Release 4.7 include/linux/slab.h
/*
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
*
* (C) SGI 2006, Christoph Lameter
* Cleaned up and restructured to ease the addition of alternative
* implementations of SLAB allocators.
* (C) Linux Foundation 2008-2013
* Unified interface for all slab allocators
*/
#ifndef _LINUX_SLAB_H
#define _LINUX_SLAB_H
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/workqueue.h>
/*
* Flags to pass to kmem_cache_create().
* The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
*/
#define SLAB_CONSISTENCY_CHECKS 0x00000100UL
/* DEBUG: Perform (expensive) checks on alloc/free */
#define SLAB_RED_ZONE 0x00000400UL
/* DEBUG: Red zone objs in a cache */
#define SLAB_POISON 0x00000800UL
/* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN 0x00002000UL
/* Align objs on cache lines */
#define SLAB_CACHE_DMA 0x00004000UL
/* Use GFP_DMA memory */
#define SLAB_STORE_USER 0x00010000UL
/* DEBUG: Store the last owner for bug hunting */
#define SLAB_PANIC 0x00040000UL
/* Panic if kmem_cache_create() fails */
/*
* SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
*
* This delays freeing the SLAB page by a grace period, it does _NOT_
* delay object freeing. This means that if you do kmem_cache_free()
* that memory location is free to be reused at any time. Thus it may
* be possible to see another object there in the same RCU grace period.
*
* This feature only ensures the memory location backing the object
* stays valid, the trick to using this is relying on an independent
* object validation pass. Something like:
*
* rcu_read_lock()
* again:
* obj = lockless_lookup(key);
* if (obj) {
* if (!try_get_ref(obj)) // might fail for free objects
* goto again;
*
* if (obj->key != key) { // not the object we expected
* put_ref(obj);
* goto again;
* }
* }
* rcu_read_unlock();
*
* This is useful if we need to approach a kernel structure obliquely,
* from its address obtained without the usual locking. We can lock
* the structure to stabilize it and check it's still at the given address,
* only if we can be sure that the memory has not been meanwhile reused
* for some other kind of object (which our subsystem's lock might corrupt).
*
* rcu_read_lock before reading the address, then rcu_read_unlock after
* taking the spinlock within the structure expected at that address.
*/
#define SLAB_DESTROY_BY_RCU 0x00080000UL
/* Defer freeing slabs to RCU */
#define SLAB_MEM_SPREAD 0x00100000UL
/* Spread some memory over cpuset */
#define SLAB_TRACE 0x00200000UL
/* Trace allocations and frees */
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
# define SLAB_DEBUG_OBJECTS 0x00400000UL
#else
# define SLAB_DEBUG_OBJECTS 0x00000000UL
#endif
#define SLAB_NOLEAKTRACE 0x00800000UL
/* Avoid kmemleak tracing */
/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK
# define SLAB_NOTRACK 0x01000000UL
#else
# define SLAB_NOTRACK 0x00000000UL
#endif
#ifdef CONFIG_FAILSLAB
# define SLAB_FAILSLAB 0x02000000UL
/* Fault injection mark */
#else
# define SLAB_FAILSLAB 0x00000000UL
#endif
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
# define SLAB_ACCOUNT 0x04000000UL
/* Account to memcg */
#else
# define SLAB_ACCOUNT 0x00000000UL
#endif
#ifdef CONFIG_KASAN
#define SLAB_KASAN 0x08000000UL
#else
#define SLAB_KASAN 0x00000000UL
#endif
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL
/* Objects are reclaimable */
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT
/* Objects are short-lived */
/*
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
*
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
*
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
* Both make kfree a no-op.
*/
#define ZERO_SIZE_PTR ((void *)16)
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
(unsigned long)ZERO_SIZE_PTR)
#include <linux/kmemleak.h>
#include <linux/kasan.h>
struct mem_cgroup;
/*
* struct kmem_cache related prototypes
*/
void __init kmem_cache_init(void);
bool slab_is_available(void);
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
unsigned long,
void (*)(void *));
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
void memcg_destroy_kmem_caches(struct mem_cgroup *);
/*
* Please use this macro to create slab caches. Simply specify the
* name of the structure and maybe some flags that are listed above.
*
* The alignment of the struct determines object alignment. If you
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
* then the objects will be properly aligned in SMP configurations.
*/
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
sizeof(struct __struct), __alignof__(struct __struct),\
(__flags), NULL)
/*
* Common kmalloc functions provided by all allocators
*/
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);
/*
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
* alignment larger than the alignment of a 64-bit integer.
* Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
*/
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif
/*
* Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
* Intended for arches that get misalignment faults even for 64 bit integer
* aligned buffers.
*/
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif
/*
* kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
* pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
* aligned pointers.
*/
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
/*
* Kmalloc array related definitions
*/
#ifdef CONFIG_SLAB
/*
* The largest kmalloc size supported by the SLAB allocators is
* 32 megabyte (2^25) or the maximum allocatable page order if that is
* less than 32 MB.
*
* WARNING: Its not easy to increase this value since the allocators have
* to do various tricks to work around compiler limitations in order to
* ensure proper constant folding.
*/
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
(MAX_ORDER + PAGE_SHIFT - 1) : 25)
#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW 5
#endif
#endif
#ifdef CONFIG_SLUB
/*
* SLUB directly allocates requests fitting in to an order-1 page
* (PAGE_SIZE*2). Larger requests are passed to the page allocator.
*/
#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW 3
#endif
#endif
#ifdef CONFIG_SLOB
/*
* SLOB passes all requests larger than one page to the page allocator.
* No kmalloc array is necessary since objects of different sizes can
* be allocated from the same page.
*/
#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
#define KMALLOC_SHIFT_MAX 30
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW 3
#endif
#endif
/* Maximum allocatable size */
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */
#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
/* Maximum order allocatable via the slab allocagtor */
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
/*
* Kmalloc subsystem.
*/
#ifndef KMALLOC_MIN_SIZE
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
#endif
/*
* This restriction comes from byte sized index implementation.
* Page size is normally 2^12 bytes and, in this case, if we want to use
* byte sized index which can represent 2^8 entries, the size of the object
* should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
* If minimum size of kmalloc is less than 16, we use it as minimum object
* size and give up to use byte sized index.
*/
#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
(KMALLOC_MIN_SIZE) : 16)
#ifndef CONFIG_SLOB
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
#endif
/*
* Figure out which kmalloc slab an allocation of a certain size
* belongs to.
* 0 = zero alloc
* 1 = 65 .. 96 bytes
* 2 = 129 .. 192 bytes
* n = 2^(n-1)+1 .. 2^n
*/
static __always_inline int kmalloc_index(size_t size)
{
if (!size)
return 0;
if (size <= KMALLOC_MIN_SIZE)
return KMALLOC_SHIFT_LOW;
if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
return 1;
if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
return 2;
if (size <= 8) return 3;
if (size <= 16) return 4;
if (size <= 32) return 5;
if (size <= 64) return 6;
if (size <= 128) return 7;
if (size <= 256) return 8;
if (size <= 512) return 9;
if (size <= 1024) return 10;
if (size <= 2 * 1024) return 11;
if (size <= 4 * 1024) return 12;
if (size <= 8 * 1024) return 13;
if (size <= 16 * 1024) return 14;
if (size <= 32 * 1024) return 15;
if (size <= 64 * 1024) return 16;
if (size <= 128 * 1024) return 17;
if (size <= 256 * 1024) return 18;
if (size <= 512 * 1024) return 19;
if (size <= 1024 * 1024) return 20;
if (size <= 2 * 1024 * 1024) return 21;
if (size <= 4 * 1024 * 1024) return 22;
if (size <= 8 * 1024 * 1024) return 23;
if (size <= 16 * 1024 * 1024) return 24;
if (size <= 32 * 1024 * 1024) return 25;
if (size <= 64 * 1024 * 1024) return 26;
BUG();
/* Will never be reached. Needed because the compiler may complain */
return -1;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 329 | 100.00% | 1 | 100.00% |
| Total | 329 | 100.00% | 1 | 100.00% |
#endif /* !CONFIG_SLOB */
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
void kmem_cache_free(struct kmem_cache *, void *);
/*
* Bulk allocation and freeing operations. These are accelerated in an
* allocator specific way to avoid taking locks repeatedly or building
* metadata structures unnecessarily.
*
* Note that interrupts must be enabled when calling these functions.
*/
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
/*
* Caller must not use kfree_bulk() on memory not originally allocated
* by kmalloc(), because the SLOB allocator cannot handle this.
*/
static __always_inline void kfree_bulk(size_t size, void **p)
{
kmem_cache_free_bulk(NULL, size, p);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
jesper dangaard brouer | jesper dangaard brouer | 24 | 100.00% | 1 | 100.00% |
| Total | 24 | 100.00% | 1 | 100.00% |
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
#else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __kmalloc(size, flags);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
pekka j enberg | pekka j enberg | 11 | 44.00% | 1 | 16.67% |
christoph lameter | christoph lameter | 6 | 24.00% | 2 | 33.33% |
jaroslav kysela | jaroslav kysela | 4 | 16.00% | 1 | 16.67% |
xi wang | xi wang | 3 | 12.00% | 1 | 16.67% |
al viro | al viro | 1 | 4.00% | 1 | 16.67% |
| Total | 25 | 100.00% | 6 | 100.00% |
static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
{
return kmem_cache_alloc(s, flags);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
xi wang | xi wang | 13 | 48.15% | 1 | 33.33% |
christoph lameter | christoph lameter | 11 | 40.74% | 1 | 33.33% |
pekka j enberg | pekka j enberg | 3 | 11.11% | 1 | 33.33% |
| Total | 27 | 100.00% | 3 | 100.00% |
#endif
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size) __assume_slab_alignment __malloc;
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
return kmem_cache_alloc_trace(s, gfpflags, size);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 26 | 81.25% | 2 | 40.00% |
paul mundt | paul mundt | 3 | 9.38% | 1 | 20.00% |
manfred spraul | manfred spraul | 2 | 6.25% | 1 | 20.00% |
al viro | al viro | 1 | 3.12% | 1 | 20.00% |
| Total | 32 | 100.00% | 5 | 100.00% |
#endif /* CONFIG_NUMA */
#else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
gfp_t flags, size_t size)
{
void *ret = kmem_cache_alloc(s, flags);
kasan_kmalloc(s, ret, size, flags);
return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
andrey ryabinin | andrey ryabinin | 16 | 36.36% | 1 | 16.67% |
christoph hellwig | christoph hellwig | 14 | 31.82% | 1 | 16.67% |
christoph lameter | christoph lameter | 11 | 25.00% | 2 | 33.33% |
alexander potapenko | alexander potapenko | 2 | 4.55% | 1 | 16.67% |
paul mundt | paul mundt | 1 | 2.27% | 1 | 16.67% |
| Total | 44 | 100.00% | 6 | 100.00% |
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
void *ret = kmem_cache_alloc_node(s, gfpflags, node);
kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 28 | 57.14% | 2 | 40.00% |
andrey ryabinin | andrey ryabinin | 16 | 32.65% | 1 | 20.00% |
paul mundt | paul mundt | 3 | 6.12% | 1 | 20.00% |
alexander potapenko | alexander potapenko | 2 | 4.08% | 1 | 20.00% |
| Total | 49 | 100.00% | 5 | 100.00% |
#endif /* CONFIG_TRACING */
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
#ifdef CONFIG_TRACING
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
#else
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
return kmalloc_order(size, flags, order);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 28 | 100.00% | 1 | 100.00% |
| Total | 28 | 100.00% | 1 | 100.00% |
#endif
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
unsigned int order = get_order(size);
return kmalloc_order_trace(size, flags, order);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 33 | 100.00% | 1 | 100.00% |
| Total | 33 | 100.00% | 1 | 100.00% |
/**
* kmalloc - allocate memory
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* kmalloc is the normal method of allocating memory
* for objects smaller than page size in the kernel.
*
* The @flags argument may be one of:
*
* %GFP_USER - Allocate memory on behalf of user. May sleep.
*
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
*
* %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
* For example, use this inside interrupt handlers.
*
* %GFP_HIGHUSER - Allocate pages from high memory.
*
* %GFP_NOIO - Do not do any I/O at all while trying to get memory.
*
* %GFP_NOFS - Do not make any fs calls while trying to get memory.
*
* %GFP_NOWAIT - Allocation will not sleep.
*
* %__GFP_THISNODE - Allocate node-local memory only.
*
* %GFP_DMA - Allocation suitable for DMA.
* Should only be used for kmalloc() caches. Otherwise, use a
* slab created with SLAB_DMA.
*
* Also it is possible to set different flags by OR'ing
* in one or more of the following additional @flags:
*
* %__GFP_COLD - Request cache-cold pages instead of
* trying to return cache-warm pages.
*
* %__GFP_HIGH - This allocation has high priority and may use emergency pools.
*
* %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
* (think twice before using).
*
* %__GFP_NORETRY - If memory is not immediately available,
* then give up at once.
*
* %__GFP_NOWARN - If allocation fails, don't issue any warnings.
*
* %__GFP_REPEAT - If allocation fails initially, try once more before failing.
*
* There are other flags available as well, but these are not intended
* for general use, and so are not documented here. For a full list of
* potential flags, always refer to linux/gfp.h.
*/
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
if (__builtin_constant_p(size)) {
if (size > KMALLOC_MAX_CACHE_SIZE)
return kmalloc_large(size, flags);
#ifndef CONFIG_SLOB
if (!(flags & GFP_DMA)) {
int index = kmalloc_index(size);
if (!index)
return ZERO_SIZE_PTR;
return kmem_cache_alloc_trace(kmalloc_caches[index],
flags, size);
}
#endif
}
return __kmalloc(size, flags);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 90 | 100.00% | 1 | 100.00% |
| Total | 90 | 100.00% | 1 | 100.00% |
/*
* Determine size used for the nth kmalloc cache.
* return size or 0 if a kmalloc cache for that
* size does not exist
*/
static __always_inline int kmalloc_size(int n)
{
#ifndef CONFIG_SLOB
if (n > 2)
return 1 << n;
if (n == 1 && KMALLOC_MIN_SIZE <= 32)
return 96;
if (n == 2 && KMALLOC_MIN_SIZE <= 64)
return 192;
#endif
return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 55 | 100.00% | 1 | 100.00% |
| Total | 55 | 100.00% | 1 | 100.00% |
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
#ifndef CONFIG_SLOB
if (__builtin_constant_p(size) &&
size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
int i = kmalloc_index(size);
if (!i)
return ZERO_SIZE_PTR;
return kmem_cache_alloc_node_trace(kmalloc_caches[i],
flags, node, size);
}
#endif
return __kmalloc_node(size, flags, node);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 83 | 100.00% | 2 | 100.00% |
| Total | 83 | 100.00% | 2 | 100.00% |
struct memcg_cache_array {
struct rcu_head rcu;
struct kmem_cache *entries[0];
};
/*
* This is the main placeholder for memcg-related information in kmem caches.
* Both the root cache and the child caches will have it. For the root cache,
* this will hold a dynamically allocated array large enough to hold
* information about the currently limited memcgs in the system. To allow the
* array to be accessed without taking any locks, on relocation we free the old
* version only after a grace period.
*
* Child caches will hold extra metadata needed for its operation. Fields are:
*
* @memcg: pointer to the memcg this cache belongs to
* @root_cache: pointer to the global, root cache, this cache was derived from
*
* Both root and child caches of the same kind are linked into a list chained
* through @list.
*/
struct memcg_cache_params {
bool is_root_cache;
struct list_head list;
union {
struct memcg_cache_array __rcu *memcg_caches;
struct {
struct mem_cgroup *memcg;
struct kmem_cache *root_cache;
};
};
};
int memcg_update_all_caches(int num_memcgs);
/**
* kmalloc_array - allocate memory for an array.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
{
if (size != 0 && n > SIZE_MAX / size)
return NULL;
return __kmalloc(n * size, flags);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 42 | 100.00% | 1 | 100.00% |
| Total | 42 | 100.00% | 1 | 100.00% |
/**
* kcalloc - allocate memory for an array. The memory is set to zero.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
return kmalloc_array(n, size, flags | __GFP_ZERO);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 29 | 100.00% | 1 | 100.00% |
| Total | 29 | 100.00% | 1 | 100.00% |
/*
* kmalloc_track_caller is a special version of kmalloc that records the
* calling function of the routine calling it for slab leak tracking instead
* of just the calling function (confusing, eh?).
* It's useful when the call to kmalloc comes from a widely-used standard
* allocator where we care about the real place the memory allocation
* request comes from.
*/
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
#define kmalloc_track_caller(size, flags) \
__kmalloc_track_caller(size, flags, _RET_IP_)
#ifdef CONFIG_NUMA
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node_track_caller(size, flags, node, \
_RET_IP_)
#else /* CONFIG_NUMA */
#define kmalloc_node_track_caller(size, flags, node) \
kmalloc_track_caller(size, flags)
#endif /* CONFIG_NUMA */
/*
* Shortcuts
*/
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
return kmem_cache_alloc(k, flags | __GFP_ZERO);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 26 | 100.00% | 1 | 100.00% |
| Total | 26 | 100.00% | 1 | 100.00% |
/**
* kzalloc - allocate memory. The memory is set to zero.
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kzalloc(size_t size, gfp_t flags)
{
return kmalloc(size, flags | __GFP_ZERO);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 24 | 100.00% | 1 | 100.00% |
| Total | 24 | 100.00% | 1 | 100.00% |
/**
* kzalloc_node - allocate zeroed memory from a particular memory node.
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
* @node: memory node from which to allocate
*/
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
return kmalloc_node(size, flags | __GFP_ZERO, node);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp |
jeff layton | jeff layton | 29 | 100.00% | 1 | 100.00% |
| Total | 29 | 100.00% | 1 | 100.00% |
unsigned int kmem_cache_size(struct kmem_cache *s);
void __init kmem_cache_init_late(void);
#endif /* _LINUX_SLAB_H */
Overall Contributors
| Person | Tokens | Prop | Commits | CommitProp |
christoph lameter | christoph lameter | 1267 | 67.94% | 19 | 22.35% |
rasmus villemoes | rasmus villemoes | 87 | 4.66% | 3 | 3.53% |
vladimir davydov | vladimir davydov | 69 | 3.70% | 6 | 7.06% |
pre-git | pre-git | 67 | 3.59% | 6 | 7.06% |
christoph hellwig | christoph hellwig | 47 | 2.52% | 2 | 2.35% |
andrey ryabinin | andrey ryabinin | 35 | 1.88% | 1 | 1.18% |
jeff layton | jeff layton | 30 | 1.61% | 1 | 1.18% |
jesper dangaard brouer | jesper dangaard brouer | 27 | 1.45% | 3 | 3.53% |
pekka j enberg | pekka j enberg | 21 | 1.13% | 2 | 2.35% |
alexander potapenko | alexander potapenko | 19 | 1.02% | 2 | 2.35% |
dmitriy monakhov | dmitriy monakhov | 16 | 0.86% | 1 | 1.18% |
thomas gleixner | thomas gleixner | 16 | 0.86% | 1 | 1.18% |
xi wang | xi wang | 16 | 0.86% | 1 | 1.18% |
vegard nossum | vegard nossum | 16 | 0.86% | 1 | 1.18% |
glauber costa | glauber costa | 15 | 0.80% | 4 | 4.71% |
johannes weiner | johannes weiner | 13 | 0.70% | 2 | 2.35% |
mel gorman | mel gorman | 11 | 0.59% | 1 | 1.18% |
manfred spraul | manfred spraul | 9 | 0.48% | 2 | 2.35% |
paul mundt | paul mundt | 9 | 0.48% | 2 | 2.35% |
andrew morton | andrew morton | 9 | 0.48% | 3 | 3.53% |
ezequiel garcia | ezequiel garcia | 9 | 0.48% | 1 | 1.18% |
joonsoo kim | joonsoo kim | 7 | 0.38% | 3 | 3.53% |
eduard gabriel munteanu | eduard gabriel munteanu | 6 | 0.32% | 1 | 1.18% |
dave hansen | dave hansen | 6 | 0.32% | 1 | 1.18% |
catalin marinas | catalin marinas | 5 | 0.27% | 1 | 1.18% |
paul jackson | paul jackson | 5 | 0.27% | 1 | 1.18% |
linus torvalds | linus torvalds | 4 | 0.21% | 2 | 2.35% |
michael opdenacker | michael opdenacker | 4 | 0.21% | 1 | 1.18% |
hugh dickins | hugh dickins | 4 | 0.21% | 1 | 1.18% |
jaroslav kysela | jaroslav kysela | 4 | 0.21% | 1 | 1.18% |
matt mackall | matt mackall | 2 | 0.11% | 1 | 1.18% |
al viro | al viro | 2 | 0.11% | 1 | 1.18% |
laura abbott | laura abbott | 2 | 0.11% | 1 | 1.18% |
david rientjes | david rientjes | 1 | 0.05% | 1 | 1.18% |
alexey dobriyan | alexey dobriyan | 1 | 0.05% | 1 | 1.18% |
denis kirjanov | denis kirjanov | 1 | 0.05% | 1 | 1.18% |
roland dreier | roland dreier | 1 | 0.05% | 1 | 1.18% |
andries brouwer | andries brouwer | 1 | 0.05% | 1 | 1.18% |
pascal terjan | pascal terjan | 1 | 0.05% | 1 | 1.18% |
| Total | 1865 | 100.00% | 85 | 100.00% |
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.