Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 648 | 96.43% | 4 | 50.00% |
David S. Miller | 9 | 1.34% | 1 | 12.50% |
Linus Torvalds | 8 | 1.19% | 1 | 12.50% |
Richard Henderson | 7 | 1.04% | 2 | 25.00% |
Total | 672 | 8 |
/* Software floating-point emulation. Basic four-word fraction declaration and manipulation. Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Richard Henderson (rth@cygnus.com), Jakub Jelinek (jj@ultra.linux.cz), David S. Miller (davem@redhat.com) and Peter Maydell (pmaydell@chiark.greenend.org.uk). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef __MATH_EMU_OP_4_H__ #define __MATH_EMU_OP_4_H__ #define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4] #define _FP_FRAC_COPY_4(D,S) \ (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \ D##_f[2] = S##_f[2], D##_f[3] = S##_f[3]) #define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I) #define _FP_FRAC_HIGH_4(X) (X##_f[3]) #define _FP_FRAC_LOW_4(X) (X##_f[0]) #define _FP_FRAC_WORD_4(X,w) (X##_f[w]) #define _FP_FRAC_SLL_4(X,N) \ do { \ _FP_I_TYPE _up, _down, _skip, _i; \ _skip = (N) / _FP_W_TYPE_SIZE; \ _up = (N) % _FP_W_TYPE_SIZE; \ _down = _FP_W_TYPE_SIZE - _up; \ if (!_up) \ for (_i = 3; _i >= _skip; --_i) \ X##_f[_i] = X##_f[_i-_skip]; \ else \ { \ for (_i = 3; _i > _skip; --_i) \ X##_f[_i] = X##_f[_i-_skip] << _up \ | X##_f[_i-_skip-1] >> _down; \ X##_f[_i--] = X##_f[0] << _up; \ } \ for (; _i >= 0; --_i) \ X##_f[_i] = 0; \ } while (0) /* This one was broken too */ #define _FP_FRAC_SRL_4(X,N) \ do { \ _FP_I_TYPE _up, _down, _skip, _i; \ _skip = (N) / _FP_W_TYPE_SIZE; \ _down = (N) % _FP_W_TYPE_SIZE; \ _up = _FP_W_TYPE_SIZE - _down; \ if (!_down) \ for (_i = 0; _i <= 3-_skip; ++_i) \ X##_f[_i] = X##_f[_i+_skip]; \ else \ { \ for (_i = 0; _i < 3-_skip; ++_i) \ X##_f[_i] = X##_f[_i+_skip] >> _down \ | X##_f[_i+_skip+1] << _up; \ X##_f[_i++] = X##_f[3] >> _down; \ } \ for (; _i < 4; ++_i) \ X##_f[_i] = 0; \ } while (0) /* Right shift with sticky-lsb. * What this actually means is that we do a standard right-shift, * but that if any of the bits that fall off the right hand side * were one then we always set the LSbit. */ #define _FP_FRAC_SRS_4(X,N,size) \ do { \ _FP_I_TYPE _up, _down, _skip, _i; \ _FP_W_TYPE _s; \ _skip = (N) / _FP_W_TYPE_SIZE; \ _down = (N) % _FP_W_TYPE_SIZE; \ _up = _FP_W_TYPE_SIZE - _down; \ for (_s = _i = 0; _i < _skip; ++_i) \ _s |= X##_f[_i]; \ _s |= X##_f[_i] << _up; \ /* s is now != 0 if we want to set the LSbit */ \ if (!_down) \ for (_i = 0; _i <= 3-_skip; ++_i) \ X##_f[_i] = X##_f[_i+_skip]; \ else \ { \ for (_i = 0; _i < 3-_skip; ++_i) \ X##_f[_i] = X##_f[_i+_skip] >> _down \ | X##_f[_i+_skip+1] << _up; \ X##_f[_i++] = X##_f[3] >> _down; \ } \ for (; _i < 4; ++_i) \ X##_f[_i] = 0; \ /* don't fix the LSB until the very end when we're sure f[0] is stable */ \ X##_f[0] |= (_s != 0); \ } while (0) #define _FP_FRAC_ADD_4(R,X,Y) \ __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) #define _FP_FRAC_SUB_4(R,X,Y) \ __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) #define _FP_FRAC_DEC_4(X,Y) \ __FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) #define _FP_FRAC_ADDI_4(X,I) \ __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I) #define _FP_ZEROFRAC_4 0,0,0,0 #define _FP_MINFRAC_4 0,0,0,1 #define _FP_MAXFRAC_4 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) #define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0) #define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0) #define _FP_FRAC_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) #define _FP_FRAC_CLEAR_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) #define _FP_FRAC_EQ_4(X,Y) \ (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \ && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3]) #define _FP_FRAC_GT_4(X,Y) \ (X##_f[3] > Y##_f[3] || \ (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \ )) \ )) \ ) #define _FP_FRAC_GE_4(X,Y) \ (X##_f[3] > Y##_f[3] || \ (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \ )) \ )) \ ) #define _FP_FRAC_CLZ_4(R,X) \ do { \ if (X##_f[3]) \ { \ __FP_CLZ(R,X##_f[3]); \ } \ else if (X##_f[2]) \ { \ __FP_CLZ(R,X##_f[2]); \ R += _FP_W_TYPE_SIZE; \ } \ else if (X##_f[1]) \ { \ __FP_CLZ(R,X##_f[2]); \ R += _FP_W_TYPE_SIZE*2; \ } \ else \ { \ __FP_CLZ(R,X##_f[0]); \ R += _FP_W_TYPE_SIZE*3; \ } \ } while(0) #define _FP_UNPACK_RAW_4(fs, X, val) \ do { \ union _FP_UNION_##fs _flo; _flo.flt = (val); \ X##_f[0] = _flo.bits.frac0; \ X##_f[1] = _flo.bits.frac1; \ X##_f[2] = _flo.bits.frac2; \ X##_f[3] = _flo.bits.frac3; \ X##_e = _flo.bits.exp; \ X##_s = _flo.bits.sign; \ } while (0) #define _FP_UNPACK_RAW_4_P(fs, X, val) \ do { \ union _FP_UNION_##fs *_flo = \ (union _FP_UNION_##fs *)(val); \ \ X##_f[0] = _flo->bits.frac0; \ X##_f[1] = _flo->bits.frac1; \ X##_f[2] = _flo->bits.frac2; \ X##_f[3] = _flo->bits.frac3; \ X##_e = _flo->bits.exp; \ X##_s = _flo->bits.sign; \ } while (0) #define _FP_PACK_RAW_4(fs, val, X) \ do { \ union _FP_UNION_##fs _flo; \ _flo.bits.frac0 = X##_f[0]; \ _flo.bits.frac1 = X##_f[1]; \ _flo.bits.frac2 = X##_f[2]; \ _flo.bits.frac3 = X##_f[3]; \ _flo.bits.exp = X##_e; \ _flo.bits.sign = X##_s; \ (val) = _flo.flt; \ } while (0) #define _FP_PACK_RAW_4_P(fs, val, X) \ do { \ union _FP_UNION_##fs *_flo = \ (union _FP_UNION_##fs *)(val); \ \ _flo->bits.frac0 = X##_f[0]; \ _flo->bits.frac1 = X##_f[1]; \ _flo->bits.frac2 = X##_f[2]; \ _flo->bits.frac3 = X##_f[3]; \ _flo->bits.exp = X##_e; \ _flo->bits.sign = X##_s; \ } while (0) /* * Multiplication algorithms: */ /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ #define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \ do { \ _FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ _FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f); \ \ doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \ doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]); \ doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]); \ doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]); \ doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]); \ doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ _FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0, \ 0,0,_FP_FRAC_WORD_8(_z,1)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ _FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0, \ _FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ _FP_FRAC_WORD_8(_z,1)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ _FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0, \ 0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ _FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0, \ _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ _FP_FRAC_WORD_8(_z,2)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ _FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0, \ _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ _FP_FRAC_WORD_8(_z,2)); \ doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]); \ doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]); \ doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]); \ doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0, \ 0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0, \ _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0, \ _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0, \ _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ _FP_FRAC_WORD_8(_z,3)); \ doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]); \ doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]); \ doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]); \ doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]); \ doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ _FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0, \ 0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ _FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0, \ _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ _FP_FRAC_WORD_8(_z,4)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ _FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0, \ _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ _FP_FRAC_WORD_8(_z,4)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ _FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0, \ 0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5)); \ __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ _FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0, \ _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ _FP_FRAC_WORD_8(_z,5)); \ doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]); \ __FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ _b_f1,_b_f0, \ _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6)); \ \ /* Normalize since we know where the msb of the multiplicands \ were (bit B), we know that the msb of the of the product is \ at either 2B or 2B-1. */ \ _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \ __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \ _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \ } while (0) #define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \ do { \ _FP_FRAC_DECL_8(_z); \ \ mpn_mul_n(_z_f, _x_f, _y_f, 4); \ \ /* Normalize since we know where the msb of the multiplicands \ were (bit B), we know that the msb of the of the product is \ at either 2B or 2B-1. */ \ _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \ __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \ _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \ } while (0) /* * Helper utility for _FP_DIV_MEAT_4_udiv: * pppp = m * nnn */ #define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0) \ do { \ UWtype _t; \ umul_ppmm(p1,p0,m,n0); \ umul_ppmm(p2,_t,m,n1); \ __FP_FRAC_ADDI_2(p2,p1,_t); \ umul_ppmm(p3,_t,m,n2); \ __FP_FRAC_ADDI_2(p3,p2,_t); \ } while (0) /* * Division algorithms: */ #define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \ do { \ int _i; \ _FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m); \ _FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4); \ if (_FP_FRAC_GT_4(X, Y)) \ { \ _n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \ _FP_FRAC_SRL_4(X, 1); \ } \ else \ R##_e--; \ \ /* Normalize, i.e. make the most significant bit of the \ denominator set. */ \ _FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs); \ \ for (_i = 3; ; _i--) \ { \ if (X##_f[3] == Y##_f[3]) \ { \ /* This is a special case, not an optimization \ (X##_f[3]/Y##_f[3] would not fit into UWtype). \ As X## is guaranteed to be < Y, R##_f[_i] can be either \ (UWtype)-1 or (UWtype)-2. */ \ R##_f[_i] = -1; \ if (!_i) \ break; \ __FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ Y##_f[2], Y##_f[1], Y##_f[0], 0, \ X##_f[2], X##_f[1], X##_f[0], _n_f[_i]); \ _FP_FRAC_SUB_4(X, Y, X); \ if (X##_f[3] > Y##_f[3]) \ { \ R##_f[_i] = -2; \ _FP_FRAC_ADD_4(X, Y, X); \ } \ } \ else \ { \ udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \ umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0], \ R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]); \ X##_f[2] = X##_f[1]; \ X##_f[1] = X##_f[0]; \ X##_f[0] = _n_f[_i]; \ if (_FP_FRAC_GT_4(_m, X)) \ { \ R##_f[_i]--; \ _FP_FRAC_ADD_4(X, Y, X); \ if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X)) \ { \ R##_f[_i]--; \ _FP_FRAC_ADD_4(X, Y, X); \ } \ } \ _FP_FRAC_DEC_4(X, _m); \ if (!_i) \ { \ if (!_FP_FRAC_EQ_4(X, _m)) \ R##_f[0] |= _FP_WORK_STICKY; \ break; \ } \ } \ } \ } while (0) /* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. */ #define _FP_SQRT_MEAT_4(R, S, T, X, q) \ do { \ while (q) \ { \ T##_f[3] = S##_f[3] + q; \ if (T##_f[3] <= X##_f[3]) \ { \ S##_f[3] = T##_f[3] + q; \ X##_f[3] -= T##_f[3]; \ R##_f[3] += q; \ } \ _FP_FRAC_SLL_4(X, 1); \ q >>= 1; \ } \ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ while (q) \ { \ T##_f[2] = S##_f[2] + q; \ T##_f[3] = S##_f[3]; \ if (T##_f[3] < X##_f[3] || \ (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \ { \ S##_f[2] = T##_f[2] + q; \ S##_f[3] += (T##_f[2] > S##_f[2]); \ __FP_FRAC_DEC_2(X##_f[3], X##_f[2], \ T##_f[3], T##_f[2]); \ R##_f[2] += q; \ } \ _FP_FRAC_SLL_4(X, 1); \ q >>= 1; \ } \ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ while (q) \ { \ T##_f[1] = S##_f[1] + q; \ T##_f[2] = S##_f[2]; \ T##_f[3] = S##_f[3]; \ if (T##_f[3] < X##_f[3] || \ (T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] || \ (T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1])))) \ { \ S##_f[1] = T##_f[1] + q; \ S##_f[2] += (T##_f[1] > S##_f[1]); \ S##_f[3] += (T##_f[2] > S##_f[2]); \ __FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1], \ T##_f[3], T##_f[2], T##_f[1]); \ R##_f[1] += q; \ } \ _FP_FRAC_SLL_4(X, 1); \ q >>= 1; \ } \ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ while (q != _FP_WORK_ROUND) \ { \ T##_f[0] = S##_f[0] + q; \ T##_f[1] = S##_f[1]; \ T##_f[2] = S##_f[2]; \ T##_f[3] = S##_f[3]; \ if (_FP_FRAC_GE_4(X,T)) \ { \ S##_f[0] = T##_f[0] + q; \ S##_f[1] += (T##_f[0] > S##_f[0]); \ S##_f[2] += (T##_f[1] > S##_f[1]); \ S##_f[3] += (T##_f[2] > S##_f[2]); \ _FP_FRAC_DEC_4(X, T); \ R##_f[0] += q; \ } \ _FP_FRAC_SLL_4(X, 1); \ q >>= 1; \ } \ if (!_FP_FRAC_ZEROP_4(X)) \ { \ if (_FP_FRAC_GT_4(X,S)) \ R##_f[0] |= _FP_WORK_ROUND; \ R##_f[0] |= _FP_WORK_STICKY; \ } \ } while (0) /* * Internals */ #define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \ (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0) #ifndef __FP_FRAC_ADD_3 #define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ do { \ int _c1, _c2; \ r0 = x0 + y0; \ _c1 = r0 < x0; \ r1 = x1 + y1; \ _c2 = r1 < x1; \ r1 += _c1; \ _c2 |= r1 < _c1; \ r2 = x2 + y2 + _c2; \ } while (0) #endif #ifndef __FP_FRAC_ADD_4 #define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ do { \ int _c1, _c2, _c3; \ r0 = x0 + y0; \ _c1 = r0 < x0; \ r1 = x1 + y1; \ _c2 = r1 < x1; \ r1 += _c1; \ _c2 |= r1 < _c1; \ r2 = x2 + y2; \ _c3 = r2 < x2; \ r2 += _c2; \ _c3 |= r2 < _c2; \ r3 = x3 + y3 + _c3; \ } while (0) #endif #ifndef __FP_FRAC_SUB_3 #define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ do { \ int _c1, _c2; \ r0 = x0 - y0; \ _c1 = r0 > x0; \ r1 = x1 - y1; \ _c2 = r1 > x1; \ r1 -= _c1; \ _c2 |= r1 > _c1; \ r2 = x2 - y2 - _c2; \ } while (0) #endif #ifndef __FP_FRAC_SUB_4 #define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ do { \ int _c1, _c2, _c3; \ r0 = x0 - y0; \ _c1 = r0 > x0; \ r1 = x1 - y1; \ _c2 = r1 > x1; \ r1 -= _c1; \ _c2 |= r1 > _c1; \ r2 = x2 - y2; \ _c3 = r2 > x2; \ r2 -= _c2; \ _c3 |= r2 > _c2; \ r3 = x3 - y3 - _c3; \ } while (0) #endif #ifndef __FP_FRAC_DEC_3 #define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) \ do { \ UWtype _t0, _t1, _t2; \ _t0 = x0, _t1 = x1, _t2 = x2; \ __FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0); \ } while (0) #endif #ifndef __FP_FRAC_DEC_4 #define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) \ do { \ UWtype _t0, _t1, _t2, _t3; \ _t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3; \ __FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0); \ } while (0) #endif #ifndef __FP_FRAC_ADDI_4 #define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ do { \ UWtype _t; \ _t = ((x0 += i) < i); \ x1 += _t; _t = (x1 < _t); \ x2 += _t; _t = (x2 < _t); \ x3 += _t; \ } while (0) #endif /* Convert FP values between word sizes. This appears to be more * complicated than I'd have expected it to be, so these might be * wrong... These macros are in any case somewhat bogus because they * use information about what various FRAC_n variables look like * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do * the ones in op-2.h and op-1.h. */ #define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \ do { \ if (S##_c != FP_CLS_NAN) \ _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ _FP_WFRACBITS_##sfs); \ else \ _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ D##_f = S##_f[0]; \ } while (0) #define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \ do { \ if (S##_c != FP_CLS_NAN) \ _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ _FP_WFRACBITS_##sfs); \ else \ _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ D##_f0 = S##_f[0]; \ D##_f1 = S##_f[1]; \ } while (0) /* Assembly/disassembly for converting to/from integral types. * No shifting or overflow handled here. */ /* Put the FP value X into r, which is an integer of size rsize. */ #define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \ do { \ if (rsize <= _FP_W_TYPE_SIZE) \ r = X##_f[0]; \ else if (rsize <= 2*_FP_W_TYPE_SIZE) \ { \ r = X##_f[1]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[0]; \ } \ else \ { \ /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \ /* and int == 4words as a single case. */ \ r = X##_f[3]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[2]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[1]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[0]; \ } \ } while (0) /* "No disassemble Number Five!" */ /* move an integer of size rsize into X's fractional part. We rely on * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid * having to mask the values we store into it. */ #define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \ do { \ X##_f[0] = r; \ X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \ X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \ } while (0) #define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \ do { \ D##_f[0] = S##_f; \ D##_f[1] = D##_f[2] = D##_f[3] = 0; \ _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ } while (0) #define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \ do { \ D##_f[0] = S##_f0; \ D##_f[1] = S##_f1; \ D##_f[2] = D##_f[3] = 0; \ _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ } while (0) #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1