Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sakari Ailus | 1558 | 20.72% | 1 | 0.74% |
Grant C. Likely | 807 | 10.73% | 26 | 19.26% |
Stephen Boyd | 699 | 9.30% | 2 | 1.48% |
Stephen Rothwell | 692 | 9.20% | 6 | 4.44% |
Rob Herring | 494 | 6.57% | 16 | 11.85% |
Nipun Gupta | 391 | 5.20% | 1 | 0.74% |
Thomas Gleixner | 304 | 4.04% | 2 | 1.48% |
Sudeep Holla | 274 | 3.64% | 4 | 2.96% |
Frank Rowand | 261 | 3.47% | 2 | 1.48% |
Kevin Hao | 203 | 2.70% | 2 | 1.48% |
Michal Simek | 192 | 2.55% | 3 | 2.22% |
Philipp Zabel | 186 | 2.47% | 5 | 3.70% |
Michael Ellerman | 148 | 1.97% | 2 | 1.48% |
Stephen Warren | 127 | 1.69% | 3 | 2.22% |
Benjamin Herrenschmidt | 97 | 1.29% | 2 | 1.48% |
Timur Tabi | 96 | 1.28% | 2 | 1.48% |
Shawn Guo | 87 | 1.16% | 1 | 0.74% |
Leif Lindholm | 73 | 0.97% | 3 | 2.22% |
Josh Boyer | 71 | 0.94% | 1 | 0.74% |
Suzuki K. Poulose | 66 | 0.88% | 1 | 0.74% |
Kevin Cernekee | 59 | 0.78% | 3 | 2.22% |
Srinivas Kandagatla | 58 | 0.77% | 1 | 0.74% |
Jeremy Kerr | 51 | 0.68% | 2 | 1.48% |
Johan Hovold | 50 | 0.66% | 1 | 0.74% |
David S. Miller | 46 | 0.61% | 1 | 0.74% |
Viresh Kumar | 45 | 0.60% | 1 | 0.74% |
Thomas Abraham | 42 | 0.56% | 2 | 1.48% |
Richard Fitzgerald | 37 | 0.49% | 2 | 1.48% |
Jamie Iles | 34 | 0.45% | 1 | 0.74% |
Tony Prisk | 33 | 0.44% | 2 | 1.48% |
Sergei Shtylyov | 31 | 0.41% | 2 | 1.48% |
Wolfram Sang | 28 | 0.37% | 1 | 0.74% |
Hyungwon Hwang | 25 | 0.33% | 1 | 0.74% |
Heiko Stübner | 24 | 0.32% | 1 | 0.74% |
Rafael J. Wysocki | 19 | 0.25% | 1 | 0.74% |
Alistair Popple | 17 | 0.23% | 1 | 0.74% |
Florian Fainelli | 16 | 0.21% | 1 | 0.74% |
Pantelis Antoniou | 12 | 0.16% | 2 | 1.48% |
Linus Torvalds | 9 | 0.12% | 2 | 1.48% |
Sascha Hauer | 9 | 0.12% | 1 | 0.74% |
Xiubo Li | 7 | 0.09% | 1 | 0.74% |
Guennadi Liakhovetski | 5 | 0.07% | 1 | 0.74% |
Sergey Senozhatsky | 5 | 0.07% | 1 | 0.74% |
Nathan Fontenot | 5 | 0.07% | 3 | 2.22% |
Randy Dunlap | 4 | 0.05% | 1 | 0.74% |
Dave Airlie | 3 | 0.04% | 1 | 0.74% |
Brian Norris | 3 | 0.04% | 1 | 0.74% |
Tejun Heo | 3 | 0.04% | 1 | 0.74% |
Stepan Moskovchenko | 3 | 0.04% | 1 | 0.74% |
Masahiro Yamada | 2 | 0.03% | 2 | 1.48% |
Geert Uytterhoeven | 2 | 0.03% | 2 | 1.48% |
David Rivshin | 1 | 0.01% | 1 | 0.74% |
Paul Burton | 1 | 0.01% | 1 | 0.74% |
Konstantin Khlebnikov | 1 | 0.01% | 1 | 0.74% |
Lucas Stach | 1 | 0.01% | 1 | 0.74% |
Baruch Siach | 1 | 0.01% | 1 | 0.74% |
Sebastian Hesselbarth | 1 | 0.01% | 1 | 0.74% |
Total | 7519 | 135 |
// SPDX-License-Identifier: GPL-2.0+ /* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net * * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and * Grant Likely. */ #define pr_fmt(fmt) "OF: " fmt #include <linux/bitmap.h> #include <linux/console.h> #include <linux/ctype.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_graph.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/proc_fs.h> #include "of_private.h" LIST_HEAD(aliases_lookup); struct device_node *of_root; EXPORT_SYMBOL(of_root); struct device_node *of_chosen; struct device_node *of_aliases; struct device_node *of_stdout; static const char *of_stdout_options; struct kset *of_kset; /* * Used to protect the of_aliases, to hold off addition of nodes to sysfs. * This mutex must be held whenever modifications are being made to the * device tree. The of_{attach,detach}_node() and * of_{add,remove,update}_property() helpers make sure this happens. */ DEFINE_MUTEX(of_mutex); /* use when traversing tree through the child, sibling, * or parent members of struct device_node. */ DEFINE_RAW_SPINLOCK(devtree_lock); bool of_node_name_eq(const struct device_node *np, const char *name) { const char *node_name; size_t len; if (!np) return false; node_name = kbasename(np->full_name); len = strchrnul(node_name, '@') - node_name; return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); } EXPORT_SYMBOL(of_node_name_eq); bool of_node_name_prefix(const struct device_node *np, const char *prefix) { if (!np) return false; return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; } EXPORT_SYMBOL(of_node_name_prefix); int of_n_addr_cells(struct device_node *np) { u32 cells; do { if (np->parent) np = np->parent; if (!of_property_read_u32(np, "#address-cells", &cells)) return cells; } while (np->parent); /* No #address-cells property for the root node */ return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; } EXPORT_SYMBOL(of_n_addr_cells); int of_n_size_cells(struct device_node *np) { u32 cells; do { if (np->parent) np = np->parent; if (!of_property_read_u32(np, "#size-cells", &cells)) return cells; } while (np->parent); /* No #size-cells property for the root node */ return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; } EXPORT_SYMBOL(of_n_size_cells); #ifdef CONFIG_NUMA int __weak of_node_to_nid(struct device_node *np) { return NUMA_NO_NODE; } #endif static struct device_node **phandle_cache; static u32 phandle_cache_mask; /* * Assumptions behind phandle_cache implementation: * - phandle property values are in a contiguous range of 1..n * * If the assumptions do not hold, then * - the phandle lookup overhead reduction provided by the cache * will likely be less */ void of_populate_phandle_cache(void) { unsigned long flags; u32 cache_entries; struct device_node *np; u32 phandles = 0; raw_spin_lock_irqsave(&devtree_lock, flags); kfree(phandle_cache); phandle_cache = NULL; for_each_of_allnodes(np) if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) phandles++; if (!phandles) goto out; cache_entries = roundup_pow_of_two(phandles); phandle_cache_mask = cache_entries - 1; phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), GFP_ATOMIC); if (!phandle_cache) goto out; for_each_of_allnodes(np) if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) phandle_cache[np->phandle & phandle_cache_mask] = np; out: raw_spin_unlock_irqrestore(&devtree_lock, flags); } int of_free_phandle_cache(void) { unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); kfree(phandle_cache); phandle_cache = NULL; raw_spin_unlock_irqrestore(&devtree_lock, flags); return 0; } #if !defined(CONFIG_MODULES) late_initcall_sync(of_free_phandle_cache); #endif void __init of_core_init(void) { struct device_node *np; of_populate_phandle_cache(); /* Create the kset, and register existing nodes */ mutex_lock(&of_mutex); of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); if (!of_kset) { mutex_unlock(&of_mutex); pr_err("failed to register existing nodes\n"); return; } for_each_of_allnodes(np) __of_attach_node_sysfs(np); mutex_unlock(&of_mutex); /* Symlink in /proc as required by userspace ABI */ if (of_root) proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); } static struct property *__of_find_property(const struct device_node *np, const char *name, int *lenp) { struct property *pp; if (!np) return NULL; for (pp = np->properties; pp; pp = pp->next) { if (of_prop_cmp(pp->name, name) == 0) { if (lenp) *lenp = pp->length; break; } } return pp; } struct property *of_find_property(const struct device_node *np, const char *name, int *lenp) { struct property *pp; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); pp = __of_find_property(np, name, lenp); raw_spin_unlock_irqrestore(&devtree_lock, flags); return pp; } EXPORT_SYMBOL(of_find_property); struct device_node *__of_find_all_nodes(struct device_node *prev) { struct device_node *np; if (!prev) { np = of_root; } else if (prev->child) { np = prev->child; } else { /* Walk back up looking for a sibling, or the end of the structure */ np = prev; while (np->parent && !np->sibling) np = np->parent; np = np->sibling; /* Might be null at the end of the tree */ } return np; } /** * of_find_all_nodes - Get next node in global list * @prev: Previous node or NULL to start iteration * of_node_put() will be called on it * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_all_nodes(struct device_node *prev) { struct device_node *np; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); np = __of_find_all_nodes(prev); of_node_get(np); of_node_put(prev); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_all_nodes); /* * Find a property with a given name for a given node * and return the value. */ const void *__of_get_property(const struct device_node *np, const char *name, int *lenp) { struct property *pp = __of_find_property(np, name, lenp); return pp ? pp->value : NULL; } /* * Find a property with a given name for a given node * and return the value. */ const void *of_get_property(const struct device_node *np, const char *name, int *lenp) { struct property *pp = of_find_property(np, name, lenp); return pp ? pp->value : NULL; } EXPORT_SYMBOL(of_get_property); /* * arch_match_cpu_phys_id - Match the given logical CPU and physical id * * @cpu: logical cpu index of a core/thread * @phys_id: physical identifier of a core/thread * * CPU logical to physical index mapping is architecture specific. * However this __weak function provides a default match of physical * id to logical cpu index. phys_id provided here is usually values read * from the device tree which must match the hardware internal registers. * * Returns true if the physical identifier and the logical cpu index * correspond to the same core/thread, false otherwise. */ bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) { return (u32)phys_id == cpu; } /** * Checks if the given "prop_name" property holds the physical id of the * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not * NULL, local thread number within the core is returned in it. */ static bool __of_find_n_match_cpu_property(struct device_node *cpun, const char *prop_name, int cpu, unsigned int *thread) { const __be32 *cell; int ac, prop_len, tid; u64 hwid; ac = of_n_addr_cells(cpun); cell = of_get_property(cpun, prop_name, &prop_len); if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) return true; if (!cell || !ac) return false; prop_len /= sizeof(*cell) * ac; for (tid = 0; tid < prop_len; tid++) { hwid = of_read_number(cell, ac); if (arch_match_cpu_phys_id(cpu, hwid)) { if (thread) *thread = tid; return true; } cell += ac; } return false; } /* * arch_find_n_match_cpu_physical_id - See if the given device node is * for the cpu corresponding to logical cpu 'cpu'. Return true if so, * else false. If 'thread' is non-NULL, the local thread number within the * core is returned in it. */ bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, int cpu, unsigned int *thread) { /* Check for non-standard "ibm,ppc-interrupt-server#s" property * for thread ids on PowerPC. If it doesn't exist fallback to * standard "reg" property. */ if (IS_ENABLED(CONFIG_PPC) && __of_find_n_match_cpu_property(cpun, "ibm,ppc-interrupt-server#s", cpu, thread)) return true; return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); } /** * of_get_cpu_node - Get device node associated with the given logical CPU * * @cpu: CPU number(logical index) for which device node is required * @thread: if not NULL, local thread number within the physical core is * returned * * The main purpose of this function is to retrieve the device node for the * given logical CPU index. It should be used to initialize the of_node in * cpu device. Once of_node in cpu device is populated, all the further * references can use that instead. * * CPU logical to physical index mapping is architecture specific and is built * before booting secondary cores. This function uses arch_match_cpu_phys_id * which can be overridden by architecture specific implementation. * * Returns a node pointer for the logical cpu with refcount incremented, use * of_node_put() on it when done. Returns NULL if not found. */ struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) { struct device_node *cpun; for_each_of_cpu_node(cpun) { if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) return cpun; } return NULL; } EXPORT_SYMBOL(of_get_cpu_node); /** * of_cpu_node_to_id: Get the logical CPU number for a given device_node * * @cpu_node: Pointer to the device_node for CPU. * * Returns the logical CPU number of the given CPU device_node. * Returns -ENODEV if the CPU is not found. */ int of_cpu_node_to_id(struct device_node *cpu_node) { int cpu; bool found = false; struct device_node *np; for_each_possible_cpu(cpu) { np = of_cpu_device_node_get(cpu); found = (cpu_node == np); of_node_put(np); if (found) return cpu; } return -ENODEV; } EXPORT_SYMBOL(of_cpu_node_to_id); /** * __of_device_is_compatible() - Check if the node matches given constraints * @device: pointer to node * @compat: required compatible string, NULL or "" for any match * @type: required device_type value, NULL or "" for any match * @name: required node name, NULL or "" for any match * * Checks if the given @compat, @type and @name strings match the * properties of the given @device. A constraints can be skipped by * passing NULL or an empty string as the constraint. * * Returns 0 for no match, and a positive integer on match. The return * value is a relative score with larger values indicating better * matches. The score is weighted for the most specific compatible value * to get the highest score. Matching type is next, followed by matching * name. Practically speaking, this results in the following priority * order for matches: * * 1. specific compatible && type && name * 2. specific compatible && type * 3. specific compatible && name * 4. specific compatible * 5. general compatible && type && name * 6. general compatible && type * 7. general compatible && name * 8. general compatible * 9. type && name * 10. type * 11. name */ static int __of_device_is_compatible(const struct device_node *device, const char *compat, const char *type, const char *name) { struct property *prop; const char *cp; int index = 0, score = 0; /* Compatible match has highest priority */ if (compat && compat[0]) { prop = __of_find_property(device, "compatible", NULL); for (cp = of_prop_next_string(prop, NULL); cp; cp = of_prop_next_string(prop, cp), index++) { if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { score = INT_MAX/2 - (index << 2); break; } } if (!score) return 0; } /* Matching type is better than matching name */ if (type && type[0]) { if (!device->type || of_node_cmp(type, device->type)) return 0; score += 2; } /* Matching name is a bit better than not */ if (name && name[0]) { if (!device->name || of_node_cmp(name, device->name)) return 0; score++; } return score; } /** Checks if the given "compat" string matches one of the strings in * the device's "compatible" property */ int of_device_is_compatible(const struct device_node *device, const char *compat) { unsigned long flags; int res; raw_spin_lock_irqsave(&devtree_lock, flags); res = __of_device_is_compatible(device, compat, NULL, NULL); raw_spin_unlock_irqrestore(&devtree_lock, flags); return res; } EXPORT_SYMBOL(of_device_is_compatible); /** Checks if the device is compatible with any of the entries in * a NULL terminated array of strings. Returns the best match * score or 0. */ int of_device_compatible_match(struct device_node *device, const char *const *compat) { unsigned int tmp, score = 0; if (!compat) return 0; while (*compat) { tmp = of_device_is_compatible(device, *compat); if (tmp > score) score = tmp; compat++; } return score; } /** * of_machine_is_compatible - Test root of device tree for a given compatible value * @compat: compatible string to look for in root node's compatible property. * * Returns a positive integer if the root node has the given value in its * compatible property. */ int of_machine_is_compatible(const char *compat) { struct device_node *root; int rc = 0; root = of_find_node_by_path("/"); if (root) { rc = of_device_is_compatible(root, compat); of_node_put(root); } return rc; } EXPORT_SYMBOL(of_machine_is_compatible); /** * __of_device_is_available - check if a device is available for use * * @device: Node to check for availability, with locks already held * * Returns true if the status property is absent or set to "okay" or "ok", * false otherwise */ static bool __of_device_is_available(const struct device_node *device) { const char *status; int statlen; if (!device) return false; status = __of_get_property(device, "status", &statlen); if (status == NULL) return true; if (statlen > 0) { if (!strcmp(status, "okay") || !strcmp(status, "ok")) return true; } return false; } /** * of_device_is_available - check if a device is available for use * * @device: Node to check for availability * * Returns true if the status property is absent or set to "okay" or "ok", * false otherwise */ bool of_device_is_available(const struct device_node *device) { unsigned long flags; bool res; raw_spin_lock_irqsave(&devtree_lock, flags); res = __of_device_is_available(device); raw_spin_unlock_irqrestore(&devtree_lock, flags); return res; } EXPORT_SYMBOL(of_device_is_available); /** * of_device_is_big_endian - check if a device has BE registers * * @device: Node to check for endianness * * Returns true if the device has a "big-endian" property, or if the kernel * was compiled for BE *and* the device has a "native-endian" property. * Returns false otherwise. * * Callers would nominally use ioread32be/iowrite32be if * of_device_is_big_endian() == true, or readl/writel otherwise. */ bool of_device_is_big_endian(const struct device_node *device) { if (of_property_read_bool(device, "big-endian")) return true; if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && of_property_read_bool(device, "native-endian")) return true; return false; } EXPORT_SYMBOL(of_device_is_big_endian); /** * of_get_parent - Get a node's parent if any * @node: Node to get parent * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_get_parent(const struct device_node *node) { struct device_node *np; unsigned long flags; if (!node) return NULL; raw_spin_lock_irqsave(&devtree_lock, flags); np = of_node_get(node->parent); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_get_parent); /** * of_get_next_parent - Iterate to a node's parent * @node: Node to get parent of * * This is like of_get_parent() except that it drops the * refcount on the passed node, making it suitable for iterating * through a node's parents. * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_get_next_parent(struct device_node *node) { struct device_node *parent; unsigned long flags; if (!node) return NULL; raw_spin_lock_irqsave(&devtree_lock, flags); parent = of_node_get(node->parent); of_node_put(node); raw_spin_unlock_irqrestore(&devtree_lock, flags); return parent; } EXPORT_SYMBOL(of_get_next_parent); static struct device_node *__of_get_next_child(const struct device_node *node, struct device_node *prev) { struct device_node *next; if (!node) return NULL; next = prev ? prev->sibling : node->child; for (; next; next = next->sibling) if (of_node_get(next)) break; of_node_put(prev); return next; } #define __for_each_child_of_node(parent, child) \ for (child = __of_get_next_child(parent, NULL); child != NULL; \ child = __of_get_next_child(parent, child)) /** * of_get_next_child - Iterate a node childs * @node: parent node * @prev: previous child of the parent node, or NULL to get first * * Returns a node pointer with refcount incremented, use of_node_put() on * it when done. Returns NULL when prev is the last child. Decrements the * refcount of prev. */ struct device_node *of_get_next_child(const struct device_node *node, struct device_node *prev) { struct device_node *next; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); next = __of_get_next_child(node, prev); raw_spin_unlock_irqrestore(&devtree_lock, flags); return next; } EXPORT_SYMBOL(of_get_next_child); /** * of_get_next_available_child - Find the next available child node * @node: parent node * @prev: previous child of the parent node, or NULL to get first * * This function is like of_get_next_child(), except that it * automatically skips any disabled nodes (i.e. status = "disabled"). */ struct device_node *of_get_next_available_child(const struct device_node *node, struct device_node *prev) { struct device_node *next; unsigned long flags; if (!node) return NULL; raw_spin_lock_irqsave(&devtree_lock, flags); next = prev ? prev->sibling : node->child; for (; next; next = next->sibling) { if (!__of_device_is_available(next)) continue; if (of_node_get(next)) break; } of_node_put(prev); raw_spin_unlock_irqrestore(&devtree_lock, flags); return next; } EXPORT_SYMBOL(of_get_next_available_child); /** * of_get_next_cpu_node - Iterate on cpu nodes * @prev: previous child of the /cpus node, or NULL to get first * * Returns a cpu node pointer with refcount incremented, use of_node_put() * on it when done. Returns NULL when prev is the last child. Decrements * the refcount of prev. */ struct device_node *of_get_next_cpu_node(struct device_node *prev) { struct device_node *next = NULL; unsigned long flags; struct device_node *node; if (!prev) node = of_find_node_by_path("/cpus"); raw_spin_lock_irqsave(&devtree_lock, flags); if (prev) next = prev->sibling; else if (node) { next = node->child; of_node_put(node); } for (; next; next = next->sibling) { if (!(of_node_name_eq(next, "cpu") || (next->type && !of_node_cmp(next->type, "cpu")))) continue; if (of_node_get(next)) break; } of_node_put(prev); raw_spin_unlock_irqrestore(&devtree_lock, flags); return next; } EXPORT_SYMBOL(of_get_next_cpu_node); /** * of_get_compatible_child - Find compatible child node * @parent: parent node * @compatible: compatible string * * Lookup child node whose compatible property contains the given compatible * string. * * Returns a node pointer with refcount incremented, use of_node_put() on it * when done; or NULL if not found. */ struct device_node *of_get_compatible_child(const struct device_node *parent, const char *compatible) { struct device_node *child; for_each_child_of_node(parent, child) { if (of_device_is_compatible(child, compatible)) break; } return child; } EXPORT_SYMBOL(of_get_compatible_child); /** * of_get_child_by_name - Find the child node by name for a given parent * @node: parent node * @name: child name to look for. * * This function looks for child node for given matching name * * Returns a node pointer if found, with refcount incremented, use * of_node_put() on it when done. * Returns NULL if node is not found. */ struct device_node *of_get_child_by_name(const struct device_node *node, const char *name) { struct device_node *child; for_each_child_of_node(node, child) if (child->name && (of_node_cmp(child->name, name) == 0)) break; return child; } EXPORT_SYMBOL(of_get_child_by_name); struct device_node *__of_find_node_by_path(struct device_node *parent, const char *path) { struct device_node *child; int len; len = strcspn(path, "/:"); if (!len) return NULL; __for_each_child_of_node(parent, child) { const char *name = kbasename(child->full_name); if (strncmp(path, name, len) == 0 && (strlen(name) == len)) return child; } return NULL; } struct device_node *__of_find_node_by_full_path(struct device_node *node, const char *path) { const char *separator = strchr(path, ':'); while (node && *path == '/') { struct device_node *tmp = node; path++; /* Increment past '/' delimiter */ node = __of_find_node_by_path(node, path); of_node_put(tmp); path = strchrnul(path, '/'); if (separator && separator < path) break; } return node; } /** * of_find_node_opts_by_path - Find a node matching a full OF path * @path: Either the full path to match, or if the path does not * start with '/', the name of a property of the /aliases * node (an alias). In the case of an alias, the node * matching the alias' value will be returned. * @opts: Address of a pointer into which to store the start of * an options string appended to the end of the path with * a ':' separator. * * Valid paths: * /foo/bar Full path * foo Valid alias * foo/bar Valid alias + relative path * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) { struct device_node *np = NULL; struct property *pp; unsigned long flags; const char *separator = strchr(path, ':'); if (opts) *opts = separator ? separator + 1 : NULL; if (strcmp(path, "/") == 0) return of_node_get(of_root); /* The path could begin with an alias */ if (*path != '/') { int len; const char *p = separator; if (!p) p = strchrnul(path, '/'); len = p - path; /* of_aliases must not be NULL */ if (!of_aliases) return NULL; for_each_property_of_node(of_aliases, pp) { if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { np = of_find_node_by_path(pp->value); break; } } if (!np) return NULL; path = p; } /* Step down the tree matching path components */ raw_spin_lock_irqsave(&devtree_lock, flags); if (!np) np = of_node_get(of_root); np = __of_find_node_by_full_path(np, path); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_node_opts_by_path); /** * of_find_node_by_name - Find a node by its "name" property * @from: The node to start searching from or NULL; the node * you pass will not be searched, only the next one * will. Typically, you pass what the previous call * returned. of_node_put() will be called on @from. * @name: The name string to match against * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_name(struct device_node *from, const char *name) { struct device_node *np; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); for_each_of_allnodes_from(from, np) if (np->name && (of_node_cmp(np->name, name) == 0) && of_node_get(np)) break; of_node_put(from); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_node_by_name); /** * of_find_node_by_type - Find a node by its "device_type" property * @from: The node to start searching from, or NULL to start searching * the entire device tree. The node you pass will not be * searched, only the next one will; typically, you pass * what the previous call returned. of_node_put() will be * called on from for you. * @type: The type string to match against * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_type(struct device_node *from, const char *type) { struct device_node *np; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); for_each_of_allnodes_from(from, np) if (np->type && (of_node_cmp(np->type, type) == 0) && of_node_get(np)) break; of_node_put(from); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_node_by_type); /** * of_find_compatible_node - Find a node based on type and one of the * tokens in its "compatible" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @type: The type string to match "device_type" or NULL to ignore * @compatible: The string to match to one of the tokens in the device * "compatible" list. * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compatible) { struct device_node *np; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); for_each_of_allnodes_from(from, np) if (__of_device_is_compatible(np, compatible, type, NULL) && of_node_get(np)) break; of_node_put(from); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_compatible_node); /** * of_find_node_with_property - Find a node which has a property with * the given name. * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @prop_name: The name of the property to look for. * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_with_property(struct device_node *from, const char *prop_name) { struct device_node *np; struct property *pp; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); for_each_of_allnodes_from(from, np) { for (pp = np->properties; pp; pp = pp->next) { if (of_prop_cmp(pp->name, prop_name) == 0) { of_node_get(np); goto out; } } } out: of_node_put(from); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_node_with_property); static const struct of_device_id *__of_match_node(const struct of_device_id *matches, const struct device_node *node) { const struct of_device_id *best_match = NULL; int score, best_score = 0; if (!matches) return NULL; for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { score = __of_device_is_compatible(node, matches->compatible, matches->type, matches->name); if (score > best_score) { best_match = matches; best_score = score; } } return best_match; } /** * of_match_node - Tell if a device_node has a matching of_match structure * @matches: array of of device match structures to search in * @node: the of device structure to match against * * Low level utility function used by device matching. */ const struct of_device_id *of_match_node(const struct of_device_id *matches, const struct device_node *node) { const struct of_device_id *match; unsigned long flags; raw_spin_lock_irqsave(&devtree_lock, flags); match = __of_match_node(matches, node); raw_spin_unlock_irqrestore(&devtree_lock, flags); return match; } EXPORT_SYMBOL(of_match_node); /** * of_find_matching_node_and_match - Find a node based on an of_device_id * match table. * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @matches: array of of device match structures to search in * @match Updated to point at the matches entry which matched * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_matching_node_and_match(struct device_node *from, const struct of_device_id *matches, const struct of_device_id **match) { struct device_node *np; const struct of_device_id *m; unsigned long flags; if (match) *match = NULL; raw_spin_lock_irqsave(&devtree_lock, flags); for_each_of_allnodes_from(from, np) { m = __of_match_node(matches, np); if (m && of_node_get(np)) { if (match) *match = m; break; } } of_node_put(from); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_matching_node_and_match); /** * of_modalias_node - Lookup appropriate modalias for a device node * @node: pointer to a device tree node * @modalias: Pointer to buffer that modalias value will be copied into * @len: Length of modalias value * * Based on the value of the compatible property, this routine will attempt * to choose an appropriate modalias value for a particular device tree node. * It does this by stripping the manufacturer prefix (as delimited by a ',') * from the first entry in the compatible list property. * * This routine returns 0 on success, <0 on failure. */ int of_modalias_node(struct device_node *node, char *modalias, int len) { const char *compatible, *p; int cplen; compatible = of_get_property(node, "compatible", &cplen); if (!compatible || strlen(compatible) > cplen) return -ENODEV; p = strchr(compatible, ','); strlcpy(modalias, p ? p + 1 : compatible, len); return 0; } EXPORT_SYMBOL_GPL(of_modalias_node); /** * of_find_node_by_phandle - Find a node given a phandle * @handle: phandle of the node to find * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_phandle(phandle handle) { struct device_node *np = NULL; unsigned long flags; phandle masked_handle; if (!handle) return NULL; raw_spin_lock_irqsave(&devtree_lock, flags); masked_handle = handle & phandle_cache_mask; if (phandle_cache) { if (phandle_cache[masked_handle] && handle == phandle_cache[masked_handle]->phandle) np = phandle_cache[masked_handle]; } if (!np) { for_each_of_allnodes(np) if (np->phandle == handle) { if (phandle_cache) phandle_cache[masked_handle] = np; break; } } of_node_get(np); raw_spin_unlock_irqrestore(&devtree_lock, flags); return np; } EXPORT_SYMBOL(of_find_node_by_phandle); void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) { int i; printk("%s %pOF", msg, args->np); for (i = 0; i < args->args_count; i++) { const char delim = i ? ',' : ':'; pr_cont("%c%08x", delim, args->args[i]); } pr_cont("\n"); } int of_phandle_iterator_init(struct of_phandle_iterator *it, const struct device_node *np, const char *list_name, const char *cells_name, int cell_count) { const __be32 *list; int size; memset(it, 0, sizeof(*it)); list = of_get_property(np, list_name, &size); if (!list) return -ENOENT; it->cells_name = cells_name; it->cell_count = cell_count; it->parent = np; it->list_end = list + size / sizeof(*list); it->phandle_end = list; it->cur = list; return 0; } EXPORT_SYMBOL_GPL(of_phandle_iterator_init); int of_phandle_iterator_next(struct of_phandle_iterator *it) { uint32_t count = 0; if (it->node) { of_node_put(it->node); it->node = NULL; } if (!it->cur || it->phandle_end >= it->list_end) return -ENOENT; it->cur = it->phandle_end; /* If phandle is 0, then it is an empty entry with no arguments. */ it->phandle = be32_to_cpup(it->cur++); if (it->phandle) { /* * Find the provider node and parse the #*-cells property to * determine the argument length. */ it->node = of_find_node_by_phandle(it->phandle); if (it->cells_name) { if (!it->node) { pr_err("%pOF: could not find phandle\n", it->parent); goto err; } if (of_property_read_u32(it->node, it->cells_name, &count)) { pr_err("%pOF: could not get %s for %pOF\n", it->parent, it->cells_name, it->node); goto err; } } else { count = it->cell_count; } /* * Make sure that the arguments actually fit in the remaining * property data length */ if (it->cur + count > it->list_end) { pr_err("%pOF: arguments longer than property\n", it->parent); goto err; } } it->phandle_end = it->cur + count; it->cur_count = count; return 0; err: if (it->node) { of_node_put(it->node); it->node = NULL; } return -EINVAL; } EXPORT_SYMBOL_GPL(of_phandle_iterator_next); int of_phandle_iterator_args(struct of_phandle_iterator *it, uint32_t *args, int size) { int i, count; count = it->cur_count; if (WARN_ON(size < count)) count = size; for (i = 0; i < count; i++) args[i] = be32_to_cpup(it->cur++); return count; } static int __of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int cell_count, int index, struct of_phandle_args *out_args) { struct of_phandle_iterator it; int rc, cur_index = 0; /* Loop over the phandles until all the requested entry is found */ of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { /* * All of the error cases bail out of the loop, so at * this point, the parsing is successful. If the requested * index matches, then fill the out_args structure and return, * or return -ENOENT for an empty entry. */ rc = -ENOENT; if (cur_index == index) { if (!it.phandle) goto err; if (out_args) { int c; c = of_phandle_iterator_args(&it, out_args->args, MAX_PHANDLE_ARGS); out_args->np = it.node; out_args->args_count = c; } else { of_node_put(it.node); } /* Found it! return success */ return 0; } cur_index++; } /* * Unlock node before returning result; will be one of: * -ENOENT : index is for empty phandle * -EINVAL : parsing error on data */ err: of_node_put(it.node); return rc; } /** * of_parse_phandle - Resolve a phandle property to a device_node pointer * @np: Pointer to device node holding phandle property * @phandle_name: Name of property holding a phandle value * @index: For properties holding a table of phandles, this is the index into * the table * * Returns the device_node pointer with refcount incremented. Use * of_node_put() on it when done. */ struct device_node *of_parse_phandle(const struct device_node *np, const char *phandle_name, int index) { struct of_phandle_args args; if (index < 0) return NULL; if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, index, &args)) return NULL; return args.np; } EXPORT_SYMBOL(of_parse_phandle); /** * of_parse_phandle_with_args() - Find a node pointed by phandle in a list * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate * errno value. * * Caller is responsible to call of_node_put() on the returned out_args->np * pointer. * * Example: * * phandle1: node1 { * #list-cells = <2>; * } * * phandle2: node2 { * #list-cells = <1>; * } * * node3 { * list = <&phandle1 1 2 &phandle2 3>; * } * * To get a device_node of the `node2' node you may call this: * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); */ int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int index, struct of_phandle_args *out_args) { if (index < 0) return -EINVAL; return __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, out_args); } EXPORT_SYMBOL(of_parse_phandle_with_args); /** * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @stem_name: stem of property names that specify phandles' arguments count * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate errno * value. The difference between this function and of_parse_phandle_with_args() * is that this API remaps a phandle if the node the phandle points to has * a <@stem_name>-map property. * * Caller is responsible to call of_node_put() on the returned out_args->np * pointer. * * Example: * * phandle1: node1 { * #list-cells = <2>; * } * * phandle2: node2 { * #list-cells = <1>; * } * * phandle3: node3 { * #list-cells = <1>; * list-map = <0 &phandle2 3>, * <1 &phandle2 2>, * <2 &phandle1 5 1>; * list-map-mask = <0x3>; * }; * * node4 { * list = <&phandle1 1 2 &phandle3 0>; * } * * To get a device_node of the `node2' node you may call this: * of_parse_phandle_with_args(node4, "list", "list", 1, &args); */ int of_parse_phandle_with_args_map(const struct device_node *np, const char *list_name, const char *stem_name, int index, struct of_phandle_args *out_args) { char *cells_name, *map_name = NULL, *mask_name = NULL; char *pass_name = NULL; struct device_node *cur, *new = NULL; const __be32 *map, *mask, *pass; static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; __be32 initial_match_array[MAX_PHANDLE_ARGS]; const __be32 *match_array = initial_match_array; int i, ret, map_len, match; u32 list_size, new_size; if (index < 0) return -EINVAL; cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); if (!cells_name) return -ENOMEM; ret = -ENOMEM; map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); if (!map_name) goto free; mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); if (!mask_name) goto free; pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); if (!pass_name) goto free; ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, out_args); if (ret) goto free; /* Get the #<list>-cells property */ cur = out_args->np; ret = of_property_read_u32(cur, cells_name, &list_size); if (ret < 0) goto put; /* Precalculate the match array - this simplifies match loop */ for (i = 0; i < list_size; i++) initial_match_array[i] = cpu_to_be32(out_args->args[i]); ret = -EINVAL; while (cur) { /* Get the <list>-map property */ map = of_get_property(cur, map_name, &map_len); if (!map) { ret = 0; goto free; } map_len /= sizeof(u32); /* Get the <list>-map-mask property (optional) */ mask = of_get_property(cur, mask_name, NULL); if (!mask) mask = dummy_mask; /* Iterate through <list>-map property */ match = 0; while (map_len > (list_size + 1) && !match) { /* Compare specifiers */ match = 1; for (i = 0; i < list_size; i++, map_len--) match &= !((match_array[i] ^ *map++) & mask[i]); of_node_put(new); new = of_find_node_by_phandle(be32_to_cpup(map)); map++; map_len--; /* Check if not found */ if (!new) goto put; if (!of_device_is_available(new)) match = 0; ret = of_property_read_u32(new, cells_name, &new_size); if (ret) goto put; /* Check for malformed properties */ if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) goto put; if (map_len < new_size) goto put; /* Move forward by new node's #<list>-cells amount */ map += new_size; map_len -= new_size; } if (!match) goto put; /* Get the <list>-map-pass-thru property (optional) */ pass = of_get_property(cur, pass_name, NULL); if (!pass) pass = dummy_pass; /* * Successfully parsed a <list>-map translation; copy new * specifier into the out_args structure, keeping the * bits specified in <list>-map-pass-thru. */ match_array = map - new_size; for (i = 0; i < new_size; i++) { __be32 val = *(map - new_size + i); if (i < list_size) { val &= ~pass[i]; val |= cpu_to_be32(out_args->args[i]) & pass[i]; } out_args->args[i] = be32_to_cpu(val); } out_args->args_count = list_size = new_size; /* Iterate again with new provider */ out_args->np = new; of_node_put(cur); cur = new; } put: of_node_put(cur); of_node_put(new); free: kfree(mask_name); kfree(map_name); kfree(cells_name); kfree(pass_name); return ret; } EXPORT_SYMBOL(of_parse_phandle_with_args_map); /** * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cell_count: number of argument cells following the phandle * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate * errno value. * * Caller is responsible to call of_node_put() on the returned out_args->np * pointer. * * Example: * * phandle1: node1 { * } * * phandle2: node2 { * } * * node3 { * list = <&phandle1 0 2 &phandle2 2 3>; * } * * To get a device_node of the `node2' node you may call this: * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); */ int of_parse_phandle_with_fixed_args(const struct device_node *np, const char *list_name, int cell_count, int index, struct of_phandle_args *out_args) { if (index < 0) return -EINVAL; return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, index, out_args); } EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); /** * of_count_phandle_with_args() - Find the number of phandles references in a property * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * * Returns the number of phandle + argument tuples within a property. It * is a typical pattern to encode a list of phandle and variable * arguments into a single property. The number of arguments is encoded * by a property in the phandle-target node. For example, a gpios * property would contain a list of GPIO specifies consisting of a * phandle and 1 or more arguments. The number of arguments are * determined by the #gpio-cells property in the node pointed to by the * phandle. */ int of_count_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name) { struct of_phandle_iterator it; int rc, cur_index = 0; rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); if (rc) return rc; while ((rc = of_phandle_iterator_next(&it)) == 0) cur_index += 1; if (rc != -ENOENT) return rc; return cur_index; } EXPORT_SYMBOL(of_count_phandle_with_args); /** * __of_add_property - Add a property to a node without lock operations */ int __of_add_property(struct device_node *np, struct property *prop) { struct property **next; prop->next = NULL; next = &np->properties; while (*next) { if (strcmp(prop->name, (*next)->name) == 0) /* duplicate ! don't insert it */ return -EEXIST; next = &(*next)->next; } *next = prop; return 0; } /** * of_add_property - Add a property to a node */ int of_add_property(struct device_node *np, struct property *prop) { unsigned long flags; int rc; mutex_lock(&of_mutex); raw_spin_lock_irqsave(&devtree_lock, flags); rc = __of_add_property(np, prop); raw_spin_unlock_irqrestore(&devtree_lock, flags); if (!rc) __of_add_property_sysfs(np, prop); mutex_unlock(&of_mutex); if (!rc) of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); return rc; } int __of_remove_property(struct device_node *np, struct property *prop) { struct property **next; for (next = &np->properties; *next; next = &(*next)->next) { if (*next == prop) break; } if (*next == NULL) return -ENODEV; /* found the node */ *next = prop->next; prop->next = np->deadprops; np->deadprops = prop; return 0; } /** * of_remove_property - Remove a property from a node. * * Note that we don't actually remove it, since we have given out * who-knows-how-many pointers to the data using get-property. * Instead we just move the property to the "dead properties" * list, so it won't be found any more. */ int of_remove_property(struct device_node *np, struct property *prop) { unsigned long flags; int rc; if (!prop) return -ENODEV; mutex_lock(&of_mutex); raw_spin_lock_irqsave(&devtree_lock, flags); rc = __of_remove_property(np, prop); raw_spin_unlock_irqrestore(&devtree_lock, flags); if (!rc) __of_remove_property_sysfs(np, prop); mutex_unlock(&of_mutex); if (!rc) of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); return rc; } int __of_update_property(struct device_node *np, struct property *newprop, struct property **oldpropp) { struct property **next, *oldprop; for (next = &np->properties; *next; next = &(*next)->next) { if (of_prop_cmp((*next)->name, newprop->name) == 0) break; } *oldpropp = oldprop = *next; if (oldprop) { /* replace the node */ newprop->next = oldprop->next; *next = newprop; oldprop->next = np->deadprops; np->deadprops = oldprop; } else { /* new node */ newprop->next = NULL; *next = newprop; } return 0; } /* * of_update_property - Update a property in a node, if the property does * not exist, add it. * * Note that we don't actually remove it, since we have given out * who-knows-how-many pointers to the data using get-property. * Instead we just move the property to the "dead properties" list, * and add the new property to the property list */ int of_update_property(struct device_node *np, struct property *newprop) { struct property *oldprop; unsigned long flags; int rc; if (!newprop->name) return -EINVAL; mutex_lock(&of_mutex); raw_spin_lock_irqsave(&devtree_lock, flags); rc = __of_update_property(np, newprop, &oldprop); raw_spin_unlock_irqrestore(&devtree_lock, flags); if (!rc) __of_update_property_sysfs(np, newprop, oldprop); mutex_unlock(&of_mutex); if (!rc) of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); return rc; } static void of_alias_add(struct alias_prop *ap, struct device_node *np, int id, const char *stem, int stem_len) { ap->np = np; ap->id = id; strncpy(ap->stem, stem, stem_len); ap->stem[stem_len] = 0; list_add_tail(&ap->link, &aliases_lookup); pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", ap->alias, ap->stem, ap->id, np); } /** * of_alias_scan - Scan all properties of the 'aliases' node * * The function scans all the properties of the 'aliases' node and populates * the global lookup table with the properties. It returns the * number of alias properties found, or an error code in case of failure. * * @dt_alloc: An allocator that provides a virtual address to memory * for storing the resulting tree */ void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) { struct property *pp; of_aliases = of_find_node_by_path("/aliases"); of_chosen = of_find_node_by_path("/chosen"); if (of_chosen == NULL) of_chosen = of_find_node_by_path("/chosen@0"); if (of_chosen) { /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ const char *name = NULL; if (of_property_read_string(of_chosen, "stdout-path", &name)) of_property_read_string(of_chosen, "linux,stdout-path", &name); if (IS_ENABLED(CONFIG_PPC) && !name) of_property_read_string(of_aliases, "stdout", &name); if (name) of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); } if (!of_aliases) return; for_each_property_of_node(of_aliases, pp) { const char *start = pp->name; const char *end = start + strlen(start); struct device_node *np; struct alias_prop *ap; int id, len; /* Skip those we do not want to proceed */ if (!strcmp(pp->name, "name") || !strcmp(pp->name, "phandle") || !strcmp(pp->name, "linux,phandle")) continue; np = of_find_node_by_path(pp->value); if (!np) continue; /* walk the alias backwards to extract the id and work out * the 'stem' string */ while (isdigit(*(end-1)) && end > start) end--; len = end - start; if (kstrtoint(end, 10, &id) < 0) continue; /* Allocate an alias_prop with enough space for the stem */ ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); if (!ap) continue; memset(ap, 0, sizeof(*ap) + len + 1); ap->alias = start; of_alias_add(ap, np, id, start, len); } } /** * of_alias_get_id - Get alias id for the given device_node * @np: Pointer to the given device_node * @stem: Alias stem of the given device_node * * The function travels the lookup table to get the alias id for the given * device_node and alias stem. It returns the alias id if found. */ int of_alias_get_id(struct device_node *np, const char *stem) { struct alias_prop *app; int id = -ENODEV; mutex_lock(&of_mutex); list_for_each_entry(app, &aliases_lookup, link) { if (strcmp(app->stem, stem) != 0) continue; if (np == app->np) { id = app->id; break; } } mutex_unlock(&of_mutex); return id; } EXPORT_SYMBOL_GPL(of_alias_get_id); /** * of_alias_get_alias_list - Get alias list for the given device driver * @matches: Array of OF device match structures to search in * @stem: Alias stem of the given device_node * @bitmap: Bitmap field pointer * @nbits: Maximum number of alias IDs which can be recorded in bitmap * * The function travels the lookup table to record alias ids for the given * device match structures and alias stem. * * Return: 0 or -ENOSYS when !CONFIG_OF or * -EOVERFLOW if alias ID is greater then allocated nbits */ int of_alias_get_alias_list(const struct of_device_id *matches, const char *stem, unsigned long *bitmap, unsigned int nbits) { struct alias_prop *app; int ret = 0; /* Zero bitmap field to make sure that all the time it is clean */ bitmap_zero(bitmap, nbits); mutex_lock(&of_mutex); pr_debug("%s: Looking for stem: %s\n", __func__, stem); list_for_each_entry(app, &aliases_lookup, link) { pr_debug("%s: stem: %s, id: %d\n", __func__, app->stem, app->id); if (strcmp(app->stem, stem) != 0) { pr_debug("%s: stem comparison didn't pass %s\n", __func__, app->stem); continue; } if (of_match_node(matches, app->np)) { pr_debug("%s: Allocated ID %d\n", __func__, app->id); if (app->id >= nbits) { pr_warn("%s: ID %d >= than bitmap field %d\n", __func__, app->id, nbits); ret = -EOVERFLOW; } else { set_bit(app->id, bitmap); } } } mutex_unlock(&of_mutex); return ret; } EXPORT_SYMBOL_GPL(of_alias_get_alias_list); /** * of_alias_get_highest_id - Get highest alias id for the given stem * @stem: Alias stem to be examined * * The function travels the lookup table to get the highest alias id for the * given alias stem. It returns the alias id if found. */ int of_alias_get_highest_id(const char *stem) { struct alias_prop *app; int id = -ENODEV; mutex_lock(&of_mutex); list_for_each_entry(app, &aliases_lookup, link) { if (strcmp(app->stem, stem) != 0) continue; if (app->id > id) id = app->id; } mutex_unlock(&of_mutex); return id; } EXPORT_SYMBOL_GPL(of_alias_get_highest_id); /** * of_console_check() - Test and setup console for DT setup * @dn - Pointer to device node * @name - Name to use for preferred console without index. ex. "ttyS" * @index - Index to use for preferred console. * * Check if the given device node matches the stdout-path property in the * /chosen node. If it does then register it as the preferred console and return * TRUE. Otherwise return FALSE. */ bool of_console_check(struct device_node *dn, char *name, int index) { if (!dn || dn != of_stdout || console_set_on_cmdline) return false; /* * XXX: cast `options' to char pointer to suppress complication * warnings: printk, UART and console drivers expect char pointer. */ return !add_preferred_console(name, index, (char *)of_stdout_options); } EXPORT_SYMBOL_GPL(of_console_check); /** * of_find_next_cache_node - Find a node's subsidiary cache * @np: node of type "cpu" or "cache" * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. Caller should hold a reference * to np. */ struct device_node *of_find_next_cache_node(const struct device_node *np) { struct device_node *child, *cache_node; cache_node = of_parse_phandle(np, "l2-cache", 0); if (!cache_node) cache_node = of_parse_phandle(np, "next-level-cache", 0); if (cache_node) return cache_node; /* OF on pmac has nodes instead of properties named "l2-cache" * beneath CPU nodes. */ if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu")) for_each_child_of_node(np, child) if (!strcmp(child->type, "cache")) return child; return NULL; } /** * of_find_last_cache_level - Find the level at which the last cache is * present for the given logical cpu * * @cpu: cpu number(logical index) for which the last cache level is needed * * Returns the the level at which the last cache is present. It is exactly * same as the total number of cache levels for the given logical cpu. */ int of_find_last_cache_level(unsigned int cpu) { u32 cache_level = 0; struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); while (np) { prev = np; of_node_put(np); np = of_find_next_cache_node(np); } of_property_read_u32(prev, "cache-level", &cache_level); return cache_level; } /** * of_map_rid - Translate a requester ID through a downstream mapping. * @np: root complex device node. * @rid: device requester ID to map. * @map_name: property name of the map to use. * @map_mask_name: optional property name of the mask to use. * @target: optional pointer to a target device node. * @id_out: optional pointer to receive the translated ID. * * Given a device requester ID, look up the appropriate implementation-defined * platform ID and/or the target device which receives transactions on that * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or * @id_out may be NULL if only the other is required. If @target points to * a non-NULL device node pointer, only entries targeting that node will be * matched; if it points to a NULL value, it will receive the device node of * the first matching target phandle, with a reference held. * * Return: 0 on success or a standard error code on failure. */ int of_map_rid(struct device_node *np, u32 rid, const char *map_name, const char *map_mask_name, struct device_node **target, u32 *id_out) { u32 map_mask, masked_rid; int map_len; const __be32 *map = NULL; if (!np || !map_name || (!target && !id_out)) return -EINVAL; map = of_get_property(np, map_name, &map_len); if (!map) { if (target) return -ENODEV; /* Otherwise, no map implies no translation */ *id_out = rid; return 0; } if (!map_len || map_len % (4 * sizeof(*map))) { pr_err("%pOF: Error: Bad %s length: %d\n", np, map_name, map_len); return -EINVAL; } /* The default is to select all bits. */ map_mask = 0xffffffff; /* * Can be overridden by "{iommu,msi}-map-mask" property. * If of_property_read_u32() fails, the default is used. */ if (map_mask_name) of_property_read_u32(np, map_mask_name, &map_mask); masked_rid = map_mask & rid; for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { struct device_node *phandle_node; u32 rid_base = be32_to_cpup(map + 0); u32 phandle = be32_to_cpup(map + 1); u32 out_base = be32_to_cpup(map + 2); u32 rid_len = be32_to_cpup(map + 3); if (rid_base & ~map_mask) { pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n", np, map_name, map_name, map_mask, rid_base); return -EFAULT; } if (masked_rid < rid_base || masked_rid >= rid_base + rid_len) continue; phandle_node = of_find_node_by_phandle(phandle); if (!phandle_node) return -ENODEV; if (target) { if (*target) of_node_put(phandle_node); else *target = phandle_node; if (*target != phandle_node) continue; } if (id_out) *id_out = masked_rid - rid_base + out_base; pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n", np, map_name, map_mask, rid_base, out_base, rid_len, rid, masked_rid - rid_base + out_base); return 0; } pr_err("%pOF: Invalid %s translation - no match for rid 0x%x on %pOF\n", np, map_name, rid, target && *target ? *target : NULL); return -EFAULT; } EXPORT_SYMBOL_GPL(of_map_rid);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1