Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gabriel Fernandez | 7190 | 83.08% | 14 | 66.67% |
Daniel R Thompson | 1434 | 16.57% | 1 | 4.76% |
Arnd Bergmann | 12 | 0.14% | 1 | 4.76% |
Patrice Chotard | 11 | 0.13% | 1 | 4.76% |
Stephen Boyd | 4 | 0.05% | 1 | 4.76% |
Rob Herring | 2 | 0.02% | 2 | 9.52% |
Christophe Jaillet | 1 | 0.01% | 1 | 4.76% |
Total | 8654 | 21 |
/* * Author: Daniel Thompson <daniel.thompson@linaro.org> * * Inspired by clk-asm9260.c . * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> /* * Include list of clocks wich are not derived from system clock (SYSCLOCK) * The index of these clocks is the secondary index of DT bindings * */ #include <dt-bindings/clock/stm32fx-clock.h> #define STM32F4_RCC_CR 0x00 #define STM32F4_RCC_PLLCFGR 0x04 #define STM32F4_RCC_CFGR 0x08 #define STM32F4_RCC_AHB1ENR 0x30 #define STM32F4_RCC_AHB2ENR 0x34 #define STM32F4_RCC_AHB3ENR 0x38 #define STM32F4_RCC_APB1ENR 0x40 #define STM32F4_RCC_APB2ENR 0x44 #define STM32F4_RCC_BDCR 0x70 #define STM32F4_RCC_CSR 0x74 #define STM32F4_RCC_PLLI2SCFGR 0x84 #define STM32F4_RCC_PLLSAICFGR 0x88 #define STM32F4_RCC_DCKCFGR 0x8c #define STM32F7_RCC_DCKCFGR2 0x90 #define NONE -1 #define NO_IDX NONE #define NO_MUX NONE #define NO_GATE NONE struct stm32f4_gate_data { u8 offset; u8 bit_idx; const char *name; const char *parent_name; unsigned long flags; }; static const struct stm32f4_gate_data stm32f429_gates[] __initconst = { { STM32F4_RCC_AHB1ENR, 0, "gpioa", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 1, "gpiob", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 2, "gpioc", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 3, "gpiod", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 4, "gpioe", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 5, "gpiof", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 6, "gpiog", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 7, "gpioh", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 8, "gpioi", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 9, "gpioj", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 10, "gpiok", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 12, "crc", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 18, "bkpsra", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 20, "ccmdatam", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 21, "dma1", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 22, "dma2", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 23, "dma2d", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 25, "ethmac", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 26, "ethmactx", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 27, "ethmacrx", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 28, "ethmacptp", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 29, "otghs", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 30, "otghsulpi", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 0, "dcmi", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 4, "cryp", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 5, "hash", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 6, "rng", "pll48" }, { STM32F4_RCC_AHB2ENR, 7, "otgfs", "pll48" }, { STM32F4_RCC_AHB3ENR, 0, "fmc", "ahb_div", CLK_IGNORE_UNUSED }, { STM32F4_RCC_APB1ENR, 0, "tim2", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 1, "tim3", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 2, "tim4", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 3, "tim5", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 4, "tim6", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 5, "tim7", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 6, "tim12", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 7, "tim13", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 8, "tim14", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 11, "wwdg", "apb1_div" }, { STM32F4_RCC_APB1ENR, 14, "spi2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 15, "spi3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 17, "uart2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 18, "uart3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 19, "uart4", "apb1_div" }, { STM32F4_RCC_APB1ENR, 20, "uart5", "apb1_div" }, { STM32F4_RCC_APB1ENR, 21, "i2c1", "apb1_div" }, { STM32F4_RCC_APB1ENR, 22, "i2c2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 23, "i2c3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 25, "can1", "apb1_div" }, { STM32F4_RCC_APB1ENR, 26, "can2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 28, "pwr", "apb1_div" }, { STM32F4_RCC_APB1ENR, 29, "dac", "apb1_div" }, { STM32F4_RCC_APB1ENR, 30, "uart7", "apb1_div" }, { STM32F4_RCC_APB1ENR, 31, "uart8", "apb1_div" }, { STM32F4_RCC_APB2ENR, 0, "tim1", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 1, "tim8", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 4, "usart1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 5, "usart6", "apb2_div" }, { STM32F4_RCC_APB2ENR, 8, "adc1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 9, "adc2", "apb2_div" }, { STM32F4_RCC_APB2ENR, 10, "adc3", "apb2_div" }, { STM32F4_RCC_APB2ENR, 11, "sdio", "pll48" }, { STM32F4_RCC_APB2ENR, 12, "spi1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 13, "spi4", "apb2_div" }, { STM32F4_RCC_APB2ENR, 14, "syscfg", "apb2_div" }, { STM32F4_RCC_APB2ENR, 16, "tim9", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 17, "tim10", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 18, "tim11", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 20, "spi5", "apb2_div" }, { STM32F4_RCC_APB2ENR, 21, "spi6", "apb2_div" }, { STM32F4_RCC_APB2ENR, 22, "sai1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 26, "ltdc", "apb2_div" }, }; static const struct stm32f4_gate_data stm32f469_gates[] __initconst = { { STM32F4_RCC_AHB1ENR, 0, "gpioa", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 1, "gpiob", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 2, "gpioc", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 3, "gpiod", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 4, "gpioe", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 5, "gpiof", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 6, "gpiog", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 7, "gpioh", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 8, "gpioi", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 9, "gpioj", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 10, "gpiok", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 12, "crc", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 18, "bkpsra", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 20, "ccmdatam", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 21, "dma1", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 22, "dma2", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 23, "dma2d", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 25, "ethmac", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 26, "ethmactx", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 27, "ethmacrx", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 28, "ethmacptp", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 29, "otghs", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 30, "otghsulpi", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 0, "dcmi", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 4, "cryp", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 5, "hash", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 6, "rng", "pll48" }, { STM32F4_RCC_AHB2ENR, 7, "otgfs", "pll48" }, { STM32F4_RCC_AHB3ENR, 0, "fmc", "ahb_div", CLK_IGNORE_UNUSED }, { STM32F4_RCC_AHB3ENR, 1, "qspi", "ahb_div", CLK_IGNORE_UNUSED }, { STM32F4_RCC_APB1ENR, 0, "tim2", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 1, "tim3", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 2, "tim4", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 3, "tim5", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 4, "tim6", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 5, "tim7", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 6, "tim12", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 7, "tim13", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 8, "tim14", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 11, "wwdg", "apb1_div" }, { STM32F4_RCC_APB1ENR, 14, "spi2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 15, "spi3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 17, "uart2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 18, "uart3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 19, "uart4", "apb1_div" }, { STM32F4_RCC_APB1ENR, 20, "uart5", "apb1_div" }, { STM32F4_RCC_APB1ENR, 21, "i2c1", "apb1_div" }, { STM32F4_RCC_APB1ENR, 22, "i2c2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 23, "i2c3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 25, "can1", "apb1_div" }, { STM32F4_RCC_APB1ENR, 26, "can2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 28, "pwr", "apb1_div" }, { STM32F4_RCC_APB1ENR, 29, "dac", "apb1_div" }, { STM32F4_RCC_APB1ENR, 30, "uart7", "apb1_div" }, { STM32F4_RCC_APB1ENR, 31, "uart8", "apb1_div" }, { STM32F4_RCC_APB2ENR, 0, "tim1", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 1, "tim8", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 4, "usart1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 5, "usart6", "apb2_div" }, { STM32F4_RCC_APB2ENR, 8, "adc1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 9, "adc2", "apb2_div" }, { STM32F4_RCC_APB2ENR, 10, "adc3", "apb2_div" }, { STM32F4_RCC_APB2ENR, 11, "sdio", "sdmux" }, { STM32F4_RCC_APB2ENR, 12, "spi1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 13, "spi4", "apb2_div" }, { STM32F4_RCC_APB2ENR, 14, "syscfg", "apb2_div" }, { STM32F4_RCC_APB2ENR, 16, "tim9", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 17, "tim10", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 18, "tim11", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 20, "spi5", "apb2_div" }, { STM32F4_RCC_APB2ENR, 21, "spi6", "apb2_div" }, { STM32F4_RCC_APB2ENR, 22, "sai1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 26, "ltdc", "apb2_div" }, }; static const struct stm32f4_gate_data stm32f746_gates[] __initconst = { { STM32F4_RCC_AHB1ENR, 0, "gpioa", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 1, "gpiob", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 2, "gpioc", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 3, "gpiod", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 4, "gpioe", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 5, "gpiof", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 6, "gpiog", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 7, "gpioh", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 8, "gpioi", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 9, "gpioj", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 10, "gpiok", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 12, "crc", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 18, "bkpsra", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 20, "dtcmram", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 21, "dma1", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 22, "dma2", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 23, "dma2d", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 25, "ethmac", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 26, "ethmactx", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 27, "ethmacrx", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 28, "ethmacptp", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 29, "otghs", "ahb_div" }, { STM32F4_RCC_AHB1ENR, 30, "otghsulpi", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 0, "dcmi", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 4, "cryp", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 5, "hash", "ahb_div" }, { STM32F4_RCC_AHB2ENR, 6, "rng", "pll48" }, { STM32F4_RCC_AHB2ENR, 7, "otgfs", "pll48" }, { STM32F4_RCC_AHB3ENR, 0, "fmc", "ahb_div", CLK_IGNORE_UNUSED }, { STM32F4_RCC_AHB3ENR, 1, "qspi", "ahb_div", CLK_IGNORE_UNUSED }, { STM32F4_RCC_APB1ENR, 0, "tim2", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 1, "tim3", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 2, "tim4", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 3, "tim5", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 4, "tim6", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 5, "tim7", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 6, "tim12", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 7, "tim13", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 8, "tim14", "apb1_mul" }, { STM32F4_RCC_APB1ENR, 11, "wwdg", "apb1_div" }, { STM32F4_RCC_APB1ENR, 14, "spi2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 15, "spi3", "apb1_div" }, { STM32F4_RCC_APB1ENR, 16, "spdifrx", "apb1_div" }, { STM32F4_RCC_APB1ENR, 25, "can1", "apb1_div" }, { STM32F4_RCC_APB1ENR, 26, "can2", "apb1_div" }, { STM32F4_RCC_APB1ENR, 27, "cec", "apb1_div" }, { STM32F4_RCC_APB1ENR, 28, "pwr", "apb1_div" }, { STM32F4_RCC_APB1ENR, 29, "dac", "apb1_div" }, { STM32F4_RCC_APB2ENR, 0, "tim1", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 1, "tim8", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 7, "sdmmc2", "sdmux" }, { STM32F4_RCC_APB2ENR, 8, "adc1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 9, "adc2", "apb2_div" }, { STM32F4_RCC_APB2ENR, 10, "adc3", "apb2_div" }, { STM32F4_RCC_APB2ENR, 11, "sdmmc", "sdmux" }, { STM32F4_RCC_APB2ENR, 12, "spi1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 13, "spi4", "apb2_div" }, { STM32F4_RCC_APB2ENR, 14, "syscfg", "apb2_div" }, { STM32F4_RCC_APB2ENR, 16, "tim9", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 17, "tim10", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 18, "tim11", "apb2_mul" }, { STM32F4_RCC_APB2ENR, 20, "spi5", "apb2_div" }, { STM32F4_RCC_APB2ENR, 21, "spi6", "apb2_div" }, { STM32F4_RCC_APB2ENR, 22, "sai1", "apb2_div" }, { STM32F4_RCC_APB2ENR, 23, "sai2", "apb2_div" }, { STM32F4_RCC_APB2ENR, 26, "ltdc", "apb2_div" }, }; /* * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx * have gate bits associated with them. Its combined hweight is 71. */ #define MAX_GATE_MAP 3 static const u64 stm32f42xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull, 0x0000000000000001ull, 0x04777f33f6fec9ffull }; static const u64 stm32f46xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull, 0x0000000000000003ull, 0x0c777f33f6fec9ffull }; static const u64 stm32f746_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull, 0x0000000000000003ull, 0x04f77f833e01c9ffull }; static const u64 *stm32f4_gate_map; static struct clk_hw **clks; static DEFINE_SPINLOCK(stm32f4_clk_lock); static void __iomem *base; static struct regmap *pdrm; static int stm32fx_end_primary_clk; /* * "Multiplier" device for APBx clocks. * * The APBx dividers are power-of-two dividers and, if *not* running in 1:1 * mode, they also tap out the one of the low order state bits to run the * timers. ST datasheets represent this feature as a (conditional) clock * multiplier. */ struct clk_apb_mul { struct clk_hw hw; u8 bit_idx; }; #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw) static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_apb_mul *am = to_clk_apb_mul(hw); if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx)) return parent_rate * 2; return parent_rate; } static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_apb_mul *am = to_clk_apb_mul(hw); unsigned long mult = 1; if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx)) mult = 2; if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) { unsigned long best_parent = rate / mult; *prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent); } return *prate * mult; } static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { /* * We must report success but we can do so unconditionally because * clk_apb_mul_round_rate returns values that ensure this call is a * nop. */ return 0; } static const struct clk_ops clk_apb_mul_factor_ops = { .round_rate = clk_apb_mul_round_rate, .set_rate = clk_apb_mul_set_rate, .recalc_rate = clk_apb_mul_recalc_rate, }; static struct clk *clk_register_apb_mul(struct device *dev, const char *name, const char *parent_name, unsigned long flags, u8 bit_idx) { struct clk_apb_mul *am; struct clk_init_data init; struct clk *clk; am = kzalloc(sizeof(*am), GFP_KERNEL); if (!am) return ERR_PTR(-ENOMEM); am->bit_idx = bit_idx; am->hw.init = &init; init.name = name; init.ops = &clk_apb_mul_factor_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; clk = clk_register(dev, &am->hw); if (IS_ERR(clk)) kfree(am); return clk; } enum { PLL, PLL_I2S, PLL_SAI, }; static const struct clk_div_table pll_divp_table[] = { { 0, 2 }, { 1, 4 }, { 2, 6 }, { 3, 8 }, { 0 } }; static const struct clk_div_table pll_divq_table[] = { { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, { 0 } }; static const struct clk_div_table pll_divr_table[] = { { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, { 0 } }; struct stm32f4_pll { spinlock_t *lock; struct clk_gate gate; u8 offset; u8 bit_rdy_idx; u8 status; u8 n_start; }; #define to_stm32f4_pll(_gate) container_of(_gate, struct stm32f4_pll, gate) struct stm32f4_pll_post_div_data { int idx; u8 pll_num; const char *name; const char *parent; u8 flag; u8 offset; u8 shift; u8 width; u8 flag_div; const struct clk_div_table *div_table; }; struct stm32f4_vco_data { const char *vco_name; u8 offset; u8 bit_idx; u8 bit_rdy_idx; }; static const struct stm32f4_vco_data vco_data[] = { { "vco", STM32F4_RCC_PLLCFGR, 24, 25 }, { "vco-i2s", STM32F4_RCC_PLLI2SCFGR, 26, 27 }, { "vco-sai", STM32F4_RCC_PLLSAICFGR, 28, 29 }, }; static const struct clk_div_table post_divr_table[] = { { 0, 2 }, { 1, 4 }, { 2, 8 }, { 3, 16 }, { 0 } }; #define MAX_POST_DIV 3 static const struct stm32f4_pll_post_div_data post_div_data[MAX_POST_DIV] = { { CLK_I2SQ_PDIV, PLL_I2S, "plli2s-q-div", "plli2s-q", CLK_SET_RATE_PARENT, STM32F4_RCC_DCKCFGR, 0, 5, 0, NULL}, { CLK_SAIQ_PDIV, PLL_SAI, "pllsai-q-div", "pllsai-q", CLK_SET_RATE_PARENT, STM32F4_RCC_DCKCFGR, 8, 5, 0, NULL }, { NO_IDX, PLL_SAI, "pllsai-r-div", "pllsai-r", CLK_SET_RATE_PARENT, STM32F4_RCC_DCKCFGR, 16, 2, 0, post_divr_table }, }; struct stm32f4_div_data { u8 shift; u8 width; u8 flag_div; const struct clk_div_table *div_table; }; #define MAX_PLL_DIV 3 static const struct stm32f4_div_data div_data[MAX_PLL_DIV] = { { 16, 2, 0, pll_divp_table }, { 24, 4, 0, pll_divq_table }, { 28, 3, 0, pll_divr_table }, }; struct stm32f4_pll_data { u8 pll_num; u8 n_start; const char *div_name[MAX_PLL_DIV]; }; static const struct stm32f4_pll_data stm32f429_pll[MAX_PLL_DIV] = { { PLL, 192, { "pll", "pll48", NULL } }, { PLL_I2S, 192, { NULL, "plli2s-q", "plli2s-r" } }, { PLL_SAI, 49, { NULL, "pllsai-q", "pllsai-r" } }, }; static const struct stm32f4_pll_data stm32f469_pll[MAX_PLL_DIV] = { { PLL, 50, { "pll", "pll-q", "pll-r" } }, { PLL_I2S, 50, { "plli2s-p", "plli2s-q", "plli2s-r" } }, { PLL_SAI, 50, { "pllsai-p", "pllsai-q", "pllsai-r" } }, }; static int stm32f4_pll_is_enabled(struct clk_hw *hw) { return clk_gate_ops.is_enabled(hw); } #define PLL_TIMEOUT 10000 static int stm32f4_pll_enable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); struct stm32f4_pll *pll = to_stm32f4_pll(gate); int bit_status; unsigned int timeout = PLL_TIMEOUT; if (clk_gate_ops.is_enabled(hw)) return 0; clk_gate_ops.enable(hw); do { bit_status = !(readl(gate->reg) & BIT(pll->bit_rdy_idx)); } while (bit_status && --timeout); return bit_status; } static void stm32f4_pll_disable(struct clk_hw *hw) { clk_gate_ops.disable(hw); } static unsigned long stm32f4_pll_recalc(struct clk_hw *hw, unsigned long parent_rate) { struct clk_gate *gate = to_clk_gate(hw); struct stm32f4_pll *pll = to_stm32f4_pll(gate); unsigned long n; n = (readl(base + pll->offset) >> 6) & 0x1ff; return parent_rate * n; } static long stm32f4_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_gate *gate = to_clk_gate(hw); struct stm32f4_pll *pll = to_stm32f4_pll(gate); unsigned long n; n = rate / *prate; if (n < pll->n_start) n = pll->n_start; else if (n > 432) n = 432; return *prate * n; } static int stm32f4_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_gate *gate = to_clk_gate(hw); struct stm32f4_pll *pll = to_stm32f4_pll(gate); unsigned long n; unsigned long val; int pll_state; pll_state = stm32f4_pll_is_enabled(hw); if (pll_state) stm32f4_pll_disable(hw); n = rate / parent_rate; val = readl(base + pll->offset) & ~(0x1ff << 6); writel(val | ((n & 0x1ff) << 6), base + pll->offset); if (pll_state) stm32f4_pll_enable(hw); return 0; } static const struct clk_ops stm32f4_pll_gate_ops = { .enable = stm32f4_pll_enable, .disable = stm32f4_pll_disable, .is_enabled = stm32f4_pll_is_enabled, .recalc_rate = stm32f4_pll_recalc, .round_rate = stm32f4_pll_round_rate, .set_rate = stm32f4_pll_set_rate, }; struct stm32f4_pll_div { struct clk_divider div; struct clk_hw *hw_pll; }; #define to_pll_div_clk(_div) container_of(_div, struct stm32f4_pll_div, div) static unsigned long stm32f4_pll_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return clk_divider_ops.recalc_rate(hw, parent_rate); } static long stm32f4_pll_div_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { return clk_divider_ops.round_rate(hw, rate, prate); } static int stm32f4_pll_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int pll_state, ret; struct clk_divider *div = to_clk_divider(hw); struct stm32f4_pll_div *pll_div = to_pll_div_clk(div); pll_state = stm32f4_pll_is_enabled(pll_div->hw_pll); if (pll_state) stm32f4_pll_disable(pll_div->hw_pll); ret = clk_divider_ops.set_rate(hw, rate, parent_rate); if (pll_state) stm32f4_pll_enable(pll_div->hw_pll); return ret; } static const struct clk_ops stm32f4_pll_div_ops = { .recalc_rate = stm32f4_pll_div_recalc_rate, .round_rate = stm32f4_pll_div_round_rate, .set_rate = stm32f4_pll_div_set_rate, }; static struct clk_hw *clk_register_pll_div(const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 shift, u8 width, u8 clk_divider_flags, const struct clk_div_table *table, struct clk_hw *pll_hw, spinlock_t *lock) { struct stm32f4_pll_div *pll_div; struct clk_hw *hw; struct clk_init_data init; int ret; /* allocate the divider */ pll_div = kzalloc(sizeof(*pll_div), GFP_KERNEL); if (!pll_div) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &stm32f4_pll_div_ops; init.flags = flags; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); /* struct clk_divider assignments */ pll_div->div.reg = reg; pll_div->div.shift = shift; pll_div->div.width = width; pll_div->div.flags = clk_divider_flags; pll_div->div.lock = lock; pll_div->div.table = table; pll_div->div.hw.init = &init; pll_div->hw_pll = pll_hw; /* register the clock */ hw = &pll_div->div.hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll_div); hw = ERR_PTR(ret); } return hw; } static struct clk_hw *stm32f4_rcc_register_pll(const char *pllsrc, const struct stm32f4_pll_data *data, spinlock_t *lock) { struct stm32f4_pll *pll; struct clk_init_data init = { NULL }; void __iomem *reg; struct clk_hw *pll_hw; int ret; int i; const struct stm32f4_vco_data *vco; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); vco = &vco_data[data->pll_num]; init.name = vco->vco_name; init.ops = &stm32f4_pll_gate_ops; init.flags = CLK_SET_RATE_GATE; init.parent_names = &pllsrc; init.num_parents = 1; pll->gate.lock = lock; pll->gate.reg = base + STM32F4_RCC_CR; pll->gate.bit_idx = vco->bit_idx; pll->gate.hw.init = &init; pll->offset = vco->offset; pll->n_start = data->n_start; pll->bit_rdy_idx = vco->bit_rdy_idx; pll->status = (readl(base + STM32F4_RCC_CR) >> vco->bit_idx) & 0x1; reg = base + pll->offset; pll_hw = &pll->gate.hw; ret = clk_hw_register(NULL, pll_hw); if (ret) { kfree(pll); return ERR_PTR(ret); } for (i = 0; i < MAX_PLL_DIV; i++) if (data->div_name[i]) clk_register_pll_div(data->div_name[i], vco->vco_name, 0, reg, div_data[i].shift, div_data[i].width, div_data[i].flag_div, div_data[i].div_table, pll_hw, lock); return pll_hw; } /* * Converts the primary and secondary indices (as they appear in DT) to an * offset into our struct clock array. */ static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary) { u64 table[MAX_GATE_MAP]; if (primary == 1) { if (WARN_ON(secondary >= stm32fx_end_primary_clk)) return -EINVAL; return secondary; } memcpy(table, stm32f4_gate_map, sizeof(table)); /* only bits set in table can be used as indices */ if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) || 0 == (table[BIT_ULL_WORD(secondary)] & BIT_ULL_MASK(secondary)))) return -EINVAL; /* mask out bits above our current index */ table[BIT_ULL_WORD(secondary)] &= GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0); return stm32fx_end_primary_clk - 1 + hweight64(table[0]) + (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) + (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0); } static struct clk_hw * stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data) { int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]); if (i < 0) return ERR_PTR(-EINVAL); return clks[i]; } #define to_rgclk(_rgate) container_of(_rgate, struct stm32_rgate, gate) static inline void disable_power_domain_write_protection(void) { if (pdrm) regmap_update_bits(pdrm, 0x00, (1 << 8), (1 << 8)); } static inline void enable_power_domain_write_protection(void) { if (pdrm) regmap_update_bits(pdrm, 0x00, (1 << 8), (0 << 8)); } static inline void sofware_reset_backup_domain(void) { unsigned long val; val = readl(base + STM32F4_RCC_BDCR); writel(val | BIT(16), base + STM32F4_RCC_BDCR); writel(val & ~BIT(16), base + STM32F4_RCC_BDCR); } struct stm32_rgate { struct clk_gate gate; u8 bit_rdy_idx; }; #define RGATE_TIMEOUT 50000 static int rgclk_enable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); struct stm32_rgate *rgate = to_rgclk(gate); int bit_status; unsigned int timeout = RGATE_TIMEOUT; if (clk_gate_ops.is_enabled(hw)) return 0; disable_power_domain_write_protection(); clk_gate_ops.enable(hw); do { bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy_idx)); if (bit_status) udelay(100); } while (bit_status && --timeout); enable_power_domain_write_protection(); return bit_status; } static void rgclk_disable(struct clk_hw *hw) { clk_gate_ops.disable(hw); } static int rgclk_is_enabled(struct clk_hw *hw) { return clk_gate_ops.is_enabled(hw); } static const struct clk_ops rgclk_ops = { .enable = rgclk_enable, .disable = rgclk_disable, .is_enabled = rgclk_is_enabled, }; static struct clk_hw *clk_register_rgate(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 bit_idx, u8 bit_rdy_idx, u8 clk_gate_flags, spinlock_t *lock) { struct stm32_rgate *rgate; struct clk_init_data init = { NULL }; struct clk_hw *hw; int ret; rgate = kzalloc(sizeof(*rgate), GFP_KERNEL); if (!rgate) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &rgclk_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; rgate->bit_rdy_idx = bit_rdy_idx; rgate->gate.lock = lock; rgate->gate.reg = reg; rgate->gate.bit_idx = bit_idx; rgate->gate.hw.init = &init; hw = &rgate->gate.hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(rgate); hw = ERR_PTR(ret); } return hw; } static int cclk_gate_enable(struct clk_hw *hw) { int ret; disable_power_domain_write_protection(); ret = clk_gate_ops.enable(hw); enable_power_domain_write_protection(); return ret; } static void cclk_gate_disable(struct clk_hw *hw) { disable_power_domain_write_protection(); clk_gate_ops.disable(hw); enable_power_domain_write_protection(); } static int cclk_gate_is_enabled(struct clk_hw *hw) { return clk_gate_ops.is_enabled(hw); } static const struct clk_ops cclk_gate_ops = { .enable = cclk_gate_enable, .disable = cclk_gate_disable, .is_enabled = cclk_gate_is_enabled, }; static u8 cclk_mux_get_parent(struct clk_hw *hw) { return clk_mux_ops.get_parent(hw); } static int cclk_mux_set_parent(struct clk_hw *hw, u8 index) { int ret; disable_power_domain_write_protection(); sofware_reset_backup_domain(); ret = clk_mux_ops.set_parent(hw, index); enable_power_domain_write_protection(); return ret; } static const struct clk_ops cclk_mux_ops = { .get_parent = cclk_mux_get_parent, .set_parent = cclk_mux_set_parent, }; static struct clk_hw *stm32_register_cclk(struct device *dev, const char *name, const char * const *parent_names, int num_parents, void __iomem *reg, u8 bit_idx, u8 shift, unsigned long flags, spinlock_t *lock) { struct clk_hw *hw; struct clk_gate *gate; struct clk_mux *mux; gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) { hw = ERR_PTR(-EINVAL); goto fail; } mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) { kfree(gate); hw = ERR_PTR(-EINVAL); goto fail; } gate->reg = reg; gate->bit_idx = bit_idx; gate->flags = 0; gate->lock = lock; mux->reg = reg; mux->shift = shift; mux->mask = 3; mux->flags = 0; hw = clk_hw_register_composite(dev, name, parent_names, num_parents, &mux->hw, &cclk_mux_ops, NULL, NULL, &gate->hw, &cclk_gate_ops, flags); if (IS_ERR(hw)) { kfree(gate); kfree(mux); } fail: return hw; } static const char *sys_parents[] __initdata = { "hsi", NULL, "pll" }; static const struct clk_div_table ahb_div_table[] = { { 0x0, 1 }, { 0x1, 1 }, { 0x2, 1 }, { 0x3, 1 }, { 0x4, 1 }, { 0x5, 1 }, { 0x6, 1 }, { 0x7, 1 }, { 0x8, 2 }, { 0x9, 4 }, { 0xa, 8 }, { 0xb, 16 }, { 0xc, 64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 }, { 0 }, }; static const struct clk_div_table apb_div_table[] = { { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 }, { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 }, { 0 }, }; static const char *rtc_parents[4] = { "no-clock", "lse", "lsi", "hse-rtc" }; static const char *dsi_parent[2] = { NULL, "pll-r" }; static const char *lcd_parent[1] = { "pllsai-r-div" }; static const char *i2s_parents[2] = { "plli2s-r", NULL }; static const char *sai_parents[4] = { "pllsai-q-div", "plli2s-q-div", NULL, "no-clock" }; static const char *pll48_parents[2] = { "pll-q", "pllsai-p" }; static const char *sdmux_parents[2] = { "pll48", "sys" }; static const char *hdmi_parents[2] = { "lse", "hsi_div488" }; static const char *spdif_parent[1] = { "plli2s-p" }; static const char *lptim_parent[4] = { "apb1_mul", "lsi", "hsi", "lse" }; static const char *uart_parents1[4] = { "apb2_div", "sys", "hsi", "lse" }; static const char *uart_parents2[4] = { "apb1_div", "sys", "hsi", "lse" }; static const char *i2c_parents[4] = { "apb1_div", "sys", "hsi", "no-clock" }; struct stm32_aux_clk { int idx; const char *name; const char * const *parent_names; int num_parents; int offset_mux; u8 shift; u8 mask; int offset_gate; u8 bit_idx; unsigned long flags; }; struct stm32f4_clk_data { const struct stm32f4_gate_data *gates_data; const u64 *gates_map; int gates_num; const struct stm32f4_pll_data *pll_data; const struct stm32_aux_clk *aux_clk; int aux_clk_num; int end_primary; }; static const struct stm32_aux_clk stm32f429_aux_clk[] = { { CLK_LCD, "lcd-tft", lcd_parent, ARRAY_SIZE(lcd_parent), NO_MUX, 0, 0, STM32F4_RCC_APB2ENR, 26, CLK_SET_RATE_PARENT }, { CLK_I2S, "i2s", i2s_parents, ARRAY_SIZE(i2s_parents), STM32F4_RCC_CFGR, 23, 1, NO_GATE, 0, CLK_SET_RATE_PARENT }, { CLK_SAI1, "sai1-a", sai_parents, ARRAY_SIZE(sai_parents), STM32F4_RCC_DCKCFGR, 20, 3, STM32F4_RCC_APB2ENR, 22, CLK_SET_RATE_PARENT }, { CLK_SAI2, "sai1-b", sai_parents, ARRAY_SIZE(sai_parents), STM32F4_RCC_DCKCFGR, 22, 3, STM32F4_RCC_APB2ENR, 22, CLK_SET_RATE_PARENT }, }; static const struct stm32_aux_clk stm32f469_aux_clk[] = { { CLK_LCD, "lcd-tft", lcd_parent, ARRAY_SIZE(lcd_parent), NO_MUX, 0, 0, STM32F4_RCC_APB2ENR, 26, CLK_SET_RATE_PARENT }, { CLK_I2S, "i2s", i2s_parents, ARRAY_SIZE(i2s_parents), STM32F4_RCC_CFGR, 23, 1, NO_GATE, 0, CLK_SET_RATE_PARENT }, { CLK_SAI1, "sai1-a", sai_parents, ARRAY_SIZE(sai_parents), STM32F4_RCC_DCKCFGR, 20, 3, STM32F4_RCC_APB2ENR, 22, CLK_SET_RATE_PARENT }, { CLK_SAI2, "sai1-b", sai_parents, ARRAY_SIZE(sai_parents), STM32F4_RCC_DCKCFGR, 22, 3, STM32F4_RCC_APB2ENR, 22, CLK_SET_RATE_PARENT }, { NO_IDX, "pll48", pll48_parents, ARRAY_SIZE(pll48_parents), STM32F4_RCC_DCKCFGR, 27, 1, NO_GATE, 0, 0 }, { NO_IDX, "sdmux", sdmux_parents, ARRAY_SIZE(sdmux_parents), STM32F4_RCC_DCKCFGR, 28, 1, NO_GATE, 0, 0 }, { CLK_F469_DSI, "dsi", dsi_parent, ARRAY_SIZE(dsi_parent), STM32F4_RCC_DCKCFGR, 29, 1, STM32F4_RCC_APB2ENR, 27, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT }, }; static const struct stm32_aux_clk stm32f746_aux_clk[] = { { CLK_LCD, "lcd-tft", lcd_parent, ARRAY_SIZE(lcd_parent), NO_MUX, 0, 0, STM32F4_RCC_APB2ENR, 26, CLK_SET_RATE_PARENT }, { CLK_I2S, "i2s", i2s_parents, ARRAY_SIZE(i2s_parents), STM32F4_RCC_CFGR, 23, 1, NO_GATE, 0, CLK_SET_RATE_PARENT }, { CLK_SAI1, "sai1_clk", sai_parents, ARRAY_SIZE(sai_parents), STM32F4_RCC_DCKCFGR, 20, 3, STM32F4_RCC_APB2ENR, 22, CLK_SET_RATE_PARENT }, { CLK_SAI2, "sai2_clk", sai_parents, ARRAY_SIZE(sai_parents), STM32F4_RCC_DCKCFGR, 22, 3, STM32F4_RCC_APB2ENR, 23, CLK_SET_RATE_PARENT }, { NO_IDX, "pll48", pll48_parents, ARRAY_SIZE(pll48_parents), STM32F7_RCC_DCKCFGR2, 27, 1, NO_GATE, 0, 0 }, { NO_IDX, "sdmux", sdmux_parents, ARRAY_SIZE(sdmux_parents), STM32F7_RCC_DCKCFGR2, 28, 1, NO_GATE, 0, 0 }, { CLK_HDMI_CEC, "hdmi-cec", hdmi_parents, ARRAY_SIZE(hdmi_parents), STM32F7_RCC_DCKCFGR2, 26, 1, NO_GATE, 0, 0 }, { CLK_SPDIF, "spdif-rx", spdif_parent, ARRAY_SIZE(spdif_parent), STM32F7_RCC_DCKCFGR2, 22, 3, STM32F4_RCC_APB2ENR, 23, CLK_SET_RATE_PARENT }, { CLK_USART1, "usart1", uart_parents1, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 0, 3, STM32F4_RCC_APB2ENR, 4, CLK_SET_RATE_PARENT, }, { CLK_USART2, "usart2", uart_parents2, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 2, 3, STM32F4_RCC_APB1ENR, 17, CLK_SET_RATE_PARENT, }, { CLK_USART3, "usart3", uart_parents2, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 4, 3, STM32F4_RCC_APB1ENR, 18, CLK_SET_RATE_PARENT, }, { CLK_UART4, "uart4", uart_parents2, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 6, 3, STM32F4_RCC_APB1ENR, 19, CLK_SET_RATE_PARENT, }, { CLK_UART5, "uart5", uart_parents2, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 8, 3, STM32F4_RCC_APB1ENR, 20, CLK_SET_RATE_PARENT, }, { CLK_USART6, "usart6", uart_parents1, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 10, 3, STM32F4_RCC_APB2ENR, 5, CLK_SET_RATE_PARENT, }, { CLK_UART7, "uart7", uart_parents2, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 12, 3, STM32F4_RCC_APB1ENR, 30, CLK_SET_RATE_PARENT, }, { CLK_UART8, "uart8", uart_parents2, ARRAY_SIZE(uart_parents1), STM32F7_RCC_DCKCFGR2, 14, 3, STM32F4_RCC_APB1ENR, 31, CLK_SET_RATE_PARENT, }, { CLK_I2C1, "i2c1", i2c_parents, ARRAY_SIZE(i2c_parents), STM32F7_RCC_DCKCFGR2, 16, 3, STM32F4_RCC_APB1ENR, 21, CLK_SET_RATE_PARENT, }, { CLK_I2C2, "i2c2", i2c_parents, ARRAY_SIZE(i2c_parents), STM32F7_RCC_DCKCFGR2, 18, 3, STM32F4_RCC_APB1ENR, 22, CLK_SET_RATE_PARENT, }, { CLK_I2C3, "i2c3", i2c_parents, ARRAY_SIZE(i2c_parents), STM32F7_RCC_DCKCFGR2, 20, 3, STM32F4_RCC_APB1ENR, 23, CLK_SET_RATE_PARENT, }, { CLK_I2C4, "i2c4", i2c_parents, ARRAY_SIZE(i2c_parents), STM32F7_RCC_DCKCFGR2, 22, 3, STM32F4_RCC_APB1ENR, 24, CLK_SET_RATE_PARENT, }, { CLK_LPTIMER, "lptim1", lptim_parent, ARRAY_SIZE(lptim_parent), STM32F7_RCC_DCKCFGR2, 24, 3, STM32F4_RCC_APB1ENR, 9, CLK_SET_RATE_PARENT }, }; static const struct stm32f4_clk_data stm32f429_clk_data = { .end_primary = END_PRIMARY_CLK, .gates_data = stm32f429_gates, .gates_map = stm32f42xx_gate_map, .gates_num = ARRAY_SIZE(stm32f429_gates), .pll_data = stm32f429_pll, .aux_clk = stm32f429_aux_clk, .aux_clk_num = ARRAY_SIZE(stm32f429_aux_clk), }; static const struct stm32f4_clk_data stm32f469_clk_data = { .end_primary = END_PRIMARY_CLK, .gates_data = stm32f469_gates, .gates_map = stm32f46xx_gate_map, .gates_num = ARRAY_SIZE(stm32f469_gates), .pll_data = stm32f469_pll, .aux_clk = stm32f469_aux_clk, .aux_clk_num = ARRAY_SIZE(stm32f469_aux_clk), }; static const struct stm32f4_clk_data stm32f746_clk_data = { .end_primary = END_PRIMARY_CLK_F7, .gates_data = stm32f746_gates, .gates_map = stm32f746_gate_map, .gates_num = ARRAY_SIZE(stm32f746_gates), .pll_data = stm32f469_pll, .aux_clk = stm32f746_aux_clk, .aux_clk_num = ARRAY_SIZE(stm32f746_aux_clk), }; static const struct of_device_id stm32f4_of_match[] = { { .compatible = "st,stm32f42xx-rcc", .data = &stm32f429_clk_data }, { .compatible = "st,stm32f469-rcc", .data = &stm32f469_clk_data }, { .compatible = "st,stm32f746-rcc", .data = &stm32f746_clk_data }, {} }; static struct clk_hw *stm32_register_aux_clk(const char *name, const char * const *parent_names, int num_parents, int offset_mux, u8 shift, u8 mask, int offset_gate, u8 bit_idx, unsigned long flags, spinlock_t *lock) { struct clk_hw *hw; struct clk_gate *gate = NULL; struct clk_mux *mux = NULL; struct clk_hw *mux_hw = NULL, *gate_hw = NULL; const struct clk_ops *mux_ops = NULL, *gate_ops = NULL; if (offset_gate != NO_GATE) { gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) { hw = ERR_PTR(-EINVAL); goto fail; } gate->reg = base + offset_gate; gate->bit_idx = bit_idx; gate->flags = 0; gate->lock = lock; gate_hw = &gate->hw; gate_ops = &clk_gate_ops; } if (offset_mux != NO_MUX) { mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) { hw = ERR_PTR(-EINVAL); goto fail; } mux->reg = base + offset_mux; mux->shift = shift; mux->mask = mask; mux->flags = 0; mux_hw = &mux->hw; mux_ops = &clk_mux_ops; } if (mux_hw == NULL && gate_hw == NULL) { hw = ERR_PTR(-EINVAL); goto fail; } hw = clk_hw_register_composite(NULL, name, parent_names, num_parents, mux_hw, mux_ops, NULL, NULL, gate_hw, gate_ops, flags); fail: if (IS_ERR(hw)) { kfree(gate); kfree(mux); } return hw; } static void __init stm32f4_rcc_init(struct device_node *np) { const char *hse_clk, *i2s_in_clk; int n; const struct of_device_id *match; const struct stm32f4_clk_data *data; unsigned long pllcfgr; const char *pllsrc; unsigned long pllm; base = of_iomap(np, 0); if (!base) { pr_err("%pOFn: unable to map resource\n", np); return; } pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); if (IS_ERR(pdrm)) { pdrm = NULL; pr_warn("%s: Unable to get syscfg\n", __func__); } match = of_match_node(stm32f4_of_match, np); if (WARN_ON(!match)) return; data = match->data; stm32fx_end_primary_clk = data->end_primary; clks = kmalloc_array(data->gates_num + stm32fx_end_primary_clk, sizeof(*clks), GFP_KERNEL); if (!clks) goto fail; stm32f4_gate_map = data->gates_map; hse_clk = of_clk_get_parent_name(np, 0); dsi_parent[0] = hse_clk; i2s_in_clk = of_clk_get_parent_name(np, 1); i2s_parents[1] = i2s_in_clk; sai_parents[2] = i2s_in_clk; clks[CLK_HSI] = clk_hw_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0, 16000000, 160000); pllcfgr = readl(base + STM32F4_RCC_PLLCFGR); pllsrc = pllcfgr & BIT(22) ? hse_clk : "hsi"; pllm = pllcfgr & 0x3f; clk_hw_register_fixed_factor(NULL, "vco_in", pllsrc, 0, 1, pllm); stm32f4_rcc_register_pll("vco_in", &data->pll_data[0], &stm32f4_clk_lock); clks[PLL_VCO_I2S] = stm32f4_rcc_register_pll("vco_in", &data->pll_data[1], &stm32f4_clk_lock); clks[PLL_VCO_SAI] = stm32f4_rcc_register_pll("vco_in", &data->pll_data[2], &stm32f4_clk_lock); for (n = 0; n < MAX_POST_DIV; n++) { const struct stm32f4_pll_post_div_data *post_div; struct clk_hw *hw; post_div = &post_div_data[n]; hw = clk_register_pll_div(post_div->name, post_div->parent, post_div->flag, base + post_div->offset, post_div->shift, post_div->width, post_div->flag_div, post_div->div_table, clks[post_div->pll_num], &stm32f4_clk_lock); if (post_div->idx != NO_IDX) clks[post_div->idx] = hw; } sys_parents[1] = hse_clk; clks[CLK_SYSCLK] = clk_hw_register_mux_table( NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0, base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock); clk_register_divider_table(NULL, "ahb_div", "sys", CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR, 4, 4, 0, ahb_div_table, &stm32f4_clk_lock); clk_register_divider_table(NULL, "apb1_div", "ahb_div", CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR, 10, 3, 0, apb_div_table, &stm32f4_clk_lock); clk_register_apb_mul(NULL, "apb1_mul", "apb1_div", CLK_SET_RATE_PARENT, 12); clk_register_divider_table(NULL, "apb2_div", "ahb_div", CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR, 13, 3, 0, apb_div_table, &stm32f4_clk_lock); clk_register_apb_mul(NULL, "apb2_mul", "apb2_div", CLK_SET_RATE_PARENT, 15); clks[SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick", "ahb_div", 0, 1, 8); clks[FCLK] = clk_hw_register_fixed_factor(NULL, "fclk", "ahb_div", 0, 1, 1); for (n = 0; n < data->gates_num; n++) { const struct stm32f4_gate_data *gd; unsigned int secondary; int idx; gd = &data->gates_data[n]; secondary = 8 * (gd->offset - STM32F4_RCC_AHB1ENR) + gd->bit_idx; idx = stm32f4_rcc_lookup_clk_idx(0, secondary); if (idx < 0) goto fail; clks[idx] = clk_hw_register_gate( NULL, gd->name, gd->parent_name, gd->flags, base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock); if (IS_ERR(clks[idx])) { pr_err("%pOF: Unable to register leaf clock %s\n", np, gd->name); goto fail; } } clks[CLK_LSI] = clk_register_rgate(NULL, "lsi", "clk-lsi", 0, base + STM32F4_RCC_CSR, 0, 1, 0, &stm32f4_clk_lock); if (IS_ERR(clks[CLK_LSI])) { pr_err("Unable to register lsi clock\n"); goto fail; } clks[CLK_LSE] = clk_register_rgate(NULL, "lse", "clk-lse", 0, base + STM32F4_RCC_BDCR, 0, 1, 0, &stm32f4_clk_lock); if (IS_ERR(clks[CLK_LSE])) { pr_err("Unable to register lse clock\n"); goto fail; } clks[CLK_HSE_RTC] = clk_hw_register_divider(NULL, "hse-rtc", "clk-hse", 0, base + STM32F4_RCC_CFGR, 16, 5, 0, &stm32f4_clk_lock); if (IS_ERR(clks[CLK_HSE_RTC])) { pr_err("Unable to register hse-rtc clock\n"); goto fail; } clks[CLK_RTC] = stm32_register_cclk(NULL, "rtc", rtc_parents, 4, base + STM32F4_RCC_BDCR, 15, 8, 0, &stm32f4_clk_lock); if (IS_ERR(clks[CLK_RTC])) { pr_err("Unable to register rtc clock\n"); goto fail; } for (n = 0; n < data->aux_clk_num; n++) { const struct stm32_aux_clk *aux_clk; struct clk_hw *hw; aux_clk = &data->aux_clk[n]; hw = stm32_register_aux_clk(aux_clk->name, aux_clk->parent_names, aux_clk->num_parents, aux_clk->offset_mux, aux_clk->shift, aux_clk->mask, aux_clk->offset_gate, aux_clk->bit_idx, aux_clk->flags, &stm32f4_clk_lock); if (IS_ERR(hw)) { pr_warn("Unable to register %s clk\n", aux_clk->name); continue; } if (aux_clk->idx != NO_IDX) clks[aux_clk->idx] = hw; } if (of_device_is_compatible(np, "st,stm32f746-rcc")) clk_hw_register_fixed_factor(NULL, "hsi_div488", "hsi", 0, 1, 488); of_clk_add_hw_provider(np, stm32f4_rcc_lookup_clk, NULL); return; fail: kfree(clks); iounmap(base); } CLK_OF_DECLARE_DRIVER(stm32f42xx_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init); CLK_OF_DECLARE_DRIVER(stm32f46xx_rcc, "st,stm32f469-rcc", stm32f4_rcc_init); CLK_OF_DECLARE_DRIVER(stm32f746_rcc, "st,stm32f746-rcc", stm32f4_rcc_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1