cregit-Linux how code gets into the kernel

Release 4.7 include/linux/log2.h

Directory: include/linux
/* Integer base 2 logarithm calculation
 *
 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_LOG2_H

#define _LINUX_LOG2_H

#include <linux/types.h>
#include <linux/bitops.h>

/*
 * deal with unrepresentable constant logarithms
 */
extern __attribute__((const, noreturn))
int ____ilog2_NaN(void);

/*
 * non-constant log of base 2 calculators
 * - the arch may override these in asm/bitops.h if they can be implemented
 *   more efficiently than using fls() and fls64()
 * - the arch is not required to handle n==0 if implementing the fallback
 */
#ifndef CONFIG_ARCH_HAS_ILOG2_U32
static inline __attribute__((const))

int __ilog2_u32(u32 n)
{
	return fls(n) - 1;
}
#endif

#ifndef CONFIG_ARCH_HAS_ILOG2_U64
static inline __attribute__((const))

int __ilog2_u64(u64 n)
{
	return fls64(n) - 1;
}
#endif

/*
 *  Determine whether some value is a power of two, where zero is
 * *not* considered a power of two.
 */

static inline __attribute__((const))

bool is_power_of_2(unsigned long n)
{
	return (n != 0 && ((n & (n - 1)) == 0));
}

/*
 * round up to nearest power of two
 */
static inline __attribute__((const))

unsigned long __roundup_pow_of_two(unsigned long n)
{
	return 1UL << fls_long(n - 1);
}

/*
 * round down to nearest power of two
 */
static inline __attribute__((const))

unsigned long __rounddown_pow_of_two(unsigned long n)
{
	return 1UL << (fls_long(n) - 1);
}

/**
 * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
 * @n - parameter
 *
 * constant-capable log of base 2 calculation
 * - this can be used to initialise global variables from constant data, hence
 *   the massive ternary operator construction
 *
 * selects the appropriately-sized optimised version depending on sizeof(n)
 */

#define ilog2(n)				\
(                                               \
        __builtin_constant_p(n) ? (             \
                (n) < 1 ? ____ilog2_NaN() :     \
                (n) & (1ULL << 63) ? 63 :       \
                (n) & (1ULL << 62) ? 62 :       \
                (n) & (1ULL << 61) ? 61 :       \
                (n) & (1ULL << 60) ? 60 :       \
                (n) & (1ULL << 59) ? 59 :       \
                (n) & (1ULL << 58) ? 58 :       \
                (n) & (1ULL << 57) ? 57 :       \
                (n) & (1ULL << 56) ? 56 :       \
                (n) & (1ULL << 55) ? 55 :       \
                (n) & (1ULL << 54) ? 54 :       \
                (n) & (1ULL << 53) ? 53 :       \
                (n) & (1ULL << 52) ? 52 :       \
                (n) & (1ULL << 51) ? 51 :       \
                (n) & (1ULL << 50) ? 50 :       \
                (n) & (1ULL << 49) ? 49 :       \
                (n) & (1ULL << 48) ? 48 :       \
                (n) & (1ULL << 47) ? 47 :       \
                (n) & (1ULL << 46) ? 46 :       \
                (n) & (1ULL << 45) ? 45 :       \
                (n) & (1ULL << 44) ? 44 :       \
                (n) & (1ULL << 43) ? 43 :       \
                (n) & (1ULL << 42) ? 42 :       \
                (n) & (1ULL << 41) ? 41 :       \
                (n) & (1ULL << 40) ? 40 :       \
                (n) & (1ULL << 39) ? 39 :       \
                (n) & (1ULL << 38) ? 38 :       \
                (n) & (1ULL << 37) ? 37 :       \
                (n) & (1ULL << 36) ? 36 :       \
                (n) & (1ULL << 35) ? 35 :       \
                (n) & (1ULL << 34) ? 34 :       \
                (n) & (1ULL << 33) ? 33 :       \
                (n) & (1ULL << 32) ? 32 :       \
                (n) & (1ULL << 31) ? 31 :       \
                (n) & (1ULL << 30) ? 30 :       \
                (n) & (1ULL << 29) ? 29 :       \
                (n) & (1ULL << 28) ? 28 :       \
                (n) & (1ULL << 27) ? 27 :       \
                (n) & (1ULL << 26) ? 26 :       \
                (n) & (1ULL << 25) ? 25 :       \
                (n) & (1ULL << 24) ? 24 :       \
                (n) & (1ULL << 23) ? 23 :       \
                (n) & (1ULL << 22) ? 22 :       \
                (n) & (1ULL << 21) ? 21 :       \
                (n) & (1ULL << 20) ? 20 :       \
                (n) & (1ULL << 19) ? 19 :       \
                (n) & (1ULL << 18) ? 18 :       \
                (n) & (1ULL << 17) ? 17 :       \
                (n) & (1ULL << 16) ? 16 :       \
                (n) & (1ULL << 15) ? 15 :       \
                (n) & (1ULL << 14) ? 14 :       \
                (n) & (1ULL << 13) ? 13 :       \
                (n) & (1ULL << 12) ? 12 :       \
                (n) & (1ULL << 11) ? 11 :       \
                (n) & (1ULL << 10) ? 10 :       \
                (n) & (1ULL <<  9) ?  9 :       \
                (n) & (1ULL <<  8) ?  8 :       \
                (n) & (1ULL <<  7) ?  7 :       \
                (n) & (1ULL <<  6) ?  6 :       \
                (n) & (1ULL <<  5) ?  5 :       \
                (n) & (1ULL <<  4) ?  4 :       \
                (n) & (1ULL <<  3) ?  3 :       \
                (n) & (1ULL <<  2) ?  2 :       \
                (n) & (1ULL <<  1) ?  1 :       \
                (n) & (1ULL <<  0) ?  0 :       \
                ____ilog2_NaN()                 \
                                   ) :          \
        (sizeof(n) <= 4) ?                      \
        __ilog2_u32(n) :                        \
        __ilog2_u64(n)                          \
 )

/**
 * roundup_pow_of_two - round the given value up to nearest power of two
 * @n - parameter
 *
 * round the given value up to the nearest power of two
 * - the result is undefined when n == 0
 * - this can be used to initialise global variables from constant data
 */

#define roundup_pow_of_two(n)			\
(                                               \
        __builtin_constant_p(n) ? (             \
                (n == 1) ? 1 :                  \
                (1UL << (ilog2((n) - 1) + 1))   \
                                   ) :          \
        __roundup_pow_of_two(n)                 \
 )

/**
 * rounddown_pow_of_two - round the given value down to nearest power of two
 * @n - parameter
 *
 * round the given value down to the nearest power of two
 * - the result is undefined when n == 0
 * - this can be used to initialise global variables from constant data
 */

#define rounddown_pow_of_two(n)			\
(                                               \
        __builtin_constant_p(n) ? (             \
                (1UL << ilog2(n))) :            \
        __rounddown_pow_of_two(n)               \
 )

/**
 * order_base_2 - calculate the (rounded up) base 2 order of the argument
 * @n: parameter
 *
 * The first few values calculated by this routine:
 *  ob2(0) = 0
 *  ob2(1) = 0
 *  ob2(2) = 1
 *  ob2(3) = 2
 *  ob2(4) = 2
 *  ob2(5) = 3
 *  ... and so on.
 */


#define order_base_2(n) ilog2(roundup_pow_of_two(n))

#endif /* _LINUX_LOG2_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
david howellsdavid howells12159.90%225.00%
robert p. j. dayrobert p. j. day7939.11%450.00%
rolf eike beerrolf eike beer10.50%112.50%
linus torvaldslinus torvalds10.50%112.50%
Total202100.00%8100.00%
Directory: include/linux
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
{% endraw %}