Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 2249 | 66.34% | 8 | 16.67% |
Al Viro | 750 | 22.12% | 7 | 14.58% |
Hanna V. Linder | 103 | 3.04% | 1 | 2.08% |
Andrew Morton | 50 | 1.47% | 2 | 4.17% |
Sudip Mukherjee | 36 | 1.06% | 1 | 2.08% |
Jonathan Corbet | 34 | 1.00% | 1 | 2.08% |
Linus Torvalds | 32 | 0.94% | 4 | 8.33% |
Arnaldo Carvalho de Melo | 28 | 0.83% | 1 | 2.08% |
Andries E. Brouwer | 22 | 0.65% | 1 | 2.08% |
Arnd Bergmann | 22 | 0.65% | 2 | 4.17% |
Dan Carpenter | 21 | 0.62% | 3 | 6.25% |
Rusty Russell | 13 | 0.38% | 2 | 4.17% |
Greg Kroah-Hartman | 12 | 0.35% | 5 | 10.42% |
Tim Schmielau | 7 | 0.21% | 1 | 2.08% |
Akinobu Mita | 2 | 0.06% | 1 | 2.08% |
Christoph Hellwig | 2 | 0.06% | 1 | 2.08% |
Roel Kluin | 1 | 0.03% | 1 | 2.08% |
Nishanth Aravamudan | 1 | 0.03% | 1 | 2.08% |
Adrian Bunk | 1 | 0.03% | 1 | 2.08% |
Masahiro Yamada | 1 | 0.03% | 1 | 2.08% |
Tony Jones | 1 | 0.03% | 1 | 2.08% |
Tero Roponen | 1 | 0.03% | 1 | 2.08% |
Arjan van de Ven | 1 | 0.03% | 1 | 2.08% |
Total | 3390 | 48 |
/* pg.c (c) 1998 Grant R. Guenther <grant@torque.net> Under the terms of the GNU General Public License. The pg driver provides a simple character device interface for sending ATAPI commands to a device. With the exception of the ATAPI reset operation, all operations are performed by a pair of read and write operations to the appropriate /dev/pgN device. A write operation delivers a command and any outbound data in a single buffer. Normally, the write will succeed unless the device is offline or malfunctioning, or there is already another command pending. If the write succeeds, it should be followed immediately by a read operation, to obtain any returned data and status information. A read will fail if there is no operation in progress. As a special case, the device can be reset with a write operation, and in this case, no following read is expected, or permitted. There are no ioctl() operations. Any single operation may transfer at most PG_MAX_DATA bytes. Note that the driver must copy the data through an internal buffer. In keeping with all current ATAPI devices, command packets are assumed to be exactly 12 bytes in length. To permit future changes to this interface, the headers in the read and write buffers contain a single character "magic" flag. Currently this flag must be the character "P". By default, the driver will autoprobe for a single parallel port ATAPI device, but if their individual parameters are specified, the driver can handle up to 4 devices. To use this device, you must have the following device special files defined: /dev/pg0 c 97 0 /dev/pg1 c 97 1 /dev/pg2 c 97 2 /dev/pg3 c 97 3 (You'll need to change the 97 to something else if you use the 'major' parameter to install the driver on a different major number.) The behaviour of the pg driver can be altered by setting some parameters from the insmod command line. The following parameters are adjustable: drive0 These four arguments can be arrays of drive1 1-6 integers as follows: drive2 drive3 <prt>,<pro>,<uni>,<mod>,<slv>,<dly> Where, <prt> is the base of the parallel port address for the corresponding drive. (required) <pro> is the protocol number for the adapter that supports this drive. These numbers are logged by 'paride' when the protocol modules are initialised. (0 if not given) <uni> for those adapters that support chained devices, this is the unit selector for the chain of devices on the given port. It should be zero for devices that don't support chaining. (0 if not given) <mod> this can be -1 to choose the best mode, or one of the mode numbers supported by the adapter. (-1 if not given) <slv> ATAPI devices can be jumpered to master or slave. Set this to 0 to choose the master drive, 1 to choose the slave, -1 (the default) to choose the first drive found. <dly> some parallel ports require the driver to go more slowly. -1 sets a default value that should work with the chosen protocol. Otherwise, set this to a small integer, the larger it is the slower the port i/o. In some cases, setting this to zero will speed up the device. (default -1) major You may use this parameter to override the default major number (97) that this driver will use. Be sure to change the device name as well. name This parameter is a character string that contains the name the kernel will use for this device (in /proc output, for instance). (default "pg"). verbose This parameter controls the amount of logging that is done by the driver. Set it to 0 for quiet operation, to 1 to enable progress messages while the driver probes for devices, or to 2 for full debug logging. (default 0) If this driver is built into the kernel, you can use the following command line parameters, with the same values as the corresponding module parameters listed above: pg.drive0 pg.drive1 pg.drive2 pg.drive3 In addition, you can use the parameter pg.disable to disable the driver entirely. */ /* Changes: 1.01 GRG 1998.06.16 Bug fixes 1.02 GRG 1998.09.24 Added jumbo support */ #define PG_VERSION "1.02" #define PG_MAJOR 97 #define PG_NAME "pg" #define PG_UNITS 4 #ifndef PI_PG #define PI_PG 4 #endif #include <linux/types.h> /* Here are things one can override from the insmod command. Most are autoprobed by paride unless set here. Verbose is 0 by default. */ static int verbose; static int major = PG_MAJOR; static char *name = PG_NAME; static int disable = 0; static int drive0[6] = { 0, 0, 0, -1, -1, -1 }; static int drive1[6] = { 0, 0, 0, -1, -1, -1 }; static int drive2[6] = { 0, 0, 0, -1, -1, -1 }; static int drive3[6] = { 0, 0, 0, -1, -1, -1 }; static int (*drives[4])[6] = {&drive0, &drive1, &drive2, &drive3}; static int pg_drive_count; enum {D_PRT, D_PRO, D_UNI, D_MOD, D_SLV, D_DLY}; /* end of parameters */ #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/mtio.h> #include <linux/pg.h> #include <linux/device.h> #include <linux/sched.h> /* current, TASK_* */ #include <linux/mutex.h> #include <linux/jiffies.h> #include <linux/uaccess.h> module_param(verbose, int, 0644); module_param(major, int, 0); module_param(name, charp, 0); module_param_array(drive0, int, NULL, 0); module_param_array(drive1, int, NULL, 0); module_param_array(drive2, int, NULL, 0); module_param_array(drive3, int, NULL, 0); #include "paride.h" #define PG_SPIN_DEL 50 /* spin delay in micro-seconds */ #define PG_SPIN 200 #define PG_TMO HZ #define PG_RESET_TMO 10*HZ #define STAT_ERR 0x01 #define STAT_INDEX 0x02 #define STAT_ECC 0x04 #define STAT_DRQ 0x08 #define STAT_SEEK 0x10 #define STAT_WRERR 0x20 #define STAT_READY 0x40 #define STAT_BUSY 0x80 #define ATAPI_IDENTIFY 0x12 static DEFINE_MUTEX(pg_mutex); static int pg_open(struct inode *inode, struct file *file); static int pg_release(struct inode *inode, struct file *file); static ssize_t pg_read(struct file *filp, char __user *buf, size_t count, loff_t * ppos); static ssize_t pg_write(struct file *filp, const char __user *buf, size_t count, loff_t * ppos); static int pg_detect(void); #define PG_NAMELEN 8 struct pg { struct pi_adapter pia; /* interface to paride layer */ struct pi_adapter *pi; int busy; /* write done, read expected */ int start; /* jiffies at command start */ int dlen; /* transfer size requested */ unsigned long timeout; /* timeout requested */ int status; /* last sense key */ int drive; /* drive */ unsigned long access; /* count of active opens ... */ int present; /* device present ? */ char *bufptr; char name[PG_NAMELEN]; /* pg0, pg1, ... */ }; static struct pg devices[PG_UNITS]; static int pg_identify(struct pg *dev, int log); static char pg_scratch[512]; /* scratch block buffer */ static struct class *pg_class; static void *par_drv; /* reference of parport driver */ /* kernel glue structures */ static const struct file_operations pg_fops = { .owner = THIS_MODULE, .read = pg_read, .write = pg_write, .open = pg_open, .release = pg_release, .llseek = noop_llseek, }; static void pg_init_units(void) { int unit; pg_drive_count = 0; for (unit = 0; unit < PG_UNITS; unit++) { int *parm = *drives[unit]; struct pg *dev = &devices[unit]; dev->pi = &dev->pia; clear_bit(0, &dev->access); dev->busy = 0; dev->present = 0; dev->bufptr = NULL; dev->drive = parm[D_SLV]; snprintf(dev->name, PG_NAMELEN, "%s%c", name, 'a'+unit); if (parm[D_PRT]) pg_drive_count++; } } static inline int status_reg(struct pg *dev) { return pi_read_regr(dev->pi, 1, 6); } static inline int read_reg(struct pg *dev, int reg) { return pi_read_regr(dev->pi, 0, reg); } static inline void write_reg(struct pg *dev, int reg, int val) { pi_write_regr(dev->pi, 0, reg, val); } static inline u8 DRIVE(struct pg *dev) { return 0xa0+0x10*dev->drive; } static void pg_sleep(int cs) { schedule_timeout_interruptible(cs); } static int pg_wait(struct pg *dev, int go, int stop, unsigned long tmo, char *msg) { int j, r, e, s, p, to; dev->status = 0; j = 0; while ((((r = status_reg(dev)) & go) || (stop && (!(r & stop)))) && time_before(jiffies, tmo)) { if (j++ < PG_SPIN) udelay(PG_SPIN_DEL); else pg_sleep(1); } to = time_after_eq(jiffies, tmo); if ((r & (STAT_ERR & stop)) || to) { s = read_reg(dev, 7); e = read_reg(dev, 1); p = read_reg(dev, 2); if (verbose > 1) printk("%s: %s: stat=0x%x err=0x%x phase=%d%s\n", dev->name, msg, s, e, p, to ? " timeout" : ""); if (to) e |= 0x100; dev->status = (e >> 4) & 0xff; return -1; } return 0; } static int pg_command(struct pg *dev, char *cmd, int dlen, unsigned long tmo) { int k; pi_connect(dev->pi); write_reg(dev, 6, DRIVE(dev)); if (pg_wait(dev, STAT_BUSY | STAT_DRQ, 0, tmo, "before command")) goto fail; write_reg(dev, 4, dlen % 256); write_reg(dev, 5, dlen / 256); write_reg(dev, 7, 0xa0); /* ATAPI packet command */ if (pg_wait(dev, STAT_BUSY, STAT_DRQ, tmo, "command DRQ")) goto fail; if (read_reg(dev, 2) != 1) { printk("%s: command phase error\n", dev->name); goto fail; } pi_write_block(dev->pi, cmd, 12); if (verbose > 1) { printk("%s: Command sent, dlen=%d packet= ", dev->name, dlen); for (k = 0; k < 12; k++) printk("%02x ", cmd[k] & 0xff); printk("\n"); } return 0; fail: pi_disconnect(dev->pi); return -1; } static int pg_completion(struct pg *dev, char *buf, unsigned long tmo) { int r, d, n, p; r = pg_wait(dev, STAT_BUSY, STAT_DRQ | STAT_READY | STAT_ERR, tmo, "completion"); dev->dlen = 0; while (read_reg(dev, 7) & STAT_DRQ) { d = (read_reg(dev, 4) + 256 * read_reg(dev, 5)); n = ((d + 3) & 0xfffc); p = read_reg(dev, 2) & 3; if (p == 0) pi_write_block(dev->pi, buf, n); if (p == 2) pi_read_block(dev->pi, buf, n); if (verbose > 1) printk("%s: %s %d bytes\n", dev->name, p ? "Read" : "Write", n); dev->dlen += (1 - p) * d; buf += d; r = pg_wait(dev, STAT_BUSY, STAT_DRQ | STAT_READY | STAT_ERR, tmo, "completion"); } pi_disconnect(dev->pi); return r; } static int pg_reset(struct pg *dev) { int i, k, err; int expect[5] = { 1, 1, 1, 0x14, 0xeb }; int got[5]; pi_connect(dev->pi); write_reg(dev, 6, DRIVE(dev)); write_reg(dev, 7, 8); pg_sleep(20 * HZ / 1000); k = 0; while ((k++ < PG_RESET_TMO) && (status_reg(dev) & STAT_BUSY)) pg_sleep(1); for (i = 0; i < 5; i++) got[i] = read_reg(dev, i + 1); err = memcmp(expect, got, sizeof(got)) ? -1 : 0; if (verbose) { printk("%s: Reset (%d) signature = ", dev->name, k); for (i = 0; i < 5; i++) printk("%3x", got[i]); if (err) printk(" (incorrect)"); printk("\n"); } pi_disconnect(dev->pi); return err; } static void xs(char *buf, char *targ, int len) { char l = '\0'; int k; for (k = 0; k < len; k++) { char c = *buf++; if (c != ' ' && c != l) l = *targ++ = c; } if (l == ' ') targ--; *targ = '\0'; } static int pg_identify(struct pg *dev, int log) { int s; char *ms[2] = { "master", "slave" }; char mf[10], id[18]; char id_cmd[12] = { ATAPI_IDENTIFY, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0 }; char buf[36]; s = pg_command(dev, id_cmd, 36, jiffies + PG_TMO); if (s) return -1; s = pg_completion(dev, buf, jiffies + PG_TMO); if (s) return -1; if (log) { xs(buf + 8, mf, 8); xs(buf + 16, id, 16); printk("%s: %s %s, %s\n", dev->name, mf, id, ms[dev->drive]); } return 0; } /* * returns 0, with id set if drive is detected * -1, if drive detection failed */ static int pg_probe(struct pg *dev) { if (dev->drive == -1) { for (dev->drive = 0; dev->drive <= 1; dev->drive++) if (!pg_reset(dev)) return pg_identify(dev, 1); } else { if (!pg_reset(dev)) return pg_identify(dev, 1); } return -1; } static int pg_detect(void) { struct pg *dev = &devices[0]; int k, unit; printk("%s: %s version %s, major %d\n", name, name, PG_VERSION, major); par_drv = pi_register_driver(name); if (!par_drv) { pr_err("failed to register %s driver\n", name); return -1; } k = 0; if (pg_drive_count == 0) { if (pi_init(dev->pi, 1, -1, -1, -1, -1, -1, pg_scratch, PI_PG, verbose, dev->name)) { if (!pg_probe(dev)) { dev->present = 1; k++; } else pi_release(dev->pi); } } else for (unit = 0; unit < PG_UNITS; unit++, dev++) { int *parm = *drives[unit]; if (!parm[D_PRT]) continue; if (pi_init(dev->pi, 0, parm[D_PRT], parm[D_MOD], parm[D_UNI], parm[D_PRO], parm[D_DLY], pg_scratch, PI_PG, verbose, dev->name)) { if (!pg_probe(dev)) { dev->present = 1; k++; } else pi_release(dev->pi); } } if (k) return 0; pi_unregister_driver(par_drv); printk("%s: No ATAPI device detected\n", name); return -1; } static int pg_open(struct inode *inode, struct file *file) { int unit = iminor(inode) & 0x7f; struct pg *dev = &devices[unit]; int ret = 0; mutex_lock(&pg_mutex); if ((unit >= PG_UNITS) || (!dev->present)) { ret = -ENODEV; goto out; } if (test_and_set_bit(0, &dev->access)) { ret = -EBUSY; goto out; } if (dev->busy) { pg_reset(dev); dev->busy = 0; } pg_identify(dev, (verbose > 1)); dev->bufptr = kmalloc(PG_MAX_DATA, GFP_KERNEL); if (dev->bufptr == NULL) { clear_bit(0, &dev->access); printk("%s: buffer allocation failed\n", dev->name); ret = -ENOMEM; goto out; } file->private_data = dev; out: mutex_unlock(&pg_mutex); return ret; } static int pg_release(struct inode *inode, struct file *file) { struct pg *dev = file->private_data; kfree(dev->bufptr); dev->bufptr = NULL; clear_bit(0, &dev->access); return 0; } static ssize_t pg_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct pg *dev = filp->private_data; struct pg_write_hdr hdr; int hs = sizeof (hdr); if (dev->busy) return -EBUSY; if (count < hs) return -EINVAL; if (copy_from_user(&hdr, buf, hs)) return -EFAULT; if (hdr.magic != PG_MAGIC) return -EINVAL; if (hdr.dlen < 0 || hdr.dlen > PG_MAX_DATA) return -EINVAL; if ((count - hs) > PG_MAX_DATA) return -EINVAL; if (hdr.func == PG_RESET) { if (count != hs) return -EINVAL; if (pg_reset(dev)) return -EIO; return count; } if (hdr.func != PG_COMMAND) return -EINVAL; dev->start = jiffies; dev->timeout = hdr.timeout * HZ + HZ / 2 + jiffies; if (pg_command(dev, hdr.packet, hdr.dlen, jiffies + PG_TMO)) { if (dev->status & 0x10) return -ETIME; return -EIO; } dev->busy = 1; if (copy_from_user(dev->bufptr, buf + hs, count - hs)) return -EFAULT; return count; } static ssize_t pg_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { struct pg *dev = filp->private_data; struct pg_read_hdr hdr; int hs = sizeof (hdr); int copy; if (!dev->busy) return -EINVAL; if (count < hs) return -EINVAL; dev->busy = 0; if (pg_completion(dev, dev->bufptr, dev->timeout)) if (dev->status & 0x10) return -ETIME; memset(&hdr, 0, sizeof(hdr)); hdr.magic = PG_MAGIC; hdr.dlen = dev->dlen; copy = 0; if (hdr.dlen < 0) { hdr.dlen = -1 * hdr.dlen; copy = hdr.dlen; if (copy > (count - hs)) copy = count - hs; } hdr.duration = (jiffies - dev->start + HZ / 2) / HZ; hdr.scsi = dev->status & 0x0f; if (copy_to_user(buf, &hdr, hs)) return -EFAULT; if (copy > 0) if (copy_to_user(buf + hs, dev->bufptr, copy)) return -EFAULT; return copy + hs; } static int __init pg_init(void) { int unit; int err; if (disable){ err = -EINVAL; goto out; } pg_init_units(); if (pg_detect()) { err = -ENODEV; goto out; } err = register_chrdev(major, name, &pg_fops); if (err < 0) { printk("pg_init: unable to get major number %d\n", major); for (unit = 0; unit < PG_UNITS; unit++) { struct pg *dev = &devices[unit]; if (dev->present) pi_release(dev->pi); } goto out; } major = err; /* In case the user specified `major=0' (dynamic) */ pg_class = class_create(THIS_MODULE, "pg"); if (IS_ERR(pg_class)) { err = PTR_ERR(pg_class); goto out_chrdev; } for (unit = 0; unit < PG_UNITS; unit++) { struct pg *dev = &devices[unit]; if (dev->present) device_create(pg_class, NULL, MKDEV(major, unit), NULL, "pg%u", unit); } err = 0; goto out; out_chrdev: unregister_chrdev(major, "pg"); out: return err; } static void __exit pg_exit(void) { int unit; for (unit = 0; unit < PG_UNITS; unit++) { struct pg *dev = &devices[unit]; if (dev->present) device_destroy(pg_class, MKDEV(major, unit)); } class_destroy(pg_class); unregister_chrdev(major, name); for (unit = 0; unit < PG_UNITS; unit++) { struct pg *dev = &devices[unit]; if (dev->present) pi_release(dev->pi); } } MODULE_LICENSE("GPL"); module_init(pg_init) module_exit(pg_exit)
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1