cregit-Linux how code gets into the kernel

Release 4.7 drivers/mtd/nand/qcom_nandc.c

Directory: drivers/mtd/nand
/*
 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/delay.h>

/* NANDc reg offsets */

#define	NAND_FLASH_CMD			0x00

#define	NAND_ADDR0			0x04

#define	NAND_ADDR1			0x08

#define	NAND_FLASH_CHIP_SELECT		0x0c

#define	NAND_EXEC_CMD			0x10

#define	NAND_FLASH_STATUS		0x14

#define	NAND_BUFFER_STATUS		0x18

#define	NAND_DEV0_CFG0			0x20

#define	NAND_DEV0_CFG1			0x24

#define	NAND_DEV0_ECC_CFG		0x28

#define	NAND_DEV1_ECC_CFG		0x2c

#define	NAND_DEV1_CFG0			0x30

#define	NAND_DEV1_CFG1			0x34

#define	NAND_READ_ID			0x40

#define	NAND_READ_STATUS		0x44

#define	NAND_DEV_CMD0			0xa0

#define	NAND_DEV_CMD1			0xa4

#define	NAND_DEV_CMD2			0xa8

#define	NAND_DEV_CMD_VLD		0xac

#define	SFLASHC_BURST_CFG		0xe0

#define	NAND_ERASED_CW_DETECT_CFG	0xe8

#define	NAND_ERASED_CW_DETECT_STATUS	0xec

#define	NAND_EBI2_ECC_BUF_CFG		0xf0

#define	FLASH_BUF_ACC			0x100


#define	NAND_CTRL			0xf00

#define	NAND_VERSION			0xf08

#define	NAND_READ_LOCATION_0		0xf20

#define	NAND_READ_LOCATION_1		0xf24

/* dummy register offsets, used by write_reg_dma */

#define	NAND_DEV_CMD1_RESTORE		0xdead

#define	NAND_DEV_CMD_VLD_RESTORE	0xbeef

/* NAND_FLASH_CMD bits */

#define	PAGE_ACC			BIT(4)

#define	LAST_PAGE			BIT(5)

/* NAND_FLASH_CHIP_SELECT bits */

#define	NAND_DEV_SEL			0

#define	DM_EN				BIT(2)

/* NAND_FLASH_STATUS bits */

#define	FS_OP_ERR			BIT(4)

#define	FS_READY_BSY_N			BIT(5)

#define	FS_MPU_ERR			BIT(8)

#define	FS_DEVICE_STS_ERR		BIT(16)

#define	FS_DEVICE_WP			BIT(23)

/* NAND_BUFFER_STATUS bits */

#define	BS_UNCORRECTABLE_BIT		BIT(8)

#define	BS_CORRECTABLE_ERR_MSK		0x1f

/* NAND_DEVn_CFG0 bits */

#define	DISABLE_STATUS_AFTER_WRITE	4

#define	CW_PER_PAGE			6

#define	UD_SIZE_BYTES			9

#define	ECC_PARITY_SIZE_BYTES_RS	19

#define	SPARE_SIZE_BYTES		23

#define	NUM_ADDR_CYCLES			27

#define	STATUS_BFR_READ			30

#define	SET_RD_MODE_AFTER_STATUS	31

/* NAND_DEVn_CFG0 bits */

#define	DEV0_CFG1_ECC_DISABLE		0

#define	WIDE_FLASH			1

#define	NAND_RECOVERY_CYCLES		2

#define	CS_ACTIVE_BSY			5

#define	BAD_BLOCK_BYTE_NUM		6

#define	BAD_BLOCK_IN_SPARE_AREA		16

#define	WR_RD_BSY_GAP			17

#define	ENABLE_BCH_ECC			27

/* NAND_DEV0_ECC_CFG bits */

#define	ECC_CFG_ECC_DISABLE		0

#define	ECC_SW_RESET			1

#define	ECC_MODE			4

#define	ECC_PARITY_SIZE_BYTES_BCH	8

#define	ECC_NUM_DATA_BYTES		16

#define	ECC_FORCE_CLK_OPEN		30

/* NAND_DEV_CMD1 bits */

#define	READ_ADDR			0

/* NAND_DEV_CMD_VLD bits */

#define	READ_START_VLD			0

/* NAND_EBI2_ECC_BUF_CFG bits */

#define	NUM_STEPS			0

/* NAND_ERASED_CW_DETECT_CFG bits */

#define	ERASED_CW_ECC_MASK		1

#define	AUTO_DETECT_RES			0

#define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)

#define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)

#define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)

#define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)

#define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)

/* NAND_ERASED_CW_DETECT_STATUS bits */

#define	PAGE_ALL_ERASED			BIT(7)

#define	CODEWORD_ALL_ERASED		BIT(6)

#define	PAGE_ERASED			BIT(5)

#define	CODEWORD_ERASED			BIT(4)

#define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)

#define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)

/* Version Mask */

#define	NAND_VERSION_MAJOR_MASK		0xf0000000

#define	NAND_VERSION_MAJOR_SHIFT	28

#define	NAND_VERSION_MINOR_MASK		0x0fff0000

#define	NAND_VERSION_MINOR_SHIFT	16

/* NAND OP_CMDs */

#define	PAGE_READ			0x2

#define	PAGE_READ_WITH_ECC		0x3

#define	PAGE_READ_WITH_ECC_SPARE	0x4

#define	PROGRAM_PAGE			0x6

#define	PAGE_PROGRAM_WITH_ECC		0x7

#define	PROGRAM_PAGE_SPARE		0x9

#define	BLOCK_ERASE			0xa

#define	FETCH_ID			0xb

#define	RESET_DEVICE			0xd

/*
 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
 * the driver calls the chunks 'step' or 'codeword' interchangeably
 */

#define	NANDC_STEP_SIZE			512

/*
 * the largest page size we support is 8K, this will have 16 steps/codewords
 * of 512 bytes each
 */

#define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)

/* we read at most 3 registers per codeword scan */

#define	MAX_REG_RD			(3 * MAX_NUM_STEPS)

/* ECC modes supported by the controller */

#define	ECC_NONE	BIT(0)

#define	ECC_RS_4BIT	BIT(1)

#define	ECC_BCH_4BIT	BIT(2)

#define	ECC_BCH_8BIT	BIT(3)


struct desc_info {
	
struct list_head node;

	
enum dma_data_direction dir;
	
struct scatterlist sgl;
	
struct dma_async_tx_descriptor *dma_desc;
};

/*
 * holds the current register values that we want to write. acts as a contiguous
 * chunk of memory which we use to write the controller registers through DMA.
 */

struct nandc_regs {
	
__le32 cmd;
	
__le32 addr0;
	
__le32 addr1;
	
__le32 chip_sel;
	
__le32 exec;

	
__le32 cfg0;
	
__le32 cfg1;
	
__le32 ecc_bch_cfg;

	
__le32 clrflashstatus;
	
__le32 clrreadstatus;

	
__le32 cmd1;
	
__le32 vld;

	
__le32 orig_cmd1;
	
__le32 orig_vld;

	
__le32 ecc_buf_cfg;
};

/*
 * NAND controller data struct
 *
 * @controller:                 base controller structure
 * @host_list:                  list containing all the chips attached to the
 *                              controller
 * @dev:                        parent device
 * @base:                       MMIO base
 * @base_dma:                   physical base address of controller registers
 * @core_clk:                   controller clock
 * @aon_clk:                    another controller clock
 *
 * @chan:                       dma channel
 * @cmd_crci:                   ADM DMA CRCI for command flow control
 * @data_crci:                  ADM DMA CRCI for data flow control
 * @desc_list:                  DMA descriptor list (list of desc_infos)
 *
 * @data_buffer:                our local DMA buffer for page read/writes,
 *                              used when we can't use the buffer provided
 *                              by upper layers directly
 * @buf_size/count/start:       markers for chip->read_buf/write_buf functions
 * @reg_read_buf:               local buffer for reading back registers via DMA
 * @reg_read_pos:               marker for data read in reg_read_buf
 *
 * @regs:                       a contiguous chunk of memory for DMA register
 *                              writes. contains the register values to be
 *                              written to controller
 * @cmd1/vld:                   some fixed controller register values
 * @ecc_modes:                  supported ECC modes by the current controller,
 *                              initialized via DT match data
 */

struct qcom_nand_controller {
	
struct nand_hw_control controller;
	
struct list_head host_list;

	
struct device *dev;

	
void __iomem *base;
	
dma_addr_t base_dma;

	
struct clk *core_clk;
	
struct clk *aon_clk;

	
struct dma_chan *chan;
	
unsigned int cmd_crci;
	
unsigned int data_crci;
	
struct list_head desc_list;

	
u8		*data_buffer;
	
int		buf_size;
	
int		buf_count;
	
int		buf_start;

	
__le32 *reg_read_buf;
	
int reg_read_pos;

	
struct nandc_regs *regs;

	

u32 cmd1, vld;
	
u32 ecc_modes;
};

/*
 * NAND chip structure
 *
 * @chip:                       base NAND chip structure
 * @node:                       list node to add itself to host_list in
 *                              qcom_nand_controller
 *
 * @cs:                         chip select value for this chip
 * @cw_size:                    the number of bytes in a single step/codeword
 *                              of a page, consisting of all data, ecc, spare
 *                              and reserved bytes
 * @cw_data:                    the number of bytes within a codeword protected
 *                              by ECC
 * @use_ecc:                    request the controller to use ECC for the
 *                              upcoming read/write
 * @bch_enabled:                flag to tell whether BCH ECC mode is used
 * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
 *                              chip
 * @status:                     value to be returned if NAND_CMD_STATUS command
 *                              is executed
 * @last_command:               keeps track of last command on this chip. used
 *                              for reading correct status
 *
 * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
 *                              ecc/non-ecc mode for the current nand flash
 *                              device
 */

struct qcom_nand_host {
	
struct nand_chip chip;
	
struct list_head node;

	
int cs;
	
int cw_size;
	
int cw_data;
	
bool use_ecc;
	
bool bch_enabled;
	
int ecc_bytes_hw;
	
int spare_bytes;
	
int bbm_size;
	
u8 status;
	
int last_command;

	

u32 cfg0, cfg1;
	

u32 cfg0_raw, cfg1_raw;
	
u32 ecc_buf_cfg;
	
u32 ecc_bch_cfg;
	
u32 clrflashstatus;
	
u32 clrreadstatus;
};


static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) { return container_of(chip, struct qcom_nand_host, chip); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja25100.00%1100.00%
Total25100.00%1100.00%


static inline struct qcom_nand_controller * get_qcom_nand_controller(struct nand_chip *chip) { return container_of(chip->controller, struct qcom_nand_controller, controller); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja27100.00%1100.00%
Total27100.00%1100.00%


static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) { return ioread32(nandc->base + offset); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja25100.00%1100.00%
Total25100.00%1100.00%


static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, u32 val) { iowrite32(val, nandc->base + offset); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja29100.00%1100.00%
Total29100.00%1100.00%


static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) { switch (offset) { case NAND_FLASH_CMD: return &regs->cmd; case NAND_ADDR0: return &regs->addr0; case NAND_ADDR1: return &regs->addr1; case NAND_FLASH_CHIP_SELECT: return &regs->chip_sel; case NAND_EXEC_CMD: return &regs->exec; case NAND_FLASH_STATUS: return &regs->clrflashstatus; case NAND_DEV0_CFG0: return &regs->cfg0; case NAND_DEV0_CFG1: return &regs->cfg1; case NAND_DEV0_ECC_CFG: return &regs->ecc_bch_cfg; case NAND_READ_STATUS: return &regs->clrreadstatus; case NAND_DEV_CMD1: return &regs->cmd1; case NAND_DEV_CMD1_RESTORE: return &regs->orig_cmd1; case NAND_DEV_CMD_VLD: return &regs->vld; case NAND_DEV_CMD_VLD_RESTORE: return &regs->orig_vld; case NAND_EBI2_ECC_BUF_CFG: return &regs->ecc_buf_cfg; default: return NULL; } }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja160100.00%1100.00%
Total160100.00%1100.00%


static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset, u32 val) { struct nandc_regs *regs = nandc->regs; __le32 *reg; reg = offset_to_nandc_reg(regs, offset); if (reg) *reg = cpu_to_le32(val); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja51100.00%1100.00%
Total51100.00%1100.00%

/* helper to configure address register values */
static void set_address(struct qcom_nand_host *host, u16 column, int page) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); if (chip->options & NAND_BUSWIDTH_16) column >>= 1; nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column); nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja75100.00%1100.00%
Total75100.00%1100.00%

/* * update_rw_regs: set up read/write register values, these will be * written to the NAND controller registers via DMA * * @num_cw: number of steps for the read/write operation * @read: read or write operation */
static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); u32 cmd, cfg0, cfg1, ecc_bch_cfg; if (read) { if (host->use_ecc) cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; else cmd = PAGE_READ | PAGE_ACC | LAST_PAGE; } else { cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; } if (host->use_ecc) { cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = host->cfg1; ecc_bch_cfg = host->ecc_bch_cfg; } else { cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = host->cfg1_raw; ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; } nandc_set_reg(nandc, NAND_FLASH_CMD, cmd); nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0); nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1); nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg); nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); nandc_set_reg(nandc, NAND_EXEC_CMD, 1); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja245100.00%1100.00%
Total245100.00%1100.00%


static int prep_dma_desc(struct qcom_nand_controller *nandc, bool read, int reg_off, const void *vaddr, int size, bool flow_control) { struct desc_info *desc; struct dma_async_tx_descriptor *dma_desc; struct scatterlist *sgl; struct dma_slave_config slave_conf; enum dma_transfer_direction dir_eng; int ret; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return -ENOMEM; sgl = &desc->sgl; sg_init_one(sgl, vaddr, size); if (read) { dir_eng = DMA_DEV_TO_MEM; desc->dir = DMA_FROM_DEVICE; } else { dir_eng = DMA_MEM_TO_DEV; desc->dir = DMA_TO_DEVICE; } ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); if (ret == 0) { ret = -ENOMEM; goto err; } memset(&slave_conf, 0x00, sizeof(slave_conf)); slave_conf.device_fc = flow_control; if (read) { slave_conf.src_maxburst = 16; slave_conf.src_addr = nandc->base_dma + reg_off; slave_conf.slave_id = nandc->data_crci; } else { slave_conf.dst_maxburst = 16; slave_conf.dst_addr = nandc->base_dma + reg_off; slave_conf.slave_id = nandc->cmd_crci; } ret = dmaengine_slave_config(nandc->chan, &slave_conf); if (ret) { dev_err(nandc->dev, "failed to configure dma channel\n"); goto err; } dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); if (!dma_desc) { dev_err(nandc->dev, "failed to prepare desc\n"); ret = -EINVAL; goto err; } desc->dma_desc = dma_desc; list_add_tail(&desc->node, &nandc->desc_list); return 0; err: kfree(desc); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja333100.00%1100.00%
Total333100.00%1100.00%

/* * read_reg_dma: prepares a descriptor to read a given number of * contiguous registers to the reg_read_buf pointer * * @first: offset of the first register in the contiguous block * @num_regs: number of registers to read */
static int read_reg_dma(struct qcom_nand_controller *nandc, int first, int num_regs) { bool flow_control = false; void *vaddr; int size; if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) flow_control = true; size = num_regs * sizeof(u32); vaddr = nandc->reg_read_buf + nandc->reg_read_pos; nandc->reg_read_pos += num_regs; return prep_dma_desc(nandc, true, first, vaddr, size, flow_control); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja84100.00%1100.00%
Total84100.00%1100.00%

/* * write_reg_dma: prepares a descriptor to write a given number of * contiguous registers * * @first: offset of the first register in the contiguous block * @num_regs: number of registers to write */
static int write_reg_dma(struct qcom_nand_controller *nandc, int first, int num_regs) { bool flow_control = false; struct nandc_regs *regs = nandc->regs; void *vaddr; int size; vaddr = offset_to_nandc_reg(regs, first); if (first == NAND_FLASH_CMD) flow_control = true; if (first == NAND_DEV_CMD1_RESTORE) first = NAND_DEV_CMD1; if (first == NAND_DEV_CMD_VLD_RESTORE) first = NAND_DEV_CMD_VLD; size = num_regs * sizeof(u32); return prep_dma_desc(nandc, false, first, vaddr, size, flow_control); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja102100.00%1100.00%
Total102100.00%1100.00%

/* * read_data_dma: prepares a DMA descriptor to transfer data from the * controller's internal buffer to the buffer 'vaddr' * * @reg_off: offset within the controller's data buffer * @vaddr: virtual address of the buffer we want to write to * @size: DMA transaction size in bytes */
static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, const u8 *vaddr, int size) { return prep_dma_desc(nandc, true, reg_off, vaddr, size, false); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja38100.00%1100.00%
Total38100.00%1100.00%

/* * write_data_dma: prepares a DMA descriptor to transfer data from * 'vaddr' to the controller's internal buffer * * @reg_off: offset within the controller's data buffer * @vaddr: virtual address of the buffer we want to read from * @size: DMA transaction size in bytes */
static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, const u8 *vaddr, int size) { return prep_dma_desc(nandc, false, reg_off, vaddr, size, false); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja38100.00%1100.00%
Total38100.00%1100.00%

/* * helper to prepare dma descriptors to configure registers needed for reading a * codeword/step in a page */
static void config_cw_read(struct qcom_nand_controller *nandc) { write_reg_dma(nandc, NAND_FLASH_CMD, 3); write_reg_dma(nandc, NAND_DEV0_CFG0, 3); write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1); write_reg_dma(nandc, NAND_EXEC_CMD, 1); read_reg_dma(nandc, NAND_FLASH_STATUS, 2); read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja65100.00%1100.00%
Total65100.00%1100.00%

/* * helpers to prepare dma descriptors used to configure registers needed for * writing a codeword/step in a page */
static void config_cw_write_pre(struct qcom_nand_controller *nandc) { write_reg_dma(nandc, NAND_FLASH_CMD, 3); write_reg_dma(nandc, NAND_DEV0_CFG0, 3); write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja38100.00%1100.00%
Total38100.00%1100.00%


static void config_cw_write_post(struct qcom_nand_controller *nandc) { write_reg_dma(nandc, NAND_EXEC_CMD, 1); read_reg_dma(nandc, NAND_FLASH_STATUS, 1); write_reg_dma(nandc, NAND_FLASH_STATUS, 1); write_reg_dma(nandc, NAND_READ_STATUS, 1); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja47100.00%1100.00%
Total47100.00%1100.00%

/* * the following functions are used within chip->cmdfunc() to perform different * NAND_CMD_* commands */ /* sets up descriptors for NAND_CMD_PARAM */
static int nandc_param(struct qcom_nand_host *host) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); /* * NAND_CMD_PARAM is called before we know much about the FLASH chip * in use. we configure the controller to perform a raw read of 512 * bytes to read onfi params */ nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE); nandc_set_reg(nandc, NAND_ADDR0, 0); nandc_set_reg(nandc, NAND_ADDR1, 0); nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE | 512 << UD_SIZE_BYTES | 5 << NUM_ADDR_CYCLES | 0 << SPARE_SIZE_BYTES); nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES | 0 << CS_ACTIVE_BSY | 17 << BAD_BLOCK_BYTE_NUM | 1 << BAD_BLOCK_IN_SPARE_AREA | 2 << WR_RD_BSY_GAP | 0 << WIDE_FLASH | 1 << DEV0_CFG1_ECC_DISABLE); nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); /* configure CMD1 and VLD for ONFI param probing */ nandc_set_reg(nandc, NAND_DEV_CMD_VLD, (nandc->vld & ~(1 << READ_START_VLD)) | 0 << READ_START_VLD); nandc_set_reg(nandc, NAND_DEV_CMD1, (nandc->cmd1 & ~(0xFF << READ_ADDR)) | NAND_CMD_PARAM << READ_ADDR); nandc_set_reg(nandc, NAND_EXEC_CMD, 1); nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1); nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1); write_reg_dma(nandc, NAND_DEV_CMD1, 1); nandc->buf_count = 512; memset(nandc->data_buffer, 0xff, nandc->buf_count); config_cw_read(nandc); read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, nandc->buf_count); /* restore CMD1 and VLD regs */ write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1); write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja291100.00%1100.00%
Total291100.00%1100.00%

/* sets up descriptors for NAND_CMD_ERASE1 */
static int erase_block(struct qcom_nand_host *host, int page_addr) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); nandc_set_reg(nandc, NAND_FLASH_CMD, BLOCK_ERASE | PAGE_ACC | LAST_PAGE); nandc_set_reg(nandc, NAND_ADDR0, page_addr); nandc_set_reg(nandc, NAND_ADDR1, 0); nandc_set_reg(nandc, NAND_DEV0_CFG0, host->cfg0_raw & ~(7 << CW_PER_PAGE)); nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw); nandc_set_reg(nandc, NAND_EXEC_CMD, 1); nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); write_reg_dma(nandc, NAND_FLASH_CMD, 3); write_reg_dma(nandc, NAND_DEV0_CFG0, 2); write_reg_dma(nandc, NAND_EXEC_CMD, 1); read_reg_dma(nandc, NAND_FLASH_STATUS, 1); write_reg_dma(nandc, NAND_FLASH_STATUS, 1); write_reg_dma(nandc, NAND_READ_STATUS, 1); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja182100.00%1100.00%
Total182100.00%1100.00%

/* sets up descriptors for NAND_CMD_READID */
static int read_id(struct qcom_nand_host *host, int column) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); if (column == -1) return 0; nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID); nandc_set_reg(nandc, NAND_ADDR0, column); nandc_set_reg(nandc, NAND_ADDR1, 0); nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); nandc_set_reg(nandc, NAND_EXEC_CMD, 1); write_reg_dma(nandc, NAND_FLASH_CMD, 4); write_reg_dma(nandc, NAND_EXEC_CMD, 1); read_reg_dma(nandc, NAND_READ_ID, 1); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja119100.00%1100.00%
Total119100.00%1100.00%

/* sets up descriptors for NAND_CMD_RESET */
static int reset(struct qcom_nand_host *host) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE); nandc_set_reg(nandc, NAND_EXEC_CMD, 1); write_reg_dma(nandc, NAND_FLASH_CMD, 1); write_reg_dma(nandc, NAND_EXEC_CMD, 1); read_reg_dma(nandc, NAND_FLASH_STATUS, 1); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja79100.00%1100.00%
Total79100.00%1100.00%

/* helpers to submit/free our list of dma descriptors */
static int submit_descs(struct qcom_nand_controller *nandc) { struct desc_info *desc; dma_cookie_t cookie = 0; list_for_each_entry(desc, &nandc->desc_list, node) cookie = dmaengine_submit(desc->dma_desc); if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) return -ETIMEDOUT; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja58100.00%1100.00%
Total58100.00%1100.00%


static void free_descs(struct qcom_nand_controller *nandc) { struct desc_info *desc, *n; list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { list_del(&desc->node); dma_unmap_sg(nandc->dev, &desc->sgl, 1, desc->dir); kfree(desc); } }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja62100.00%1100.00%
Total62100.00%1100.00%

/* reset the register read buffer for next NAND operation */
static void clear_read_regs(struct qcom_nand_controller *nandc) { nandc->reg_read_pos = 0; memset(nandc->reg_read_buf, 0, MAX_REG_RD * sizeof(*nandc->reg_read_buf)); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja36100.00%1100.00%
Total36100.00%1100.00%


static void pre_command(struct qcom_nand_host *host, int command) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = false; host->last_command = command; clear_read_regs(nandc); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja63100.00%1100.00%
Total63100.00%1100.00%

/* * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our * privately maintained status byte, this status byte can be read after * NAND_CMD_STATUS is called */
static void parse_erase_write_errors(struct qcom_nand_host *host, int command) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int num_cw; int i; num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; for (i = 0; i < num_cw; i++) { u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); if (flash_status & FS_MPU_ERR) host->status &= ~NAND_STATUS_WP; if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) host->status |= NAND_STATUS_FAIL; } }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja131100.00%1100.00%
Total131100.00%1100.00%


static void post_command(struct qcom_nand_host *host, int command) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); switch (command) { case NAND_CMD_READID: memcpy(nandc->data_buffer, nandc->reg_read_buf, nandc->buf_count); break; case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: parse_erase_write_errors(host, command); break; default: break; } }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja75100.00%1100.00%
Total75100.00%1100.00%

/* * Implements chip->cmdfunc. It's only used for a limited set of commands. * The rest of the commands wouldn't be called by upper layers. For example, * NAND_CMD_READOOB would never be called because we have our own versions * of read_oob ops for nand_ecc_ctrl. */
static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); bool wait = false; int ret = 0; pre_command(host, command); switch (command) { case NAND_CMD_RESET: ret = reset(host); wait = true; break; case NAND_CMD_READID: nandc->buf_count = 4; ret = read_id(host, column); wait = true; break; case NAND_CMD_PARAM: ret = nandc_param(host); wait = true; break; case NAND_CMD_ERASE1: ret = erase_block(host, page_addr); wait = true; break; case NAND_CMD_READ0: /* we read the entire page for now */ WARN_ON(column != 0); host->use_ecc = true; set_address(host, 0, page_addr); update_rw_regs(host, ecc->steps, true); break; case NAND_CMD_SEQIN: WARN_ON(column != 0); set_address(host, 0, page_addr); break; case NAND_CMD_PAGEPROG: case NAND_CMD_STATUS: case NAND_CMD_NONE: default: break; } if (ret) { dev_err(nandc->dev, "failure executing command %d\n", command); free_descs(nandc); return; } if (wait) { ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failure submitting descs for command %d\n", command); } free_descs(nandc); post_command(host, command); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja286100.00%1100.00%
Total286100.00%1100.00%

/* * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. * * when using RS ECC, the HW reports the same erros when reading an erased CW, * but it notifies that it is an erased CW by placing special characters at * certain offsets in the buffer. * * verify if the page is erased or not, and fix up the page for RS ECC by * replacing the special characters with 0xff. */
static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) { u8 empty1, empty2; /* * an erased page flags an error in NAND_FLASH_STATUS, check if the page * is erased by looking for 0x54s at offsets 3 and 175 from the * beginning of each codeword */ empty1 = data_buf[3]; empty2 = data_buf[175]; /* * if the erased codework markers, if they exist override them with * 0xffs */ if ((empty1 == 0x54 && empty2 == 0xff) || (empty1 == 0xff && empty2 == 0x54)) { data_buf[3] = 0xff; data_buf[175] = 0xff; } /* * check if the entire chunk contains 0xffs or not. if it doesn't, then * restore the original values at the special offsets */ if (memchr_inv(data_buf, 0xff, data_len)) { data_buf[3] = empty1; data_buf[175] = empty2; return false; } return true; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja106100.00%1100.00%
Total106100.00%1100.00%

struct read_stats { __le32 flash; __le32 buffer; __le32 erased_cw; }; /* * reads back status registers set by the controller to notify page read * errors. this is equivalent to what 'ecc->correct()' would do. */
static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, u8 *oob_buf) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; unsigned int max_bitflips = 0; struct read_stats *buf; int i; buf = (struct read_stats *)nandc->reg_read_buf; for (i = 0; i < ecc->steps; i++, buf++) { u32 flash, buffer, erased_cw; int data_len, oob_len; if (i == (ecc->steps - 1)) { data_len = ecc->size - ((ecc->steps - 1) << 2); oob_len = ecc->steps << 2; } else { data_len = host->cw_data; oob_len = 0; } flash = le32_to_cpu(buf->flash); buffer = le32_to_cpu(buf->buffer); erased_cw = le32_to_cpu(buf->erased_cw); if (flash & (FS_OP_ERR | FS_MPU_ERR)) { bool erased; /* ignore erased codeword errors */ if (host->bch_enabled) { erased = (erased_cw & ERASED_CW) == ERASED_CW ? true : false; } else { erased = erased_chunk_check_and_fixup(data_buf, data_len); } if (erased) { data_buf += data_len; if (oob_buf) oob_buf += oob_len + ecc->bytes; continue; } if (buffer & BS_UNCORRECTABLE_BIT) { int ret, ecclen, extraooblen; void *eccbuf; eccbuf = oob_buf ? oob_buf + oob_len : NULL; ecclen = oob_buf ? host->ecc_bytes_hw : 0; extraooblen = oob_buf ? oob_len : 0; /* * make sure it isn't an erased page reported * as not-erased by HW because of a few bitflips */ ret = nand_check_erased_ecc_chunk(data_buf, data_len, eccbuf, ecclen, oob_buf, extraooblen, ecc->strength); if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; max_bitflips = max_t(unsigned int, max_bitflips, ret); } } } else { unsigned int stat; stat = buffer & BS_CORRECTABLE_ERR_MSK; mtd->ecc_stats.corrected += stat; max_bitflips = max(max_bitflips, stat); } data_buf += data_len; if (oob_buf) oob_buf += oob_len + ecc->bytes; } return max_bitflips; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja424100.00%1100.00%
Total424100.00%1100.00%

/* * helper to perform the actual page read operation, used by ecc->read_page(), * ecc->read_oob() */
static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, u8 *oob_buf) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int i, ret; /* queue cmd descs for each codeword */ for (i = 0; i < ecc->steps; i++) { int data_size, oob_size; if (i == (ecc->steps - 1)) { data_size = ecc->size - ((ecc->steps - 1) << 2); oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size = host->cw_data; oob_size = host->ecc_bytes_hw + host->spare_bytes; } config_cw_read(nandc); if (data_buf) read_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size); /* * when ecc is enabled, the controller doesn't read the real * or dummy bad block markers in each chunk. To maintain a * consistent layout across RAW and ECC reads, we just * leave the real/dummy BBM offsets empty (i.e, filled with * 0xffs) */ if (oob_buf) { int j; for (j = 0; j < host->bbm_size; j++) *oob_buf++ = 0xff; read_data_dma(nandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size); } if (data_buf) data_buf += data_size; if (oob_buf) oob_buf += oob_size; } ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failure to read page/oob\n"); free_descs(nandc); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja254100.00%1100.00%
Total254100.00%1100.00%

/* * a helper that copies the last step/codeword of a page (containing free oob) * into our local buffer */
static int copy_last_cw(struct qcom_nand_host *host, int page) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int size; int ret; clear_read_regs(nandc); size = host->use_ecc ? host->cw_data : host->cw_size; /* prepare a clean read buffer */ memset(nandc->data_buffer, 0xff, size); set_address(host, host->cw_size * (ecc->steps - 1), page); update_rw_regs(host, 1, true); config_cw_read(nandc); read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size); ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failed to copy last codeword\n"); free_descs(nandc); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja155100.00%1100.00%
Total155100.00%1100.00%

/* implements ecc->read_page() */
static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); u8 *data_buf, *oob_buf = NULL; int ret; data_buf = buf; oob_buf = oob_required ? chip->oob_poi : NULL; ret = read_page_ecc(host, data_buf, oob_buf); if (ret) { dev_err(nandc->dev, "failure to read page\n"); return ret; } return parse_read_errors(host, data_buf, oob_buf); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja111100.00%1100.00%
Total111100.00%1100.00%

/* implements ecc->read_page_raw() */
static int qcom_nandc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); u8 *data_buf, *oob_buf; struct nand_ecc_ctrl *ecc = &chip->ecc; int i, ret; data_buf = buf; oob_buf = chip->oob_poi; host->use_ecc = false; update_rw_regs(host, ecc->steps, true); for (i = 0; i < ecc->steps; i++) { int data_size1, data_size2, oob_size1, oob_size2; int reg_off = FLASH_BUF_ACC; data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); oob_size1 = host->bbm_size; if (i == (ecc->steps - 1)) { data_size2 = ecc->size - data_size1 - ((ecc->steps - 1) << 2); oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size2 = host->cw_data - data_size1; oob_size2 = host->ecc_bytes_hw + host->spare_bytes; } config_cw_read(nandc); read_data_dma(nandc, reg_off, data_buf, data_size1); reg_off += data_size1; data_buf += data_size1; read_data_dma(nandc, reg_off, oob_buf, oob_size1); reg_off += oob_size1; oob_buf += oob_size1; read_data_dma(nandc, reg_off, data_buf, data_size2); reg_off += data_size2; data_buf += data_size2; read_data_dma(nandc, reg_off, oob_buf, oob_size2); oob_buf += oob_size2; } ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failure to read raw page\n"); free_descs(nandc); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja328100.00%1100.00%
Total328100.00%1100.00%

/* implements ecc->read_oob() */
static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int ret; clear_read_regs(nandc); host->use_ecc = true; set_address(host, 0, page); update_rw_regs(host, ecc->steps, true); ret = read_page_ecc(host, NULL, chip->oob_poi); if (ret) dev_err(nandc->dev, "failure to read oob\n"); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja112100.00%1100.00%
Total112100.00%1100.00%

/* implements ecc->write_page() */
static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *data_buf, *oob_buf; int i, ret; clear_read_regs(nandc); data_buf = (u8 *)buf; oob_buf = chip->oob_poi; host->use_ecc = true; update_rw_regs(host, ecc->steps, false); for (i = 0; i < ecc->steps; i++) { int data_size, oob_size; if (i == (ecc->steps - 1)) { data_size = ecc->size - ((ecc->steps - 1) << 2); oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size = host->cw_data; oob_size = ecc->bytes; } config_cw_write_pre(nandc); write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size); /* * when ECC is enabled, we don't really need to write anything * to oob for the first n - 1 codewords since these oob regions * just contain ECC bytes that's written by the controller * itself. For the last codeword, we skip the bbm positions and * write to the free oob area. */ if (i == (ecc->steps - 1)) { oob_buf += host->bbm_size; write_data_dma(nandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size); } config_cw_write_post(nandc); data_buf += data_size; oob_buf += oob_size; } ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failure to write page\n"); free_descs(nandc); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja283100.00%1100.00%
Total283100.00%1100.00%

/* implements ecc->write_page_raw() */
static int qcom_nandc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *data_buf, *oob_buf; int i, ret; clear_read_regs(nandc); data_buf = (u8 *)buf; oob_buf = chip->oob_poi; host->use_ecc = false; update_rw_regs(host, ecc->steps, false); for (i = 0; i < ecc->steps; i++) { int data_size1, data_size2, oob_size1, oob_size2; int reg_off = FLASH_BUF_ACC; data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); oob_size1 = host->bbm_size; if (i == (ecc->steps - 1)) { data_size2 = ecc->size - data_size1 - ((ecc->steps - 1) << 2); oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size2 = host->cw_data - data_size1; oob_size2 = host->ecc_bytes_hw + host->spare_bytes; } config_cw_write_pre(nandc); write_data_dma(nandc, reg_off, data_buf, data_size1); reg_off += data_size1; data_buf += data_size1; write_data_dma(nandc, reg_off, oob_buf, oob_size1); reg_off += oob_size1; oob_buf += oob_size1; write_data_dma(nandc, reg_off, data_buf, data_size2); reg_off += data_size2; data_buf += data_size2; write_data_dma(nandc, reg_off, oob_buf, oob_size2); oob_buf += oob_size2; config_cw_write_post(nandc); } ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failure to write raw page\n"); free_descs(nandc); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja343100.00%1100.00%
Total343100.00%1100.00%

/* * implements ecc->write_oob() * * the NAND controller cannot write only data or only oob within a codeword, * since ecc is calculated for the combined codeword. we first copy the * entire contents for the last codeword(data + oob), replace the old oob * with the new one in chip->oob_poi, and then write the entire codeword. * this read-copy-write operation results in a slight performance loss. */
static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *oob = chip->oob_poi; int data_size, oob_size; int ret, status = 0; host->use_ecc = true; ret = copy_last_cw(host, page); if (ret) return ret; clear_read_regs(nandc); /* calculate the data and oob size for the last codeword/step */ data_size = ecc->size - ((ecc->steps - 1) << 2); oob_size = mtd->oobavail; /* override new oob content to last codeword */ mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 0, mtd->oobavail); set_address(host, host->cw_size * (ecc->steps - 1), page); update_rw_regs(host, 1, false); config_cw_write_pre(nandc); write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, data_size + oob_size); config_cw_write_post(nandc); ret = submit_descs(nandc); free_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write oob\n"); return -EIO; } chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja25196.17%150.00%
boris brezillonboris brezillon103.83%150.00%
Total261100.00%2100.00%


static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int page, ret, bbpos, bad = 0; u32 flash_status; page = (int)(ofs >> chip->page_shift) & chip->pagemask; /* * configure registers for a raw sub page read, the address is set to * the beginning of the last codeword, we don't care about reading ecc * portion of oob. we just want the first few bytes from this codeword * that contains the BBM */ host->use_ecc = false; ret = copy_last_cw(host, page); if (ret) goto err; flash_status = le32_to_cpu(nandc->reg_read_buf[0]); if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) { dev_warn(nandc->dev, "error when trying to read BBM\n"); goto err; } bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); bad = nandc->data_buffer[bbpos] != 0xff; if (chip->options & NAND_BUSWIDTH_16) bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); err: return bad; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja203100.00%1100.00%
Total203100.00%1100.00%


static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int page, ret, status = 0; clear_read_regs(nandc); /* * to mark the BBM as bad, we flash the entire last codeword with 0s. * we don't care about the rest of the content in the codeword since * we aren't going to use this block again */ memset(nandc->data_buffer, 0x00, host->cw_size); page = (int)(ofs >> chip->page_shift) & chip->pagemask; /* prepare write */ host->use_ecc = false; set_address(host, host->cw_size * (ecc->steps - 1), page); update_rw_regs(host, 1, false); config_cw_write_pre(nandc); write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size); config_cw_write_post(nandc); ret = submit_descs(nandc); free_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to update BBM\n"); return -EIO; } chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja226100.00%1100.00%
Total226100.00%1100.00%

/* * the three functions below implement chip->read_byte(), chip->read_buf() * and chip->write_buf() respectively. these aren't used for * reading/writing page data, they are used for smaller data like reading * id, status etc */
static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); u8 *buf = nandc->data_buffer; u8 ret = 0x0; if (host->last_command == NAND_CMD_STATUS) { ret = host->status; host->status = NAND_STATUS_READY | NAND_STATUS_WP; return ret; } if (nandc->buf_start < nandc->buf_count) ret = buf[nandc->buf_start++]; return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja104100.00%1100.00%
Total104100.00%1100.00%


static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); nandc->buf_start += real_len; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja77100.00%1100.00%
Total77100.00%1100.00%


static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); nandc->buf_start += real_len; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja78100.00%1100.00%
Total78100.00%1100.00%

/* we support only one external chip for now */
static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); if (chipnr <= 0) return; dev_warn(nandc->dev, "invalid chip select\n"); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja50100.00%1100.00%
Total50100.00%1100.00%

/* * NAND controller page layout info * * Layout with ECC enabled: * * |----------------------| |---------------------------------| * | xx.......yy| | *********xx.......yy| * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| * | xx.......yy| | *********xx.......yy| * |----------------------| |---------------------------------| * codeword 1,2..n-1 codeword n * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> * * n = Number of codewords in the page * . = ECC bytes * * = Spare/free bytes * x = Unused byte(s) * y = Reserved byte(s) * * 2K page: n = 4, spare = 16 bytes * 4K page: n = 8, spare = 32 bytes * 8K page: n = 16, spare = 64 bytes * * the qcom nand controller operates at a sub page/codeword level. each * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. * the number of ECC bytes vary based on the ECC strength and the bus width. * * the first n - 1 codewords contains 516 bytes of user data, the remaining * 12/16 bytes consist of ECC and reserved data. The nth codeword contains * both user data and spare(oobavail) bytes that sum up to 516 bytes. * * When we access a page with ECC enabled, the reserved bytes(s) are not * accessible at all. When reading, we fill up these unreadable positions * with 0xffs. When writing, the controller skips writing the inaccessible * bytes. * * Layout with ECC disabled: * * |------------------------------| |---------------------------------------| * | yy xx.......| | bb *********xx.......| * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| * | yy xx.......| | bb *********xx.......| * |------------------------------| |---------------------------------------| * codeword 1,2..n-1 codeword n * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> * * n = Number of codewords in the page * . = ECC bytes * * = Spare/free bytes * x = Unused byte(s) * y = Dummy Bad Bock byte(s) * b = Real Bad Block byte(s) * size1/size2 = function of codeword size and 'n' * * when the ECC block is disabled, one reserved byte (or two for 16 bit bus * width) is now accessible. For the first n - 1 codewords, these are dummy Bad * Block Markers. In the last codeword, this position contains the real BBM * * In order to have a consistent layout between RAW and ECC modes, we assume * the following OOB layout arrangement: * * |-----------| |--------------------| * |yyxx.......| |bb*********xx.......| * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| * |yyxx.......| |bb*********xx.......| * |yyxx.......| |bb*********xx.......| * |-----------| |--------------------| * first n - 1 nth OOB region * OOB regions * * n = Number of codewords in the page * . = ECC bytes * * = FREE OOB bytes * y = Dummy bad block byte(s) (inaccessible when ECC enabled) * x = Unused byte(s) * b = Real bad block byte(s) (inaccessible when ECC enabled) * * This layout is read as is when ECC is disabled. When ECC is enabled, the * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, * and assumed as 0xffs when we read a page/oob. The ECC, unused and * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is * the sum of the three). */
static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section > 1) return -ERANGE; if (!section) { oobregion->length = (ecc->bytes * (ecc->steps - 1)) + host->bbm_size; oobregion->offset = 0; } else { oobregion->length = host->ecc_bytes_hw + host->spare_bytes; oobregion->offset = mtd->oobsize - oobregion->length; } return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja6451.61%150.00%
boris brezillonboris brezillon6048.39%150.00%
Total124100.00%2100.00%


static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; oobregion->length = ecc->steps * 4; oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
boris brezillonboris brezillon7177.17%150.00%
archit tanejaarchit taneja2122.83%150.00%
Total92100.00%2100.00%

static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { .ecc = qcom_nand_ooblayout_ecc, .free = qcom_nand_ooblayout_free, };
static int qcom_nand_host_setup(struct qcom_nand_host *host) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); int cwperpage, bad_block_byte; bool wide_bus; int ecc_mode = 1; /* * the controller requires each step consists of 512 bytes of data. * bail out if DT has populated a wrong step size. */ if (ecc->size != NANDC_STEP_SIZE) { dev_err(nandc->dev, "invalid ecc size\n"); return -EINVAL; } wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; if (ecc->strength >= 8) { /* 8 bit ECC defaults to BCH ECC on all platforms */ host->bch_enabled = true; ecc_mode = 1; if (wide_bus) { host->ecc_bytes_hw = 14; host->spare_bytes = 0; host->bbm_size = 2; } else { host->ecc_bytes_hw = 13; host->spare_bytes = 2; host->bbm_size = 1; } } else { /* * if the controller supports BCH for 4 bit ECC, the controller * uses lesser bytes for ECC. If RS is used, the ECC bytes is * always 10 bytes */ if (nandc->ecc_modes & ECC_BCH_4BIT) { /* BCH */ host->bch_enabled = true; ecc_mode = 0; if (wide_bus) { host->ecc_bytes_hw = 8; host->spare_bytes = 2; host->bbm_size = 2; } else { host->ecc_bytes_hw = 7; host->spare_bytes = 4; host->bbm_size = 1; } } else { /* RS */ host->ecc_bytes_hw = 10; if (wide_bus) { host->spare_bytes = 0; host->bbm_size = 2; } else { host->spare_bytes = 1; host->bbm_size = 1; } } } /* * we consider ecc->bytes as the sum of all the non-data content in a * step. It gives us a clean representation of the oob area (even if * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit * ECC and 12 bytes for 4 bit ECC */ ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; ecc->read_page = qcom_nandc_read_page; ecc->read_page_raw = qcom_nandc_read_page_raw; ecc->read_oob = qcom_nandc_read_oob; ecc->write_page = qcom_nandc_write_page; ecc->write_page_raw = qcom_nandc_write_page_raw; ecc->write_oob = qcom_nandc_write_oob; ecc->mode = NAND_ECC_HW; mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); cwperpage = mtd->writesize / ecc->size; /* * DATA_UD_BYTES varies based on whether the read/write command protects * spare data with ECC too. We protect spare data by default, so we set * it to main + spare data, which are 512 and 4 bytes respectively. */ host->cw_data = 516; /* * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes * for 8 bit ECC */ host->cw_size = host->cw_data + ecc->bytes; if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) { dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n"); return -EINVAL; } bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; host->cfg0 = (cwperpage - 1) << CW_PER_PAGE | host->cw_data << UD_SIZE_BYTES | 0 << DISABLE_STATUS_AFTER_WRITE | 5 << NUM_ADDR_CYCLES | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS | 0 << STATUS_BFR_READ | 1 << SET_RD_MODE_AFTER_STATUS | host->spare_bytes << SPARE_SIZE_BYTES; host->cfg1 = 7 << NAND_RECOVERY_CYCLES | 0 << CS_ACTIVE_BSY | bad_block_byte << BAD_BLOCK_BYTE_NUM | 0 << BAD_BLOCK_IN_SPARE_AREA | 2 << WR_RD_BSY_GAP | wide_bus << WIDE_FLASH | host->bch_enabled << ENABLE_BCH_ECC; host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE | host->cw_size << UD_SIZE_BYTES | 5 << NUM_ADDR_CYCLES | 0 << SPARE_SIZE_BYTES; host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES | 0 << CS_ACTIVE_BSY | 17 << BAD_BLOCK_BYTE_NUM | 1 << BAD_BLOCK_IN_SPARE_AREA | 2 << WR_RD_BSY_GAP | wide_bus << WIDE_FLASH | 1 << DEV0_CFG1_ECC_DISABLE; host->ecc_bch_cfg = host->bch_enabled << ECC_CFG_ECC_DISABLE | 0 << ECC_SW_RESET | host->cw_data << ECC_NUM_DATA_BYTES | 1 << ECC_FORCE_CLK_OPEN | ecc_mode << ECC_MODE | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; host->ecc_buf_cfg = 0x203 << NUM_STEPS; host->clrflashstatus = FS_READY_BSY_N; host->clrreadstatus = 0xc0; dev_dbg(nandc->dev, "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, host->cw_size, host->cw_data, ecc->strength, ecc->bytes, cwperpage); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja66299.25%150.00%
boris brezillonboris brezillon50.75%150.00%
Total667100.00%2100.00%


static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) { int ret; ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(nandc->dev, "failed to set DMA mask\n"); return ret; } /* * we use the internal buffer for reading ONFI params, reading small * data like ID and status, and preforming read-copy-write operations * when writing to a codeword partially. 532 is the maximum possible * size of a codeword for our nand controller */ nandc->buf_size = 532; nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL); if (!nandc->data_buffer) return -ENOMEM; nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL); if (!nandc->regs) return -ENOMEM; nandc->reg_read_buf = devm_kzalloc(nandc->dev, MAX_REG_RD * sizeof(*nandc->reg_read_buf), GFP_KERNEL); if (!nandc->reg_read_buf) return -ENOMEM; nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx"); if (!nandc->chan) { dev_err(nandc->dev, "failed to request slave channel\n"); return -ENODEV; } INIT_LIST_HEAD(&nandc->desc_list); INIT_LIST_HEAD(&nandc->host_list); spin_lock_init(&nandc->controller.lock); init_waitqueue_head(&nandc->controller.wq); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja221100.00%1100.00%
Total221100.00%1100.00%


static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) { dma_release_channel(nandc->chan); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja18100.00%1100.00%
Total18100.00%1100.00%

/* one time setup of a few nand controller registers */
static int qcom_nandc_setup(struct qcom_nand_controller *nandc) { /* kill onenand */ nandc_write(nandc, SFLASHC_BURST_CFG, 0); /* enable ADM DMA */ nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); /* save the original values of these registers */ nandc->cmd1 = nandc_read(nandc, NAND_DEV_CMD1); nandc->vld = nandc_read(nandc, NAND_DEV_CMD_VLD); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja57100.00%1100.00%
Total57100.00%1100.00%


static int qcom_nand_host_init(struct qcom_nand_controller *nandc, struct qcom_nand_host *host, struct device_node *dn) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); struct device *dev = nandc->dev; int ret; ret = of_property_read_u32(dn, "reg", &host->cs); if (ret) { dev_err(dev, "can't get chip-select\n"); return -ENXIO; } nand_set_flash_node(chip, dn); mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); mtd->owner = THIS_MODULE; mtd->dev.parent = dev; chip->cmdfunc = qcom_nandc_command; chip->select_chip = qcom_nandc_select_chip; chip->read_byte = qcom_nandc_read_byte; chip->read_buf = qcom_nandc_read_buf; chip->write_buf = qcom_nandc_write_buf; /* * the bad block marker is readable only when we read the last codeword * of a page with ECC disabled. currently, the nand_base and nand_bbt * helpers don't allow us to read BB from a nand chip with ECC * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad * and block_markbad helpers until we permanently switch to using * MTD_OPS_RAW for all drivers (with the help of badblockbits) */ chip->block_bad = qcom_nandc_block_bad; chip->block_markbad = qcom_nandc_block_markbad; chip->controller = &nandc->controller; chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER | NAND_SKIP_BBTSCAN; /* set up initial status value */ host->status = NAND_STATUS_READY | NAND_STATUS_WP; ret = nand_scan_ident(mtd, 1, NULL); if (ret) return ret; ret = qcom_nand_host_setup(host); if (ret) return ret; ret = nand_scan_tail(mtd); if (ret) return ret; return mtd_device_register(mtd, NULL, 0); }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja249100.00%1100.00%
Total249100.00%1100.00%

/* parse custom DT properties here */
static int qcom_nandc_parse_dt(struct platform_device *pdev) { struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); struct device_node *np = nandc->dev->of_node; int ret; ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci); if (ret) { dev_err(nandc->dev, "command CRCI unspecified\n"); return ret; } ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci); if (ret) { dev_err(nandc->dev, "data CRCI unspecified\n"); return ret; } return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja102100.00%1100.00%
Total102100.00%1100.00%


static int qcom_nandc_probe(struct platform_device *pdev) { struct qcom_nand_controller *nandc; struct qcom_nand_host *host; const void *dev_data; struct device *dev = &pdev->dev; struct device_node *dn = dev->of_node, *child; struct resource *res; int ret; nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); if (!nandc) return -ENOMEM; platform_set_drvdata(pdev, nandc); nandc->dev = dev; dev_data = of_device_get_match_data(dev); if (!dev_data) { dev_err(&pdev->dev, "failed to get device data\n"); return -ENODEV; } nandc->ecc_modes = (unsigned long)dev_data; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nandc->base = devm_ioremap_resource(dev, res); if (IS_ERR(nandc->base)) return PTR_ERR(nandc->base); nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start); nandc->core_clk = devm_clk_get(dev, "core"); if (IS_ERR(nandc->core_clk)) return PTR_ERR(nandc->core_clk); nandc->aon_clk = devm_clk_get(dev, "aon"); if (IS_ERR(nandc->aon_clk)) return PTR_ERR(nandc->aon_clk); ret = qcom_nandc_parse_dt(pdev); if (ret) return ret; ret = qcom_nandc_alloc(nandc); if (ret) return ret; ret = clk_prepare_enable(nandc->core_clk); if (ret) goto err_core_clk; ret = clk_prepare_enable(nandc->aon_clk); if (ret) goto err_aon_clk; ret = qcom_nandc_setup(nandc); if (ret) goto err_setup; for_each_available_child_of_node(dn, child) { if (of_device_is_compatible(child, "qcom,nandcs")) { host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { of_node_put(child); ret = -ENOMEM; goto err_cs_init; } ret = qcom_nand_host_init(nandc, host, child); if (ret) { devm_kfree(dev, host); continue; } list_add_tail(&host->node, &nandc->host_list); } } if (list_empty(&nandc->host_list)) { ret = -ENODEV; goto err_cs_init; } return 0; err_cs_init: list_for_each_entry(host, &nandc->host_list, node) nand_release(nand_to_mtd(&host->chip)); err_setup: clk_disable_unprepare(nandc->aon_clk); err_aon_clk: clk_disable_unprepare(nandc->core_clk); err_core_clk: qcom_nandc_unalloc(nandc); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja483100.00%1100.00%
Total483100.00%1100.00%


static int qcom_nandc_remove(struct platform_device *pdev) { struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); struct qcom_nand_host *host; list_for_each_entry(host, &nandc->host_list, node) nand_release(nand_to_mtd(&host->chip)); qcom_nandc_unalloc(nandc); clk_disable_unprepare(nandc->aon_clk); clk_disable_unprepare(nandc->core_clk); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja67100.00%1100.00%
Total67100.00%1100.00%

#define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT) /* * data will hold a struct pointer containing more differences once we support * more controller variants */ static const struct of_device_id qcom_nandc_of_match[] = { { .compatible = "qcom,ipq806x-nand", .data = (void *)EBI2_NANDC_ECC_MODES, }, {} }; MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); static struct platform_driver qcom_nandc_driver = { .driver = { .name = "qcom-nandc", .of_match_table = qcom_nandc_of_match, }, .probe = qcom_nandc_probe, .remove = qcom_nandc_remove, }; module_platform_driver(qcom_nandc_driver); MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); MODULE_LICENSE("GPL v2");

Overall Contributors

PersonTokensPropCommitsCommitProp
archit tanejaarchit taneja862598.12%133.33%
boris brezillonboris brezillon1651.88%266.67%
Total8790100.00%3100.00%
Directory: drivers/mtd/nand
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
{% endraw %}