Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kees Cook | 1342 | 27.94% | 23 | 28.75% |
Tyler Hicks | 1282 | 26.69% | 9 | 11.25% |
Will Drewry | 747 | 15.55% | 5 | 6.25% |
Tycho Andersen | 563 | 11.72% | 5 | 6.25% |
Daniel Borkmann | 247 | 5.14% | 4 | 5.00% |
Andrew Lutomirski | 231 | 4.81% | 4 | 5.00% |
Alexei Starovoitov | 109 | 2.27% | 4 | 5.00% |
Andrea Arcangeli | 96 | 2.00% | 3 | 3.75% |
Mike Frysinger | 67 | 1.39% | 1 | 1.25% |
Oleg Nesterov | 46 | 0.96% | 1 | 1.25% |
Nicolas Schichan | 15 | 0.31% | 2 | 2.50% |
Jann Horn | 12 | 0.25% | 1 | 1.25% |
Pranith Kumar | 10 | 0.21% | 1 | 1.25% |
Eric Paris | 5 | 0.10% | 2 | 2.50% |
Guenter Roeck | 5 | 0.10% | 1 | 1.25% |
Matt Redfearn | 4 | 0.08% | 2 | 2.50% |
Eric W. Biedermann | 4 | 0.08% | 2 | 2.50% |
Thomas Gleixner | 4 | 0.08% | 1 | 1.25% |
Ingo Molnar | 3 | 0.06% | 1 | 1.25% |
Masahiro Yamada | 3 | 0.06% | 1 | 1.25% |
Roland McGrath | 2 | 0.04% | 1 | 1.25% |
Fabian Frederick | 1 | 0.02% | 1 | 1.25% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 1.25% |
Rashika Kheria | 1 | 0.02% | 1 | 1.25% |
Mickaël Salaün | 1 | 0.02% | 1 | 1.25% |
Will Deacon | 1 | 0.02% | 1 | 1.25% |
Colin Ian King | 1 | 0.02% | 1 | 1.25% |
Total | 4803 | 80 |
// SPDX-License-Identifier: GPL-2.0 /* * linux/kernel/seccomp.c * * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> * * Copyright (C) 2012 Google, Inc. * Will Drewry <wad@chromium.org> * * This defines a simple but solid secure-computing facility. * * Mode 1 uses a fixed list of allowed system calls. * Mode 2 allows user-defined system call filters in the form * of Berkeley Packet Filters/Linux Socket Filters. */ #include <linux/refcount.h> #include <linux/audit.h> #include <linux/compat.h> #include <linux/coredump.h> #include <linux/kmemleak.h> #include <linux/nospec.h> #include <linux/prctl.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/seccomp.h> #include <linux/slab.h> #include <linux/syscalls.h> #include <linux/sysctl.h> #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER #include <asm/syscall.h> #endif #ifdef CONFIG_SECCOMP_FILTER #include <linux/filter.h> #include <linux/pid.h> #include <linux/ptrace.h> #include <linux/security.h> #include <linux/tracehook.h> #include <linux/uaccess.h> /** * struct seccomp_filter - container for seccomp BPF programs * * @usage: reference count to manage the object lifetime. * get/put helpers should be used when accessing an instance * outside of a lifetime-guarded section. In general, this * is only needed for handling filters shared across tasks. * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged * @prev: points to a previously installed, or inherited, filter * @prog: the BPF program to evaluate * * seccomp_filter objects are organized in a tree linked via the @prev * pointer. For any task, it appears to be a singly-linked list starting * with current->seccomp.filter, the most recently attached or inherited filter. * However, multiple filters may share a @prev node, by way of fork(), which * results in a unidirectional tree existing in memory. This is similar to * how namespaces work. * * seccomp_filter objects should never be modified after being attached * to a task_struct (other than @usage). */ struct seccomp_filter { refcount_t usage; bool log; struct seccomp_filter *prev; struct bpf_prog *prog; }; /* Limit any path through the tree to 256KB worth of instructions. */ #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) /* * Endianness is explicitly ignored and left for BPF program authors to manage * as per the specific architecture. */ static void populate_seccomp_data(struct seccomp_data *sd) { struct task_struct *task = current; struct pt_regs *regs = task_pt_regs(task); unsigned long args[6]; sd->nr = syscall_get_nr(task, regs); sd->arch = syscall_get_arch(); syscall_get_arguments(task, regs, 0, 6, args); sd->args[0] = args[0]; sd->args[1] = args[1]; sd->args[2] = args[2]; sd->args[3] = args[3]; sd->args[4] = args[4]; sd->args[5] = args[5]; sd->instruction_pointer = KSTK_EIP(task); } /** * seccomp_check_filter - verify seccomp filter code * @filter: filter to verify * @flen: length of filter * * Takes a previously checked filter (by bpf_check_classic) and * redirects all filter code that loads struct sk_buff data * and related data through seccomp_bpf_load. It also * enforces length and alignment checking of those loads. * * Returns 0 if the rule set is legal or -EINVAL if not. */ static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) { int pc; for (pc = 0; pc < flen; pc++) { struct sock_filter *ftest = &filter[pc]; u16 code = ftest->code; u32 k = ftest->k; switch (code) { case BPF_LD | BPF_W | BPF_ABS: ftest->code = BPF_LDX | BPF_W | BPF_ABS; /* 32-bit aligned and not out of bounds. */ if (k >= sizeof(struct seccomp_data) || k & 3) return -EINVAL; continue; case BPF_LD | BPF_W | BPF_LEN: ftest->code = BPF_LD | BPF_IMM; ftest->k = sizeof(struct seccomp_data); continue; case BPF_LDX | BPF_W | BPF_LEN: ftest->code = BPF_LDX | BPF_IMM; ftest->k = sizeof(struct seccomp_data); continue; /* Explicitly include allowed calls. */ case BPF_RET | BPF_K: case BPF_RET | BPF_A: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_NEG: case BPF_LD | BPF_IMM: case BPF_LDX | BPF_IMM: case BPF_MISC | BPF_TAX: case BPF_MISC | BPF_TXA: case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: case BPF_ST: case BPF_STX: case BPF_JMP | BPF_JA: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: continue; default: return -EINVAL; } } return 0; } /** * seccomp_run_filters - evaluates all seccomp filters against @sd * @sd: optional seccomp data to be passed to filters * @match: stores struct seccomp_filter that resulted in the return value, * unless filter returned SECCOMP_RET_ALLOW, in which case it will * be unchanged. * * Returns valid seccomp BPF response codes. */ #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) static u32 seccomp_run_filters(const struct seccomp_data *sd, struct seccomp_filter **match) { struct seccomp_data sd_local; u32 ret = SECCOMP_RET_ALLOW; /* Make sure cross-thread synced filter points somewhere sane. */ struct seccomp_filter *f = READ_ONCE(current->seccomp.filter); /* Ensure unexpected behavior doesn't result in failing open. */ if (WARN_ON(f == NULL)) return SECCOMP_RET_KILL_PROCESS; if (!sd) { populate_seccomp_data(&sd_local); sd = &sd_local; } /* * All filters in the list are evaluated and the lowest BPF return * value always takes priority (ignoring the DATA). */ for (; f; f = f->prev) { u32 cur_ret = BPF_PROG_RUN(f->prog, sd); if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { ret = cur_ret; *match = f; } } return ret; } #endif /* CONFIG_SECCOMP_FILTER */ static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) { assert_spin_locked(¤t->sighand->siglock); if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) return false; return true; } void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } static inline void seccomp_assign_mode(struct task_struct *task, unsigned long seccomp_mode, unsigned long flags) { assert_spin_locked(&task->sighand->siglock); task->seccomp.mode = seccomp_mode; /* * Make sure TIF_SECCOMP cannot be set before the mode (and * filter) is set. */ smp_mb__before_atomic(); /* Assume default seccomp processes want spec flaw mitigation. */ if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) arch_seccomp_spec_mitigate(task); set_tsk_thread_flag(task, TIF_SECCOMP); } #ifdef CONFIG_SECCOMP_FILTER /* Returns 1 if the parent is an ancestor of the child. */ static int is_ancestor(struct seccomp_filter *parent, struct seccomp_filter *child) { /* NULL is the root ancestor. */ if (parent == NULL) return 1; for (; child; child = child->prev) if (child == parent) return 1; return 0; } /** * seccomp_can_sync_threads: checks if all threads can be synchronized * * Expects sighand and cred_guard_mutex locks to be held. * * Returns 0 on success, -ve on error, or the pid of a thread which was * either not in the correct seccomp mode or it did not have an ancestral * seccomp filter. */ static inline pid_t seccomp_can_sync_threads(void) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); /* Validate all threads being eligible for synchronization. */ caller = current; for_each_thread(caller, thread) { pid_t failed; /* Skip current, since it is initiating the sync. */ if (thread == caller) continue; if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || (thread->seccomp.mode == SECCOMP_MODE_FILTER && is_ancestor(thread->seccomp.filter, caller->seccomp.filter))) continue; /* Return the first thread that cannot be synchronized. */ failed = task_pid_vnr(thread); /* If the pid cannot be resolved, then return -ESRCH */ if (WARN_ON(failed == 0)) failed = -ESRCH; return failed; } return 0; } /** * seccomp_sync_threads: sets all threads to use current's filter * * Expects sighand and cred_guard_mutex locks to be held, and for * seccomp_can_sync_threads() to have returned success already * without dropping the locks. * */ static inline void seccomp_sync_threads(unsigned long flags) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); /* Synchronize all threads. */ caller = current; for_each_thread(caller, thread) { /* Skip current, since it needs no changes. */ if (thread == caller) continue; /* Get a task reference for the new leaf node. */ get_seccomp_filter(caller); /* * Drop the task reference to the shared ancestor since * current's path will hold a reference. (This also * allows a put before the assignment.) */ put_seccomp_filter(thread); smp_store_release(&thread->seccomp.filter, caller->seccomp.filter); /* * Don't let an unprivileged task work around * the no_new_privs restriction by creating * a thread that sets it up, enters seccomp, * then dies. */ if (task_no_new_privs(caller)) task_set_no_new_privs(thread); /* * Opt the other thread into seccomp if needed. * As threads are considered to be trust-realm * equivalent (see ptrace_may_access), it is safe to * allow one thread to transition the other. */ if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, flags); } } /** * seccomp_prepare_filter: Prepares a seccomp filter for use. * @fprog: BPF program to install * * Returns filter on success or an ERR_PTR on failure. */ static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) { struct seccomp_filter *sfilter; int ret; const bool save_orig = IS_ENABLED(CONFIG_CHECKPOINT_RESTORE); if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) return ERR_PTR(-EINVAL); BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); /* * Installing a seccomp filter requires that the task has * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. * This avoids scenarios where unprivileged tasks can affect the * behavior of privileged children. */ if (!task_no_new_privs(current) && security_capable_noaudit(current_cred(), current_user_ns(), CAP_SYS_ADMIN) != 0) return ERR_PTR(-EACCES); /* Allocate a new seccomp_filter */ sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); if (!sfilter) return ERR_PTR(-ENOMEM); ret = bpf_prog_create_from_user(&sfilter->prog, fprog, seccomp_check_filter, save_orig); if (ret < 0) { kfree(sfilter); return ERR_PTR(ret); } refcount_set(&sfilter->usage, 1); return sfilter; } /** * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog * @user_filter: pointer to the user data containing a sock_fprog. * * Returns 0 on success and non-zero otherwise. */ static struct seccomp_filter * seccomp_prepare_user_filter(const char __user *user_filter) { struct sock_fprog fprog; struct seccomp_filter *filter = ERR_PTR(-EFAULT); #ifdef CONFIG_COMPAT if (in_compat_syscall()) { struct compat_sock_fprog fprog32; if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) goto out; fprog.len = fprog32.len; fprog.filter = compat_ptr(fprog32.filter); } else /* falls through to the if below. */ #endif if (copy_from_user(&fprog, user_filter, sizeof(fprog))) goto out; filter = seccomp_prepare_filter(&fprog); out: return filter; } /** * seccomp_attach_filter: validate and attach filter * @flags: flags to change filter behavior * @filter: seccomp filter to add to the current process * * Caller must be holding current->sighand->siglock lock. * * Returns 0 on success, -ve on error. */ static long seccomp_attach_filter(unsigned int flags, struct seccomp_filter *filter) { unsigned long total_insns; struct seccomp_filter *walker; assert_spin_locked(¤t->sighand->siglock); /* Validate resulting filter length. */ total_insns = filter->prog->len; for (walker = current->seccomp.filter; walker; walker = walker->prev) total_insns += walker->prog->len + 4; /* 4 instr penalty */ if (total_insns > MAX_INSNS_PER_PATH) return -ENOMEM; /* If thread sync has been requested, check that it is possible. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC) { int ret; ret = seccomp_can_sync_threads(); if (ret) return ret; } /* Set log flag, if present. */ if (flags & SECCOMP_FILTER_FLAG_LOG) filter->log = true; /* * If there is an existing filter, make it the prev and don't drop its * task reference. */ filter->prev = current->seccomp.filter; current->seccomp.filter = filter; /* Now that the new filter is in place, synchronize to all threads. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC) seccomp_sync_threads(flags); return 0; } static void __get_seccomp_filter(struct seccomp_filter *filter) { /* Reference count is bounded by the number of total processes. */ refcount_inc(&filter->usage); } /* get_seccomp_filter - increments the reference count of the filter on @tsk */ void get_seccomp_filter(struct task_struct *tsk) { struct seccomp_filter *orig = tsk->seccomp.filter; if (!orig) return; __get_seccomp_filter(orig); } static inline void seccomp_filter_free(struct seccomp_filter *filter) { if (filter) { bpf_prog_destroy(filter->prog); kfree(filter); } } static void __put_seccomp_filter(struct seccomp_filter *orig) { /* Clean up single-reference branches iteratively. */ while (orig && refcount_dec_and_test(&orig->usage)) { struct seccomp_filter *freeme = orig; orig = orig->prev; seccomp_filter_free(freeme); } } /* put_seccomp_filter - decrements the ref count of tsk->seccomp.filter */ void put_seccomp_filter(struct task_struct *tsk) { __put_seccomp_filter(tsk->seccomp.filter); } static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) { clear_siginfo(info); info->si_signo = SIGSYS; info->si_code = SYS_SECCOMP; info->si_call_addr = (void __user *)KSTK_EIP(current); info->si_errno = reason; info->si_arch = syscall_get_arch(); info->si_syscall = syscall; } /** * seccomp_send_sigsys - signals the task to allow in-process syscall emulation * @syscall: syscall number to send to userland * @reason: filter-supplied reason code to send to userland (via si_errno) * * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. */ static void seccomp_send_sigsys(int syscall, int reason) { struct kernel_siginfo info; seccomp_init_siginfo(&info, syscall, reason); force_sig_info(SIGSYS, &info, current); } #endif /* CONFIG_SECCOMP_FILTER */ /* For use with seccomp_actions_logged */ #define SECCOMP_LOG_KILL_PROCESS (1 << 0) #define SECCOMP_LOG_KILL_THREAD (1 << 1) #define SECCOMP_LOG_TRAP (1 << 2) #define SECCOMP_LOG_ERRNO (1 << 3) #define SECCOMP_LOG_TRACE (1 << 4) #define SECCOMP_LOG_LOG (1 << 5) #define SECCOMP_LOG_ALLOW (1 << 6) static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | SECCOMP_LOG_KILL_THREAD | SECCOMP_LOG_TRAP | SECCOMP_LOG_ERRNO | SECCOMP_LOG_TRACE | SECCOMP_LOG_LOG; static inline void seccomp_log(unsigned long syscall, long signr, u32 action, bool requested) { bool log = false; switch (action) { case SECCOMP_RET_ALLOW: break; case SECCOMP_RET_TRAP: log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; break; case SECCOMP_RET_ERRNO: log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; break; case SECCOMP_RET_TRACE: log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; break; case SECCOMP_RET_LOG: log = seccomp_actions_logged & SECCOMP_LOG_LOG; break; case SECCOMP_RET_KILL_THREAD: log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; break; case SECCOMP_RET_KILL_PROCESS: default: log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; } /* * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the * FILTER_FLAG_LOG bit was set. The admin has the ability to silence * any action from being logged by removing the action name from the * seccomp_actions_logged sysctl. */ if (!log) return; audit_seccomp(syscall, signr, action); } /* * Secure computing mode 1 allows only read/write/exit/sigreturn. * To be fully secure this must be combined with rlimit * to limit the stack allocations too. */ static const int mode1_syscalls[] = { __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 0, /* null terminated */ }; static void __secure_computing_strict(int this_syscall) { const int *syscall_whitelist = mode1_syscalls; #ifdef CONFIG_COMPAT if (in_compat_syscall()) syscall_whitelist = get_compat_mode1_syscalls(); #endif do { if (*syscall_whitelist == this_syscall) return; } while (*++syscall_whitelist); #ifdef SECCOMP_DEBUG dump_stack(); #endif seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); do_exit(SIGKILL); } #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER void secure_computing_strict(int this_syscall) { int mode = current->seccomp.mode; if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) return; if (mode == SECCOMP_MODE_DISABLED) return; else if (mode == SECCOMP_MODE_STRICT) __secure_computing_strict(this_syscall); else BUG(); } #else #ifdef CONFIG_SECCOMP_FILTER static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, const bool recheck_after_trace) { u32 filter_ret, action; struct seccomp_filter *match = NULL; int data; /* * Make sure that any changes to mode from another thread have * been seen after TIF_SECCOMP was seen. */ rmb(); filter_ret = seccomp_run_filters(sd, &match); data = filter_ret & SECCOMP_RET_DATA; action = filter_ret & SECCOMP_RET_ACTION_FULL; switch (action) { case SECCOMP_RET_ERRNO: /* Set low-order bits as an errno, capped at MAX_ERRNO. */ if (data > MAX_ERRNO) data = MAX_ERRNO; syscall_set_return_value(current, task_pt_regs(current), -data, 0); goto skip; case SECCOMP_RET_TRAP: /* Show the handler the original registers. */ syscall_rollback(current, task_pt_regs(current)); /* Let the filter pass back 16 bits of data. */ seccomp_send_sigsys(this_syscall, data); goto skip; case SECCOMP_RET_TRACE: /* We've been put in this state by the ptracer already. */ if (recheck_after_trace) return 0; /* ENOSYS these calls if there is no tracer attached. */ if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { syscall_set_return_value(current, task_pt_regs(current), -ENOSYS, 0); goto skip; } /* Allow the BPF to provide the event message */ ptrace_event(PTRACE_EVENT_SECCOMP, data); /* * The delivery of a fatal signal during event * notification may silently skip tracer notification, * which could leave us with a potentially unmodified * syscall that the tracer would have liked to have * changed. Since the process is about to die, we just * force the syscall to be skipped and let the signal * kill the process and correctly handle any tracer exit * notifications. */ if (fatal_signal_pending(current)) goto skip; /* Check if the tracer forced the syscall to be skipped. */ this_syscall = syscall_get_nr(current, task_pt_regs(current)); if (this_syscall < 0) goto skip; /* * Recheck the syscall, since it may have changed. This * intentionally uses a NULL struct seccomp_data to force * a reload of all registers. This does not goto skip since * a skip would have already been reported. */ if (__seccomp_filter(this_syscall, NULL, true)) return -1; return 0; case SECCOMP_RET_LOG: seccomp_log(this_syscall, 0, action, true); return 0; case SECCOMP_RET_ALLOW: /* * Note that the "match" filter will always be NULL for * this action since SECCOMP_RET_ALLOW is the starting * state in seccomp_run_filters(). */ return 0; case SECCOMP_RET_KILL_THREAD: case SECCOMP_RET_KILL_PROCESS: default: seccomp_log(this_syscall, SIGSYS, action, true); /* Dump core only if this is the last remaining thread. */ if (action == SECCOMP_RET_KILL_PROCESS || get_nr_threads(current) == 1) { kernel_siginfo_t info; /* Show the original registers in the dump. */ syscall_rollback(current, task_pt_regs(current)); /* Trigger a manual coredump since do_exit skips it. */ seccomp_init_siginfo(&info, this_syscall, data); do_coredump(&info); } if (action == SECCOMP_RET_KILL_PROCESS) do_group_exit(SIGSYS); else do_exit(SIGSYS); } unreachable(); skip: seccomp_log(this_syscall, 0, action, match ? match->log : false); return -1; } #else static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, const bool recheck_after_trace) { BUG(); } #endif int __secure_computing(const struct seccomp_data *sd) { int mode = current->seccomp.mode; int this_syscall; if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) return 0; this_syscall = sd ? sd->nr : syscall_get_nr(current, task_pt_regs(current)); switch (mode) { case SECCOMP_MODE_STRICT: __secure_computing_strict(this_syscall); /* may call do_exit */ return 0; case SECCOMP_MODE_FILTER: return __seccomp_filter(this_syscall, sd, false); default: BUG(); } } #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ long prctl_get_seccomp(void) { return current->seccomp.mode; } /** * seccomp_set_mode_strict: internal function for setting strict seccomp * * Once current->seccomp.mode is non-zero, it may not be changed. * * Returns 0 on success or -EINVAL on failure. */ static long seccomp_set_mode_strict(void) { const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; long ret = -EINVAL; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; #ifdef TIF_NOTSC disable_TSC(); #endif seccomp_assign_mode(current, seccomp_mode, 0); ret = 0; out: spin_unlock_irq(¤t->sighand->siglock); return ret; } #ifdef CONFIG_SECCOMP_FILTER /** * seccomp_set_mode_filter: internal function for setting seccomp filter * @flags: flags to change filter behavior * @filter: struct sock_fprog containing filter * * This function may be called repeatedly to install additional filters. * Every filter successfully installed will be evaluated (in reverse order) * for each system call the task makes. * * Once current->seccomp.mode is non-zero, it may not be changed. * * Returns 0 on success or -EINVAL on failure. */ static long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; struct seccomp_filter *prepared = NULL; long ret = -EINVAL; /* Validate flags. */ if (flags & ~SECCOMP_FILTER_FLAG_MASK) return -EINVAL; /* Prepare the new filter before holding any locks. */ prepared = seccomp_prepare_user_filter(filter); if (IS_ERR(prepared)) return PTR_ERR(prepared); /* * Make sure we cannot change seccomp or nnp state via TSYNC * while another thread is in the middle of calling exec. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC && mutex_lock_killable(¤t->signal->cred_guard_mutex)) goto out_free; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; ret = seccomp_attach_filter(flags, prepared); if (ret) goto out; /* Do not free the successfully attached filter. */ prepared = NULL; seccomp_assign_mode(current, seccomp_mode, flags); out: spin_unlock_irq(¤t->sighand->siglock); if (flags & SECCOMP_FILTER_FLAG_TSYNC) mutex_unlock(¤t->signal->cred_guard_mutex); out_free: seccomp_filter_free(prepared); return ret; } #else static inline long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { return -EINVAL; } #endif static long seccomp_get_action_avail(const char __user *uaction) { u32 action; if (copy_from_user(&action, uaction, sizeof(action))) return -EFAULT; switch (action) { case SECCOMP_RET_KILL_PROCESS: case SECCOMP_RET_KILL_THREAD: case SECCOMP_RET_TRAP: case SECCOMP_RET_ERRNO: case SECCOMP_RET_TRACE: case SECCOMP_RET_LOG: case SECCOMP_RET_ALLOW: break; default: return -EOPNOTSUPP; } return 0; } /* Common entry point for both prctl and syscall. */ static long do_seccomp(unsigned int op, unsigned int flags, const char __user *uargs) { switch (op) { case SECCOMP_SET_MODE_STRICT: if (flags != 0 || uargs != NULL) return -EINVAL; return seccomp_set_mode_strict(); case SECCOMP_SET_MODE_FILTER: return seccomp_set_mode_filter(flags, uargs); case SECCOMP_GET_ACTION_AVAIL: if (flags != 0) return -EINVAL; return seccomp_get_action_avail(uargs); default: return -EINVAL; } } SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, const char __user *, uargs) { return do_seccomp(op, flags, uargs); } /** * prctl_set_seccomp: configures current->seccomp.mode * @seccomp_mode: requested mode to use * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER * * Returns 0 on success or -EINVAL on failure. */ long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter) { unsigned int op; char __user *uargs; switch (seccomp_mode) { case SECCOMP_MODE_STRICT: op = SECCOMP_SET_MODE_STRICT; /* * Setting strict mode through prctl always ignored filter, * so make sure it is always NULL here to pass the internal * check in do_seccomp(). */ uargs = NULL; break; case SECCOMP_MODE_FILTER: op = SECCOMP_SET_MODE_FILTER; uargs = filter; break; default: return -EINVAL; } /* prctl interface doesn't have flags, so they are always zero. */ return do_seccomp(op, 0, uargs); } #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) static struct seccomp_filter *get_nth_filter(struct task_struct *task, unsigned long filter_off) { struct seccomp_filter *orig, *filter; unsigned long count; /* * Note: this is only correct because the caller should be the (ptrace) * tracer of the task, otherwise lock_task_sighand is needed. */ spin_lock_irq(&task->sighand->siglock); if (task->seccomp.mode != SECCOMP_MODE_FILTER) { spin_unlock_irq(&task->sighand->siglock); return ERR_PTR(-EINVAL); } orig = task->seccomp.filter; __get_seccomp_filter(orig); spin_unlock_irq(&task->sighand->siglock); count = 0; for (filter = orig; filter; filter = filter->prev) count++; if (filter_off >= count) { filter = ERR_PTR(-ENOENT); goto out; } count -= filter_off; for (filter = orig; filter && count > 1; filter = filter->prev) count--; if (WARN_ON(count != 1 || !filter)) { filter = ERR_PTR(-ENOENT); goto out; } __get_seccomp_filter(filter); out: __put_seccomp_filter(orig); return filter; } long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, void __user *data) { struct seccomp_filter *filter; struct sock_fprog_kern *fprog; long ret; if (!capable(CAP_SYS_ADMIN) || current->seccomp.mode != SECCOMP_MODE_DISABLED) { return -EACCES; } filter = get_nth_filter(task, filter_off); if (IS_ERR(filter)) return PTR_ERR(filter); fprog = filter->prog->orig_prog; if (!fprog) { /* This must be a new non-cBPF filter, since we save * every cBPF filter's orig_prog above when * CONFIG_CHECKPOINT_RESTORE is enabled. */ ret = -EMEDIUMTYPE; goto out; } ret = fprog->len; if (!data) goto out; if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) ret = -EFAULT; out: __put_seccomp_filter(filter); return ret; } long seccomp_get_metadata(struct task_struct *task, unsigned long size, void __user *data) { long ret; struct seccomp_filter *filter; struct seccomp_metadata kmd = {}; if (!capable(CAP_SYS_ADMIN) || current->seccomp.mode != SECCOMP_MODE_DISABLED) { return -EACCES; } size = min_t(unsigned long, size, sizeof(kmd)); if (size < sizeof(kmd.filter_off)) return -EINVAL; if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) return -EFAULT; filter = get_nth_filter(task, kmd.filter_off); if (IS_ERR(filter)) return PTR_ERR(filter); if (filter->log) kmd.flags |= SECCOMP_FILTER_FLAG_LOG; ret = size; if (copy_to_user(data, &kmd, size)) ret = -EFAULT; __put_seccomp_filter(filter); return ret; } #endif #ifdef CONFIG_SYSCTL /* Human readable action names for friendly sysctl interaction */ #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" #define SECCOMP_RET_TRAP_NAME "trap" #define SECCOMP_RET_ERRNO_NAME "errno" #define SECCOMP_RET_TRACE_NAME "trace" #define SECCOMP_RET_LOG_NAME "log" #define SECCOMP_RET_ALLOW_NAME "allow" static const char seccomp_actions_avail[] = SECCOMP_RET_KILL_PROCESS_NAME " " SECCOMP_RET_KILL_THREAD_NAME " " SECCOMP_RET_TRAP_NAME " " SECCOMP_RET_ERRNO_NAME " " SECCOMP_RET_TRACE_NAME " " SECCOMP_RET_LOG_NAME " " SECCOMP_RET_ALLOW_NAME; struct seccomp_log_name { u32 log; const char *name; }; static const struct seccomp_log_name seccomp_log_names[] = { { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, { } }; static bool seccomp_names_from_actions_logged(char *names, size_t size, u32 actions_logged, const char *sep) { const struct seccomp_log_name *cur; bool append_sep = false; for (cur = seccomp_log_names; cur->name && size; cur++) { ssize_t ret; if (!(actions_logged & cur->log)) continue; if (append_sep) { ret = strscpy(names, sep, size); if (ret < 0) return false; names += ret; size -= ret; } else append_sep = true; ret = strscpy(names, cur->name, size); if (ret < 0) return false; names += ret; size -= ret; } return true; } static bool seccomp_action_logged_from_name(u32 *action_logged, const char *name) { const struct seccomp_log_name *cur; for (cur = seccomp_log_names; cur->name; cur++) { if (!strcmp(cur->name, name)) { *action_logged = cur->log; return true; } } return false; } static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) { char *name; *actions_logged = 0; while ((name = strsep(&names, " ")) && *name) { u32 action_logged = 0; if (!seccomp_action_logged_from_name(&action_logged, name)) return false; *actions_logged |= action_logged; } return true; } static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer, size_t *lenp, loff_t *ppos) { char names[sizeof(seccomp_actions_avail)]; struct ctl_table table; memset(names, 0, sizeof(names)); if (!seccomp_names_from_actions_logged(names, sizeof(names), seccomp_actions_logged, " ")) return -EINVAL; table = *ro_table; table.data = names; table.maxlen = sizeof(names); return proc_dostring(&table, 0, buffer, lenp, ppos); } static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer, size_t *lenp, loff_t *ppos, u32 *actions_logged) { char names[sizeof(seccomp_actions_avail)]; struct ctl_table table; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; memset(names, 0, sizeof(names)); table = *ro_table; table.data = names; table.maxlen = sizeof(names); ret = proc_dostring(&table, 1, buffer, lenp, ppos); if (ret) return ret; if (!seccomp_actions_logged_from_names(actions_logged, table.data)) return -EINVAL; if (*actions_logged & SECCOMP_LOG_ALLOW) return -EINVAL; seccomp_actions_logged = *actions_logged; return 0; } static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, int ret) { char names[sizeof(seccomp_actions_avail)]; char old_names[sizeof(seccomp_actions_avail)]; const char *new = names; const char *old = old_names; if (!audit_enabled) return; memset(names, 0, sizeof(names)); memset(old_names, 0, sizeof(old_names)); if (ret) new = "?"; else if (!actions_logged) new = "(none)"; else if (!seccomp_names_from_actions_logged(names, sizeof(names), actions_logged, ",")) new = "?"; if (!old_actions_logged) old = "(none)"; else if (!seccomp_names_from_actions_logged(old_names, sizeof(old_names), old_actions_logged, ",")) old = "?"; return audit_seccomp_actions_logged(new, old, !ret); } static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; if (write) { u32 actions_logged = 0; u32 old_actions_logged = seccomp_actions_logged; ret = write_actions_logged(ro_table, buffer, lenp, ppos, &actions_logged); audit_actions_logged(actions_logged, old_actions_logged, ret); } else ret = read_actions_logged(ro_table, buffer, lenp, ppos); return ret; } static struct ctl_path seccomp_sysctl_path[] = { { .procname = "kernel", }, { .procname = "seccomp", }, { } }; static struct ctl_table seccomp_sysctl_table[] = { { .procname = "actions_avail", .data = (void *) &seccomp_actions_avail, .maxlen = sizeof(seccomp_actions_avail), .mode = 0444, .proc_handler = proc_dostring, }, { .procname = "actions_logged", .mode = 0644, .proc_handler = seccomp_actions_logged_handler, }, { } }; static int __init seccomp_sysctl_init(void) { struct ctl_table_header *hdr; hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); if (!hdr) pr_warn("seccomp: sysctl registration failed\n"); else kmemleak_not_leak(hdr); return 0; } device_initcall(seccomp_sysctl_init) #endif /* CONFIG_SYSCTL */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1