Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Looijmans | 1813 | 99.40% | 2 | 50.00% |
Stephen Boyd | 11 | 0.60% | 2 | 50.00% |
Total | 1824 | 4 |
/* * Driver for Silicon Labs Si514 Programmable Oscillator * * Copyright (C) 2015 Topic Embedded Products * * Author: Mike Looijmans <mike.looijmans@topic.nl> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> /* I2C registers */ #define SI514_REG_LP 0 #define SI514_REG_M_FRAC1 5 #define SI514_REG_M_FRAC2 6 #define SI514_REG_M_FRAC3 7 #define SI514_REG_M_INT_FRAC 8 #define SI514_REG_M_INT 9 #define SI514_REG_HS_DIV 10 #define SI514_REG_LS_HS_DIV 11 #define SI514_REG_OE_STATE 14 #define SI514_REG_RESET 128 #define SI514_REG_CONTROL 132 /* Register values */ #define SI514_RESET_RST BIT(7) #define SI514_CONTROL_FCAL BIT(0) #define SI514_CONTROL_OE BIT(2) #define SI514_MIN_FREQ 100000U #define SI514_MAX_FREQ 250000000U #define FXO 31980000U #define FVCO_MIN 2080000000U #define FVCO_MAX 2500000000U #define HS_DIV_MAX 1022 struct clk_si514 { struct clk_hw hw; struct regmap *regmap; struct i2c_client *i2c_client; }; #define to_clk_si514(_hw) container_of(_hw, struct clk_si514, hw) /* Multiplier/divider settings */ struct clk_si514_muldiv { u32 m_frac; /* 29-bit Fractional part of multiplier M */ u8 m_int; /* Integer part of multiplier M, 65..78 */ u8 ls_div_bits; /* 2nd divider, as 2^x */ u16 hs_div; /* 1st divider, must be even and 10<=x<=1022 */ }; /* Enables or disables the output driver */ static int si514_enable_output(struct clk_si514 *data, bool enable) { return regmap_update_bits(data->regmap, SI514_REG_CONTROL, SI514_CONTROL_OE, enable ? SI514_CONTROL_OE : 0); } static int si514_prepare(struct clk_hw *hw) { struct clk_si514 *data = to_clk_si514(hw); return si514_enable_output(data, true); } static void si514_unprepare(struct clk_hw *hw) { struct clk_si514 *data = to_clk_si514(hw); si514_enable_output(data, false); } static int si514_is_prepared(struct clk_hw *hw) { struct clk_si514 *data = to_clk_si514(hw); unsigned int val; int err; err = regmap_read(data->regmap, SI514_REG_CONTROL, &val); if (err < 0) return err; return !!(val & SI514_CONTROL_OE); } /* Retrieve clock multiplier and dividers from hardware */ static int si514_get_muldiv(struct clk_si514 *data, struct clk_si514_muldiv *settings) { int err; u8 reg[7]; err = regmap_bulk_read(data->regmap, SI514_REG_M_FRAC1, reg, ARRAY_SIZE(reg)); if (err) return err; settings->m_frac = reg[0] | reg[1] << 8 | reg[2] << 16 | (reg[3] & 0x1F) << 24; settings->m_int = (reg[4] & 0x3f) << 3 | reg[3] >> 5; settings->ls_div_bits = (reg[6] >> 4) & 0x07; settings->hs_div = (reg[6] & 0x03) << 8 | reg[5]; return 0; } static int si514_set_muldiv(struct clk_si514 *data, struct clk_si514_muldiv *settings) { u8 lp; u8 reg[7]; int err; /* Calculate LP1/LP2 according to table 13 in the datasheet */ /* 65.259980246 */ if (settings->m_int < 65 || (settings->m_int == 65 && settings->m_frac <= 139575831)) lp = 0x22; /* 67.859763463 */ else if (settings->m_int < 67 || (settings->m_int == 67 && settings->m_frac <= 461581994)) lp = 0x23; /* 72.937624981 */ else if (settings->m_int < 72 || (settings->m_int == 72 && settings->m_frac <= 503383578)) lp = 0x33; /* 75.843265046 */ else if (settings->m_int < 75 || (settings->m_int == 75 && settings->m_frac <= 452724474)) lp = 0x34; else lp = 0x44; err = regmap_write(data->regmap, SI514_REG_LP, lp); if (err < 0) return err; reg[0] = settings->m_frac; reg[1] = settings->m_frac >> 8; reg[2] = settings->m_frac >> 16; reg[3] = settings->m_frac >> 24 | settings->m_int << 5; reg[4] = settings->m_int >> 3; reg[5] = settings->hs_div; reg[6] = (settings->hs_div >> 8) | (settings->ls_div_bits << 4); err = regmap_bulk_write(data->regmap, SI514_REG_HS_DIV, reg + 5, 2); if (err < 0) return err; /* * Writing to SI514_REG_M_INT_FRAC triggers the clock change, so that * must be written last */ return regmap_bulk_write(data->regmap, SI514_REG_M_FRAC1, reg, 5); } /* Calculate divider settings for a given frequency */ static int si514_calc_muldiv(struct clk_si514_muldiv *settings, unsigned long frequency) { u64 m; u32 ls_freq; u32 tmp; u8 res; if ((frequency < SI514_MIN_FREQ) || (frequency > SI514_MAX_FREQ)) return -EINVAL; /* Determine the minimum value of LS_DIV and resulting target freq. */ ls_freq = frequency; if (frequency >= (FVCO_MIN / HS_DIV_MAX)) settings->ls_div_bits = 0; else { res = 1; tmp = 2 * HS_DIV_MAX; while (tmp <= (HS_DIV_MAX * 32)) { if ((frequency * tmp) >= FVCO_MIN) break; ++res; tmp <<= 1; } settings->ls_div_bits = res; ls_freq = frequency << res; } /* Determine minimum HS_DIV, round up to even number */ settings->hs_div = DIV_ROUND_UP(FVCO_MIN >> 1, ls_freq) << 1; /* M = LS_DIV x HS_DIV x frequency / F_XO (in fixed-point) */ m = ((u64)(ls_freq * settings->hs_div) << 29) + (FXO / 2); do_div(m, FXO); settings->m_frac = (u32)m & (BIT(29) - 1); settings->m_int = (u32)(m >> 29); return 0; } /* Calculate resulting frequency given the register settings */ static unsigned long si514_calc_rate(struct clk_si514_muldiv *settings) { u64 m = settings->m_frac | ((u64)settings->m_int << 29); u32 d = settings->hs_div * BIT(settings->ls_div_bits); return ((u32)(((m * FXO) + (FXO / 2)) >> 29)) / d; } static unsigned long si514_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_si514 *data = to_clk_si514(hw); struct clk_si514_muldiv settings; int err; err = si514_get_muldiv(data, &settings); if (err) { dev_err(&data->i2c_client->dev, "unable to retrieve settings\n"); return 0; } return si514_calc_rate(&settings); } static long si514_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_si514_muldiv settings; int err; if (!rate) return 0; err = si514_calc_muldiv(&settings, rate); if (err) return err; return si514_calc_rate(&settings); } /* * Update output frequency for big frequency changes (> 1000 ppm). * The chip supports <1000ppm changes "on the fly", we haven't implemented * that here. */ static int si514_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_si514 *data = to_clk_si514(hw); struct clk_si514_muldiv settings; unsigned int old_oe_state; int err; err = si514_calc_muldiv(&settings, rate); if (err) return err; err = regmap_read(data->regmap, SI514_REG_CONTROL, &old_oe_state); if (err) return err; si514_enable_output(data, false); err = si514_set_muldiv(data, &settings); if (err < 0) return err; /* Undefined state now, best to leave disabled */ /* Trigger calibration */ err = regmap_write(data->regmap, SI514_REG_CONTROL, SI514_CONTROL_FCAL); if (err < 0) return err; /* Applying a new frequency can take up to 10ms */ usleep_range(10000, 12000); if (old_oe_state & SI514_CONTROL_OE) si514_enable_output(data, true); return err; } static const struct clk_ops si514_clk_ops = { .prepare = si514_prepare, .unprepare = si514_unprepare, .is_prepared = si514_is_prepared, .recalc_rate = si514_recalc_rate, .round_rate = si514_round_rate, .set_rate = si514_set_rate, }; static bool si514_regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case SI514_REG_CONTROL: case SI514_REG_RESET: return true; default: return false; } } static bool si514_regmap_is_writeable(struct device *dev, unsigned int reg) { switch (reg) { case SI514_REG_LP: case SI514_REG_M_FRAC1 ... SI514_REG_LS_HS_DIV: case SI514_REG_OE_STATE: case SI514_REG_RESET: case SI514_REG_CONTROL: return true; default: return false; } } static const struct regmap_config si514_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_RBTREE, .max_register = SI514_REG_CONTROL, .writeable_reg = si514_regmap_is_writeable, .volatile_reg = si514_regmap_is_volatile, }; static int si514_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct clk_si514 *data; struct clk_init_data init; int err; data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; init.ops = &si514_clk_ops; init.flags = 0; init.num_parents = 0; data->hw.init = &init; data->i2c_client = client; if (of_property_read_string(client->dev.of_node, "clock-output-names", &init.name)) init.name = client->dev.of_node->name; data->regmap = devm_regmap_init_i2c(client, &si514_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "failed to allocate register map\n"); return PTR_ERR(data->regmap); } i2c_set_clientdata(client, data); err = devm_clk_hw_register(&client->dev, &data->hw); if (err) { dev_err(&client->dev, "clock registration failed\n"); return err; } err = of_clk_add_hw_provider(client->dev.of_node, of_clk_hw_simple_get, &data->hw); if (err) { dev_err(&client->dev, "unable to add clk provider\n"); return err; } return 0; } static int si514_remove(struct i2c_client *client) { of_clk_del_provider(client->dev.of_node); return 0; } static const struct i2c_device_id si514_id[] = { { "si514", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, si514_id); static const struct of_device_id clk_si514_of_match[] = { { .compatible = "silabs,si514" }, { }, }; MODULE_DEVICE_TABLE(of, clk_si514_of_match); static struct i2c_driver si514_driver = { .driver = { .name = "si514", .of_match_table = clk_si514_of_match, }, .probe = si514_probe, .remove = si514_remove, .id_table = si514_id, }; module_i2c_driver(si514_driver); MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); MODULE_DESCRIPTION("Si514 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1