_SGMTFILE_EXEC: ath10k_warn(ar, "firmware has unsupported segment:%d\n", base_len); ret = -EINVAL; break; default: if (base_len > left) { /* sanity check */ ath10k_warn(ar, "firmware has invalid segment length, %d > %d\n", base_len, left); ret = -EINVAL; break; } ret = ath10k_hw_diag_segment_download(ar, buf, base_addr, base_len); if (ret) ath10k_warn(ar, "failed to download firmware via diag interface:%d\n", ret); break; } if (ret || sgmt_end) break; metadata = (struct bmi_segmented_metadata *)(buf + base_len); left -= base_len; } if (ret == 0) ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot firmware fast diag download successfully.\n"); return ret; } const struct ath10k_hw_ops qca988x_ops = { .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, }; static int ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc *rxd) { return MS(__le32_to_cpu(rxd->msdu_end.qca99x0.info1), RX_MSDU_END_INFO1_L3_HDR_PAD); } const struct ath10k_hw_ops qca99x0_ops = { .rx_desc_get_l3_pad_bytes = ath10k_qca99x0_rx_desc_get_l3_pad_bytes, }; const struct ath10k_hw_ops qca6174_ops = { .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, }; const struct ath10k_hw_ops wcn3990_ops = {};
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1