Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Watson | 984 | 48.33% | 5 | 20.00% |
Ilya Lesokhin | 359 | 17.63% | 3 | 12.00% |
Boris Pismenny | 343 | 16.85% | 5 | 20.00% |
Vakul Garg | 175 | 8.60% | 5 | 20.00% |
Atul Gupta | 125 | 6.14% | 2 | 8.00% |
Daniel Borkmann | 18 | 0.88% | 1 | 4.00% |
Sabrina Dubroca | 15 | 0.74% | 1 | 4.00% |
Dmitry V. Levin | 12 | 0.59% | 1 | 4.00% |
John Fastabend | 4 | 0.20% | 1 | 4.00% |
Linus Torvalds | 1 | 0.05% | 1 | 4.00% |
Total | 2036 | 25 |
/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TLS_OFFLOAD_H #define _TLS_OFFLOAD_H #include <linux/types.h> #include <asm/byteorder.h> #include <linux/crypto.h> #include <linux/socket.h> #include <linux/tcp.h> #include <linux/skmsg.h> #include <net/tcp.h> #include <net/strparser.h> #include <crypto/aead.h> #include <uapi/linux/tls.h> /* Maximum data size carried in a TLS record */ #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) #define TLS_HEADER_SIZE 5 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) #define TLS_RECORD_TYPE_DATA 0x17 #define TLS_AAD_SPACE_SIZE 13 #define TLS_DEVICE_NAME_MAX 32 /* * This structure defines the routines for Inline TLS driver. * The following routines are optional and filled with a * null pointer if not defined. * * @name: Its the name of registered Inline tls device * @dev_list: Inline tls device list * int (*feature)(struct tls_device *device); * Called to return Inline TLS driver capability * * int (*hash)(struct tls_device *device, struct sock *sk); * This function sets Inline driver for listen and program * device specific functioanlity as required * * void (*unhash)(struct tls_device *device, struct sock *sk); * This function cleans listen state set by Inline TLS driver * * void (*release)(struct kref *kref); * Release the registered device and allocated resources * @kref: Number of reference to tls_device */ struct tls_device { char name[TLS_DEVICE_NAME_MAX]; struct list_head dev_list; int (*feature)(struct tls_device *device); int (*hash)(struct tls_device *device, struct sock *sk); void (*unhash)(struct tls_device *device, struct sock *sk); void (*release)(struct kref *kref); struct kref kref; }; enum { TLS_BASE, TLS_SW, #ifdef CONFIG_TLS_DEVICE TLS_HW, #endif TLS_HW_RECORD, TLS_NUM_CONFIG, }; /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages * allocated or mapped for each TLS record. After encryption, the records are * stores in a linked list. */ struct tls_rec { struct list_head list; int tx_ready; int tx_flags; int inplace_crypto; struct sk_msg msg_plaintext; struct sk_msg msg_encrypted; /* AAD | msg_plaintext.sg.data | sg_tag */ struct scatterlist sg_aead_in[2]; /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ struct scatterlist sg_aead_out[2]; char aad_space[TLS_AAD_SPACE_SIZE]; struct aead_request aead_req; u8 aead_req_ctx[]; }; struct tx_work { struct delayed_work work; struct sock *sk; }; struct tls_sw_context_tx { struct crypto_aead *aead_send; struct crypto_wait async_wait; struct tx_work tx_work; struct tls_rec *open_rec; struct list_head tx_list; atomic_t encrypt_pending; int async_notify; #define BIT_TX_SCHEDULED 0 unsigned long tx_bitmask; }; struct tls_sw_context_rx { struct crypto_aead *aead_recv; struct crypto_wait async_wait; struct strparser strp; void (*saved_data_ready)(struct sock *sk); struct sk_buff *recv_pkt; u8 control; bool decrypted; atomic_t decrypt_pending; bool async_notify; }; struct tls_record_info { struct list_head list; u32 end_seq; int len; int num_frags; skb_frag_t frags[MAX_SKB_FRAGS]; }; struct tls_offload_context_tx { struct crypto_aead *aead_send; spinlock_t lock; /* protects records list */ struct list_head records_list; struct tls_record_info *open_record; struct tls_record_info *retransmit_hint; u64 hint_record_sn; u64 unacked_record_sn; struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; void (*sk_destruct)(struct sock *sk); u8 driver_state[]; /* The TLS layer reserves room for driver specific state * Currently the belief is that there is not enough * driver specific state to justify another layer of indirection */ #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *))) }; #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \ TLS_DRIVER_STATE_SIZE) enum { TLS_PENDING_CLOSED_RECORD }; struct cipher_context { u16 prepend_size; u16 tag_size; u16 overhead_size; u16 iv_size; char *iv; u16 rec_seq_size; char *rec_seq; }; union tls_crypto_context { struct tls_crypto_info info; struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; }; struct tls_context { union tls_crypto_context crypto_send; union tls_crypto_context crypto_recv; struct list_head list; struct net_device *netdev; refcount_t refcount; void *priv_ctx_tx; void *priv_ctx_rx; u8 tx_conf:3; u8 rx_conf:3; struct cipher_context tx; struct cipher_context rx; struct scatterlist *partially_sent_record; u16 partially_sent_offset; unsigned long flags; bool in_tcp_sendpages; bool pending_open_record_frags; int (*push_pending_record)(struct sock *sk, int flags); void (*sk_write_space)(struct sock *sk); void (*sk_destruct)(struct sock *sk); void (*sk_proto_close)(struct sock *sk, long timeout); int (*setsockopt)(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); }; struct tls_offload_context_rx { /* sw must be the first member of tls_offload_context_rx */ struct tls_sw_context_rx sw; atomic64_t resync_req; u8 driver_state[]; /* The TLS layer reserves room for driver specific state * Currently the belief is that there is not enough * driver specific state to justify another layer of indirection */ }; #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \ TLS_DRIVER_STATE_SIZE) int wait_on_pending_writer(struct sock *sk, long *timeo); int tls_sk_query(struct sock *sk, int optname, char __user *optval, int __user *optlen); int tls_sk_attach(struct sock *sk, int optname, char __user *optval, unsigned int optlen); int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tls_sw_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); void tls_sw_close(struct sock *sk, long timeout); void tls_sw_free_resources_tx(struct sock *sk); void tls_sw_free_resources_rx(struct sock *sk); void tls_sw_release_resources_rx(struct sock *sk); int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len); bool tls_sw_stream_read(const struct sock *sk); ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tls_device_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); void tls_device_sk_destruct(struct sock *sk); void tls_device_init(void); void tls_device_cleanup(void); int tls_tx_records(struct sock *sk, int flags); struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, u32 seq, u64 *p_record_sn); static inline bool tls_record_is_start_marker(struct tls_record_info *rec) { return rec->len == 0; } static inline u32 tls_record_start_seq(struct tls_record_info *rec) { return rec->end_seq - rec->len; } void tls_sk_destruct(struct sock *sk, struct tls_context *ctx); int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags); int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags); int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, int flags, long *timeo); static inline bool tls_is_pending_closed_record(struct tls_context *ctx) { return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); } static inline int tls_complete_pending_work(struct sock *sk, struct tls_context *ctx, int flags, long *timeo) { int rc = 0; if (unlikely(sk->sk_write_pending)) rc = wait_on_pending_writer(sk, timeo); if (!rc && tls_is_pending_closed_record(ctx)) rc = tls_push_pending_closed_record(sk, ctx, flags, timeo); return rc; } static inline bool tls_is_partially_sent_record(struct tls_context *ctx) { return !!ctx->partially_sent_record; } static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) { return tls_ctx->pending_open_record_frags; } static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) { struct tls_rec *rec; rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (!rec) return false; return READ_ONCE(rec->tx_ready); } struct sk_buff * tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb); static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) { #ifdef CONFIG_SOCK_VALIDATE_XMIT return sk_fullsock(sk) & (smp_load_acquire(&sk->sk_validate_xmit_skb) == &tls_validate_xmit_skb); #else return false; #endif } static inline void tls_err_abort(struct sock *sk, int err) { sk->sk_err = err; sk->sk_error_report(sk); } static inline bool tls_bigint_increment(unsigned char *seq, int len) { int i; for (i = len - 1; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } return (i == -1); } static inline void tls_advance_record_sn(struct sock *sk, struct cipher_context *ctx) { if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size)) tls_err_abort(sk, EBADMSG); tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, ctx->iv_size); } static inline void tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, unsigned char record_type) { size_t pkt_len, iv_size = ctx->tx.iv_size; pkt_len = plaintext_len + iv_size + ctx->tx.tag_size; /* we cover nonce explicit here as well, so buf should be of * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE */ buf[0] = record_type; buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version); buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version); /* we can use IV for nonce explicit according to spec */ buf[3] = pkt_len >> 8; buf[4] = pkt_len & 0xFF; memcpy(buf + TLS_NONCE_OFFSET, ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); } static inline void tls_make_aad(char *buf, size_t size, char *record_sequence, int record_sequence_size, unsigned char record_type) { memcpy(buf, record_sequence, record_sequence_size); buf[8] = record_type; buf[9] = TLS_1_2_VERSION_MAJOR; buf[10] = TLS_1_2_VERSION_MINOR; buf[11] = size >> 8; buf[12] = size & 0xFF; } static inline struct tls_context *tls_get_ctx(const struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); return icsk->icsk_ulp_data; } static inline struct tls_sw_context_rx *tls_sw_ctx_rx( const struct tls_context *tls_ctx) { return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; } static inline struct tls_sw_context_tx *tls_sw_ctx_tx( const struct tls_context *tls_ctx) { return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; } static inline struct tls_offload_context_tx * tls_offload_ctx_tx(const struct tls_context *tls_ctx) { return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; } static inline struct tls_offload_context_rx * tls_offload_ctx_rx(const struct tls_context *tls_ctx) { return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; } /* The TLS context is valid until sk_destruct is called */ static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1)); } int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type); void tls_register_device(struct tls_device *device); void tls_unregister_device(struct tls_device *device); int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); int decrypt_skb(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgout); struct sk_buff *tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb); int tls_sw_fallback_init(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct tls_crypto_info *crypto_info); int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); void tls_device_offload_cleanup_rx(struct sock *sk); void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn); #endif /* _TLS_OFFLOAD_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1