cregit-Linux how code gets into the kernel

Release 4.7 include/linux/slab.h

Directory: include/linux
/*
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
 * (C) SGI 2006, Christoph Lameter
 *      Cleaned up and restructured to ease the addition of alternative
 *      implementations of SLAB allocators.
 * (C) Linux Foundation 2008-2013
 *      Unified interface for all slab allocators
 */

#ifndef _LINUX_SLAB_H

#define	_LINUX_SLAB_H

#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/workqueue.h>


/*
 * Flags to pass to kmem_cache_create().
 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
 */

#define SLAB_CONSISTENCY_CHECKS	0x00000100UL	
/* DEBUG: Perform (expensive) checks on alloc/free */

#define SLAB_RED_ZONE		0x00000400UL	
/* DEBUG: Red zone objs in a cache */

#define SLAB_POISON		0x00000800UL	
/* DEBUG: Poison objects */

#define SLAB_HWCACHE_ALIGN	0x00002000UL	
/* Align objs on cache lines */

#define SLAB_CACHE_DMA		0x00004000UL	
/* Use GFP_DMA memory */

#define SLAB_STORE_USER		0x00010000UL	
/* DEBUG: Store the last owner for bug hunting */

#define SLAB_PANIC		0x00040000UL	
/* Panic if kmem_cache_create() fails */
/*
 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
 * This is useful if we need to approach a kernel structure obliquely,
 * from its address obtained without the usual locking. We can lock
 * the structure to stabilize it and check it's still at the given address,
 * only if we can be sure that the memory has not been meanwhile reused
 * for some other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */

#define SLAB_DESTROY_BY_RCU	0x00080000UL	
/* Defer freeing slabs to RCU */

#define SLAB_MEM_SPREAD		0x00100000UL	
/* Spread some memory over cpuset */

#define SLAB_TRACE		0x00200000UL	
/* Trace allocations and frees */

/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS

# define SLAB_DEBUG_OBJECTS	0x00400000UL
#else

# define SLAB_DEBUG_OBJECTS	0x00000000UL
#endif


#define SLAB_NOLEAKTRACE	0x00800000UL	
/* Avoid kmemleak tracing */

/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK

# define SLAB_NOTRACK		0x01000000UL
#else

# define SLAB_NOTRACK		0x00000000UL
#endif
#ifdef CONFIG_FAILSLAB

# define SLAB_FAILSLAB		0x02000000UL	
/* Fault injection mark */
#else

# define SLAB_FAILSLAB		0x00000000UL
#endif
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)

# define SLAB_ACCOUNT		0x04000000UL	
/* Account to memcg */
#else

# define SLAB_ACCOUNT		0x00000000UL
#endif

#ifdef CONFIG_KASAN

#define SLAB_KASAN		0x08000000UL
#else

#define SLAB_KASAN		0x00000000UL
#endif

/* The following flags affect the page allocator grouping pages by mobility */

#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		
/* Objects are reclaimable */

#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	
/* Objects are short-lived */
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */

#define ZERO_SIZE_PTR ((void *)16)


#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
                                (unsigned long)ZERO_SIZE_PTR)

#include <linux/kmemleak.h>
#include <linux/kasan.h>

struct mem_cgroup;
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
bool slab_is_available(void);

struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
			unsigned long,
			void (*)(void *));
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);

void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
void memcg_destroy_kmem_caches(struct mem_cgroup *);

/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */

#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
                sizeof(struct __struct), __alignof__(struct __struct),\
                (__flags), NULL)

/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);

/*
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than the alignment of a 64-bit integer.
 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 */
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8

#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN

#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN

#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
#else

#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

/*
 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 * Intended for arches that get misalignment faults even for 64 bit integer
 * aligned buffers.
 */
#ifndef ARCH_SLAB_MINALIGN

#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif

/*
 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 * aligned pointers.
 */

#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)

#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)

#define __assume_page_alignment __assume_aligned(PAGE_SIZE)

/*
 * Kmalloc array related definitions
 */

#ifdef CONFIG_SLAB
/*
 * The largest kmalloc size supported by the SLAB allocators is
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */

#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)

#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
#ifndef KMALLOC_SHIFT_LOW

#define KMALLOC_SHIFT_LOW	5
#endif
#endif

#ifdef CONFIG_SLUB
/*
 * SLUB directly allocates requests fitting in to an order-1 page
 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
 */

#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)

#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
#ifndef KMALLOC_SHIFT_LOW

#define KMALLOC_SHIFT_LOW	3
#endif
#endif

#ifdef CONFIG_SLOB
/*
 * SLOB passes all requests larger than one page to the page allocator.
 * No kmalloc array is necessary since objects of different sizes can
 * be allocated from the same page.
 */

#define KMALLOC_SHIFT_HIGH	PAGE_SHIFT

#define KMALLOC_SHIFT_MAX	30
#ifndef KMALLOC_SHIFT_LOW

#define KMALLOC_SHIFT_LOW	3
#endif
#endif

/* Maximum allocatable size */

#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */

#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
/* Maximum order allocatable via the slab allocagtor */

#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)

/*
 * Kmalloc subsystem.
 */
#ifndef KMALLOC_MIN_SIZE

#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
#endif

/*
 * This restriction comes from byte sized index implementation.
 * Page size is normally 2^12 bytes and, in this case, if we want to use
 * byte sized index which can represent 2^8 entries, the size of the object
 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 * If minimum size of kmalloc is less than 16, we use it as minimum object
 * size and give up to use byte sized index.
 */

#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                               (KMALLOC_MIN_SIZE) : 16)

#ifndef CONFIG_SLOB
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
#endif

/*
 * Figure out which kmalloc slab an allocation of a certain size
 * belongs to.
 * 0 = zero alloc
 * 1 =  65 .. 96 bytes
 * 2 = 129 .. 192 bytes
 * n = 2^(n-1)+1 .. 2^n
 */

static __always_inline int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter329100.00%1100.00%
Total329100.00%1100.00%

#endif /* !CONFIG_SLOB */ void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; void kmem_cache_free(struct kmem_cache *, void *); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); /* * Caller must not use kfree_bulk() on memory not originally allocated * by kmalloc(), because the SLOB allocator cannot handle this. */
static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); }

Contributors

PersonTokensPropCommitsCommitProp
jesper dangaard brouerjesper dangaard brouer24100.00%1100.00%
Total24100.00%1100.00%

#ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; #else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) { return __kmalloc(size, flags); }

Contributors

PersonTokensPropCommitsCommitProp
pekka j enbergpekka j enberg1144.00%116.67%
christoph lameterchristoph lameter624.00%233.33%
jaroslav kyselajaroslav kysela416.00%116.67%
xi wangxi wang312.00%116.67%
al viroal viro14.00%116.67%
Total25100.00%6100.00%


static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) { return kmem_cache_alloc(s, flags); }

Contributors

PersonTokensPropCommitsCommitProp
xi wangxi wang1348.15%133.33%
christoph lameterchristoph lameter1140.74%133.33%
pekka j enbergpekka j enberg311.11%133.33%
Total27100.00%3100.00%

#endif #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; #ifdef CONFIG_NUMA extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_slab_alignment __malloc; #else
static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_trace(s, gfpflags, size); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter2681.25%240.00%
paul mundtpaul mundt39.38%120.00%
manfred spraulmanfred spraul26.25%120.00%
al viroal viro13.12%120.00%
Total32100.00%5100.00%

#endif /* CONFIG_NUMA */ #else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) { void *ret = kmem_cache_alloc(s, flags); kasan_kmalloc(s, ret, size, flags); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
andrey ryabininandrey ryabinin1636.36%116.67%
christoph hellwigchristoph hellwig1431.82%116.67%
christoph lameterchristoph lameter1125.00%233.33%
alexander potapenkoalexander potapenko24.55%116.67%
paul mundtpaul mundt12.27%116.67%
Total44100.00%6100.00%


static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { void *ret = kmem_cache_alloc_node(s, gfpflags, node); kasan_kmalloc(s, ret, size, gfpflags); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter2857.14%240.00%
andrey ryabininandrey ryabinin1632.65%120.00%
paul mundtpaul mundt36.12%120.00%
alexander potapenkoalexander potapenko24.08%120.00%
Total49100.00%5100.00%

#endif /* CONFIG_TRACING */ extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #ifdef CONFIG_TRACING extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #else
static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter28100.00%1100.00%
Total28100.00%1100.00%

#endif
static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter33100.00%1100.00%
Total33100.00%1100.00%

/** * kmalloc - allocate memory * @size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The @flags argument may be one of: * * %GFP_USER - Allocate memory on behalf of user. May sleep. * * %GFP_KERNEL - Allocate normal kernel ram. May sleep. * * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. * For example, use this inside interrupt handlers. * * %GFP_HIGHUSER - Allocate pages from high memory. * * %GFP_NOIO - Do not do any I/O at all while trying to get memory. * * %GFP_NOFS - Do not make any fs calls while trying to get memory. * * %GFP_NOWAIT - Allocation will not sleep. * * %__GFP_THISNODE - Allocate node-local memory only. * * %GFP_DMA - Allocation suitable for DMA. * Should only be used for kmalloc() caches. Otherwise, use a * slab created with SLAB_DMA. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_COLD - Request cache-cold pages instead of * trying to return cache-warm pages. * * %__GFP_HIGH - This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY - If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN - If allocation fails, don't issue any warnings. * * %__GFP_REPEAT - If allocation fails initially, try once more before failing. * * There are other flags available as well, but these are not intended * for general use, and so are not documented here. For a full list of * potential flags, always refer to linux/gfp.h. */
static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); #ifndef CONFIG_SLOB if (!(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace(kmalloc_caches[index], flags, size); } #endif } return __kmalloc(size, flags); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter90100.00%1100.00%
Total90100.00%1100.00%

/* * Determine size used for the nth kmalloc cache. * return size or 0 if a kmalloc cache for that * size does not exist */
static __always_inline int kmalloc_size(int n) { #ifndef CONFIG_SLOB if (n > 2) return 1 << n; if (n == 1 && KMALLOC_MIN_SIZE <= 32) return 96; if (n == 2 && KMALLOC_MIN_SIZE <= 64) return 192; #endif return 0; }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter55100.00%1100.00%
Total55100.00%1100.00%


static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { #ifndef CONFIG_SLOB if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { int i = kmalloc_index(size); if (!i) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace(kmalloc_caches[i], flags, node, size); } #endif return __kmalloc_node(size, flags, node); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter83100.00%2100.00%
Total83100.00%2100.00%

struct memcg_cache_array { struct rcu_head rcu; struct kmem_cache *entries[0]; }; /* * This is the main placeholder for memcg-related information in kmem caches. * Both the root cache and the child caches will have it. For the root cache, * this will hold a dynamically allocated array large enough to hold * information about the currently limited memcgs in the system. To allow the * array to be accessed without taking any locks, on relocation we free the old * version only after a grace period. * * Child caches will hold extra metadata needed for its operation. Fields are: * * @memcg: pointer to the memcg this cache belongs to * @root_cache: pointer to the global, root cache, this cache was derived from * * Both root and child caches of the same kind are linked into a list chained * through @list. */ struct memcg_cache_params { bool is_root_cache; struct list_head list; union { struct memcg_cache_array __rcu *memcg_caches; struct { struct mem_cgroup *memcg; struct kmem_cache *root_cache; }; }; }; int memcg_update_all_caches(int num_memcgs); /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { if (size != 0 && n > SIZE_MAX / size) return NULL; return __kmalloc(n * size, flags); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter42100.00%1100.00%
Total42100.00%1100.00%

/** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter29100.00%1100.00%
Total29100.00%1100.00%

/* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, _RET_IP_) #ifdef CONFIG_NUMA extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ _RET_IP_) #else /* CONFIG_NUMA */ #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) #endif /* CONFIG_NUMA */ /* * Shortcuts */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) { return kmem_cache_alloc(k, flags | __GFP_ZERO); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter26100.00%1100.00%
Total26100.00%1100.00%

/** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */
static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); }

Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter24100.00%1100.00%
Total24100.00%1100.00%

/** * kzalloc_node - allocate zeroed memory from a particular memory node. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). * @node: memory node from which to allocate */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags | __GFP_ZERO, node); }

Contributors

PersonTokensPropCommitsCommitProp
jeff laytonjeff layton29100.00%1100.00%
Total29100.00%1100.00%

unsigned int kmem_cache_size(struct kmem_cache *s); void __init kmem_cache_init_late(void); #endif /* _LINUX_SLAB_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
christoph lameterchristoph lameter126767.94%1922.35%
rasmus villemoesrasmus villemoes874.66%33.53%
vladimir davydovvladimir davydov693.70%67.06%
pre-gitpre-git673.59%67.06%
christoph hellwigchristoph hellwig472.52%22.35%
andrey ryabininandrey ryabinin351.88%11.18%
jeff laytonjeff layton301.61%11.18%
jesper dangaard brouerjesper dangaard brouer271.45%33.53%
pekka j enbergpekka j enberg211.13%22.35%
alexander potapenkoalexander potapenko191.02%22.35%
dmitriy monakhovdmitriy monakhov160.86%11.18%
thomas gleixnerthomas gleixner160.86%11.18%
xi wangxi wang160.86%11.18%
vegard nossumvegard nossum160.86%11.18%
glauber costaglauber costa150.80%44.71%
johannes weinerjohannes weiner130.70%22.35%
mel gormanmel gorman110.59%11.18%
manfred spraulmanfred spraul90.48%22.35%
paul mundtpaul mundt90.48%22.35%
andrew mortonandrew morton90.48%33.53%
ezequiel garciaezequiel garcia90.48%11.18%
joonsoo kimjoonsoo kim70.38%33.53%
eduard gabriel munteanueduard gabriel munteanu60.32%11.18%
dave hansendave hansen60.32%11.18%
catalin marinascatalin marinas50.27%11.18%
paul jacksonpaul jackson50.27%11.18%
linus torvaldslinus torvalds40.21%22.35%
michael opdenackermichael opdenacker40.21%11.18%
hugh dickinshugh dickins40.21%11.18%
jaroslav kyselajaroslav kysela40.21%11.18%
matt mackallmatt mackall20.11%11.18%
al viroal viro20.11%11.18%
laura abbottlaura abbott20.11%11.18%
david rientjesdavid rientjes10.05%11.18%
alexey dobriyanalexey dobriyan10.05%11.18%
denis kirjanovdenis kirjanov10.05%11.18%
roland dreierroland dreier10.05%11.18%
andries brouwerandries brouwer10.05%11.18%
pascal terjanpascal terjan10.05%11.18%
Total1865100.00%85100.00%
Directory: include/linux
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
{% endraw %}