Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaecheol Lee | 1555 | 60.62% | 1 | 3.45% |
Tomasz Figa | 435 | 16.96% | 1 | 3.45% |
Jonghwan Choi | 272 | 10.60% | 2 | 6.90% |
Huisung Kang | 90 | 3.51% | 3 | 10.34% |
Viresh Kumar | 68 | 2.65% | 11 | 37.93% |
Julia Lawall | 60 | 2.34% | 2 | 6.90% |
Arve Hjönnevåg | 34 | 1.33% | 1 | 3.45% |
Ben Dooks | 34 | 1.33% | 1 | 3.45% |
Joe Perches | 11 | 0.43% | 2 | 6.90% |
Nico Pitre | 2 | 0.08% | 1 | 3.45% |
Kukjin Kim | 1 | 0.04% | 1 | 3.45% |
Rob Herring | 1 | 0.04% | 1 | 3.45% |
Paul Bolle | 1 | 0.04% | 1 | 3.45% |
Paul Gortmaker | 1 | 0.04% | 1 | 3.45% |
Total | 2565 | 29 |
/* * Copyright (c) 2010 Samsung Electronics Co., Ltd. * http://www.samsung.com * * CPU frequency scaling for S5PC110/S5PV210 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/cpufreq.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <linux/regulator/consumer.h> static void __iomem *clk_base; static void __iomem *dmc_base[2]; #define S5P_CLKREG(x) (clk_base + (x)) #define S5P_APLL_LOCK S5P_CLKREG(0x00) #define S5P_APLL_CON S5P_CLKREG(0x100) #define S5P_CLK_SRC0 S5P_CLKREG(0x200) #define S5P_CLK_SRC2 S5P_CLKREG(0x208) #define S5P_CLK_DIV0 S5P_CLKREG(0x300) #define S5P_CLK_DIV2 S5P_CLKREG(0x308) #define S5P_CLK_DIV6 S5P_CLKREG(0x318) #define S5P_CLKDIV_STAT0 S5P_CLKREG(0x1000) #define S5P_CLKDIV_STAT1 S5P_CLKREG(0x1004) #define S5P_CLKMUX_STAT0 S5P_CLKREG(0x1100) #define S5P_CLKMUX_STAT1 S5P_CLKREG(0x1104) #define S5P_ARM_MCS_CON S5P_CLKREG(0x6100) /* CLKSRC0 */ #define S5P_CLKSRC0_MUX200_SHIFT (16) #define S5P_CLKSRC0_MUX200_MASK (0x1 << S5P_CLKSRC0_MUX200_SHIFT) #define S5P_CLKSRC0_MUX166_MASK (0x1<<20) #define S5P_CLKSRC0_MUX133_MASK (0x1<<24) /* CLKSRC2 */ #define S5P_CLKSRC2_G3D_SHIFT (0) #define S5P_CLKSRC2_G3D_MASK (0x3 << S5P_CLKSRC2_G3D_SHIFT) #define S5P_CLKSRC2_MFC_SHIFT (4) #define S5P_CLKSRC2_MFC_MASK (0x3 << S5P_CLKSRC2_MFC_SHIFT) /* CLKDIV0 */ #define S5P_CLKDIV0_APLL_SHIFT (0) #define S5P_CLKDIV0_APLL_MASK (0x7 << S5P_CLKDIV0_APLL_SHIFT) #define S5P_CLKDIV0_A2M_SHIFT (4) #define S5P_CLKDIV0_A2M_MASK (0x7 << S5P_CLKDIV0_A2M_SHIFT) #define S5P_CLKDIV0_HCLK200_SHIFT (8) #define S5P_CLKDIV0_HCLK200_MASK (0x7 << S5P_CLKDIV0_HCLK200_SHIFT) #define S5P_CLKDIV0_PCLK100_SHIFT (12) #define S5P_CLKDIV0_PCLK100_MASK (0x7 << S5P_CLKDIV0_PCLK100_SHIFT) #define S5P_CLKDIV0_HCLK166_SHIFT (16) #define S5P_CLKDIV0_HCLK166_MASK (0xF << S5P_CLKDIV0_HCLK166_SHIFT) #define S5P_CLKDIV0_PCLK83_SHIFT (20) #define S5P_CLKDIV0_PCLK83_MASK (0x7 << S5P_CLKDIV0_PCLK83_SHIFT) #define S5P_CLKDIV0_HCLK133_SHIFT (24) #define S5P_CLKDIV0_HCLK133_MASK (0xF << S5P_CLKDIV0_HCLK133_SHIFT) #define S5P_CLKDIV0_PCLK66_SHIFT (28) #define S5P_CLKDIV0_PCLK66_MASK (0x7 << S5P_CLKDIV0_PCLK66_SHIFT) /* CLKDIV2 */ #define S5P_CLKDIV2_G3D_SHIFT (0) #define S5P_CLKDIV2_G3D_MASK (0xF << S5P_CLKDIV2_G3D_SHIFT) #define S5P_CLKDIV2_MFC_SHIFT (4) #define S5P_CLKDIV2_MFC_MASK (0xF << S5P_CLKDIV2_MFC_SHIFT) /* CLKDIV6 */ #define S5P_CLKDIV6_ONEDRAM_SHIFT (28) #define S5P_CLKDIV6_ONEDRAM_MASK (0xF << S5P_CLKDIV6_ONEDRAM_SHIFT) static struct clk *dmc0_clk; static struct clk *dmc1_clk; static DEFINE_MUTEX(set_freq_lock); /* APLL M,P,S values for 1G/800Mhz */ #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1) #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1) /* Use 800MHz when entering sleep mode */ #define SLEEP_FREQ (800 * 1000) /* Tracks if cpu freqency can be updated anymore */ static bool no_cpufreq_access; /* * DRAM configurations to calculate refresh counter for changing * frequency of memory. */ struct dram_conf { unsigned long freq; /* HZ */ unsigned long refresh; /* DRAM refresh counter * 1000 */ }; /* DRAM configuration (DMC0 and DMC1) */ static struct dram_conf s5pv210_dram_conf[2]; enum perf_level { L0, L1, L2, L3, L4, }; enum s5pv210_mem_type { LPDDR = 0x1, LPDDR2 = 0x2, DDR2 = 0x4, }; enum s5pv210_dmc_port { DMC0 = 0, DMC1, }; static struct cpufreq_frequency_table s5pv210_freq_table[] = { {0, L0, 1000*1000}, {0, L1, 800*1000}, {0, L2, 400*1000}, {0, L3, 200*1000}, {0, L4, 100*1000}, {0, 0, CPUFREQ_TABLE_END}, }; static struct regulator *arm_regulator; static struct regulator *int_regulator; struct s5pv210_dvs_conf { int arm_volt; /* uV */ int int_volt; /* uV */ }; static const int arm_volt_max = 1350000; static const int int_volt_max = 1250000; static struct s5pv210_dvs_conf dvs_conf[] = { [L0] = { .arm_volt = 1250000, .int_volt = 1100000, }, [L1] = { .arm_volt = 1200000, .int_volt = 1100000, }, [L2] = { .arm_volt = 1050000, .int_volt = 1100000, }, [L3] = { .arm_volt = 950000, .int_volt = 1100000, }, [L4] = { .arm_volt = 950000, .int_volt = 1000000, }, }; static u32 clkdiv_val[5][11] = { /* * Clock divider value for following * { APLL, A2M, HCLK_MSYS, PCLK_MSYS, * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS, * ONEDRAM, MFC, G3D } */ /* L0 : [1000/200/100][166/83][133/66][200/200] */ {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0}, /* L1 : [800/200/100][166/83][133/66][200/200] */ {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0}, /* L2 : [400/200/100][166/83][133/66][200/200] */ {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0}, /* L3 : [200/200/100][166/83][133/66][200/200] */ {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0}, /* L4 : [100/100/100][83/83][66/66][100/100] */ {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0}, }; /* * This function set DRAM refresh counter * accoriding to operating frequency of DRAM * ch: DMC port number 0 or 1 * freq: Operating frequency of DRAM(KHz) */ static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq) { unsigned long tmp, tmp1; void __iomem *reg = NULL; if (ch == DMC0) { reg = (dmc_base[0] + 0x30); } else if (ch == DMC1) { reg = (dmc_base[1] + 0x30); } else { pr_err("Cannot find DMC port\n"); return; } /* Find current DRAM frequency */ tmp = s5pv210_dram_conf[ch].freq; tmp /= freq; tmp1 = s5pv210_dram_conf[ch].refresh; tmp1 /= tmp; writel_relaxed(tmp1, reg); } static int s5pv210_target(struct cpufreq_policy *policy, unsigned int index) { unsigned long reg; unsigned int priv_index; unsigned int pll_changing = 0; unsigned int bus_speed_changing = 0; unsigned int old_freq, new_freq; int arm_volt, int_volt; int ret = 0; mutex_lock(&set_freq_lock); if (no_cpufreq_access) { pr_err("Denied access to %s as it is disabled temporarily\n", __func__); ret = -EINVAL; goto exit; } old_freq = policy->cur; new_freq = s5pv210_freq_table[index].frequency; /* Finding current running level index */ priv_index = cpufreq_table_find_index_h(policy, old_freq); arm_volt = dvs_conf[index].arm_volt; int_volt = dvs_conf[index].int_volt; if (new_freq > old_freq) { ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt_max); if (ret) goto exit; ret = regulator_set_voltage(int_regulator, int_volt, int_volt_max); if (ret) goto exit; } /* Check if there need to change PLL */ if ((index == L0) || (priv_index == L0)) pll_changing = 1; /* Check if there need to change System bus clock */ if ((index == L4) || (priv_index == L4)) bus_speed_changing = 1; if (bus_speed_changing) { /* * Reconfigure DRAM refresh counter value for minimum * temporary clock while changing divider. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287 */ if (pll_changing) s5pv210_set_refresh(DMC1, 83000); else s5pv210_set_refresh(DMC1, 100000); s5pv210_set_refresh(DMC0, 83000); } /* * APLL should be changed in this level * APLL -> MPLL(for stable transition) -> APLL * Some clock source's clock API are not prepared. * Do not use clock API in below code. */ if (pll_changing) { /* * 1. Temporary Change divider for MFC and G3D * SCLKA2M(200/1=200)->(200/4=50)Mhz */ reg = readl_relaxed(S5P_CLK_DIV2); reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK); reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) | (3 << S5P_CLKDIV2_MFC_SHIFT); writel_relaxed(reg, S5P_CLK_DIV2); /* For MFC, G3D dividing */ do { reg = readl_relaxed(S5P_CLKDIV_STAT0); } while (reg & ((1 << 16) | (1 << 17))); /* * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX * (200/4=50)->(667/4=166)Mhz */ reg = readl_relaxed(S5P_CLK_SRC2); reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK); reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) | (1 << S5P_CLKSRC2_MFC_SHIFT); writel_relaxed(reg, S5P_CLK_SRC2); do { reg = readl_relaxed(S5P_CLKMUX_STAT1); } while (reg & ((1 << 7) | (1 << 3))); /* * 3. DMC1 refresh count for 133Mhz if (index == L4) is * true refresh counter is already programed in upper * code. 0x287@83Mhz */ if (!bus_speed_changing) s5pv210_set_refresh(DMC1, 133000); /* 4. SCLKAPLL -> SCLKMPLL */ reg = readl_relaxed(S5P_CLK_SRC0); reg &= ~(S5P_CLKSRC0_MUX200_MASK); reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT); writel_relaxed(reg, S5P_CLK_SRC0); do { reg = readl_relaxed(S5P_CLKMUX_STAT0); } while (reg & (0x1 << 18)); } /* Change divider */ reg = readl_relaxed(S5P_CLK_DIV0); reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK | S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK | S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK | S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK); reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) | (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) | (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) | (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) | (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) | (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) | (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) | (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT)); writel_relaxed(reg, S5P_CLK_DIV0); do { reg = readl_relaxed(S5P_CLKDIV_STAT0); } while (reg & 0xff); /* ARM MCS value changed */ reg = readl_relaxed(S5P_ARM_MCS_CON); reg &= ~0x3; if (index >= L3) reg |= 0x3; else reg |= 0x1; writel_relaxed(reg, S5P_ARM_MCS_CON); if (pll_changing) { /* 5. Set Lock time = 30us*24Mhz = 0x2cf */ writel_relaxed(0x2cf, S5P_APLL_LOCK); /* * 6. Turn on APLL * 6-1. Set PMS values * 6-2. Wait untile the PLL is locked */ if (index == L0) writel_relaxed(APLL_VAL_1000, S5P_APLL_CON); else writel_relaxed(APLL_VAL_800, S5P_APLL_CON); do { reg = readl_relaxed(S5P_APLL_CON); } while (!(reg & (0x1 << 29))); /* * 7. Change souce clock from SCLKMPLL(667Mhz) * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX * (667/4=166)->(200/4=50)Mhz */ reg = readl_relaxed(S5P_CLK_SRC2); reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK); reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) | (0 << S5P_CLKSRC2_MFC_SHIFT); writel_relaxed(reg, S5P_CLK_SRC2); do { reg = readl_relaxed(S5P_CLKMUX_STAT1); } while (reg & ((1 << 7) | (1 << 3))); /* * 8. Change divider for MFC and G3D * (200/4=50)->(200/1=200)Mhz */ reg = readl_relaxed(S5P_CLK_DIV2); reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK); reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) | (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT); writel_relaxed(reg, S5P_CLK_DIV2); /* For MFC, G3D dividing */ do { reg = readl_relaxed(S5P_CLKDIV_STAT0); } while (reg & ((1 << 16) | (1 << 17))); /* 9. Change MPLL to APLL in MSYS_MUX */ reg = readl_relaxed(S5P_CLK_SRC0); reg &= ~(S5P_CLKSRC0_MUX200_MASK); reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT); writel_relaxed(reg, S5P_CLK_SRC0); do { reg = readl_relaxed(S5P_CLKMUX_STAT0); } while (reg & (0x1 << 18)); /* * 10. DMC1 refresh counter * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618 */ if (!bus_speed_changing) s5pv210_set_refresh(DMC1, 200000); } /* * L4 level need to change memory bus speed, hence onedram clock divier * and memory refresh parameter should be changed */ if (bus_speed_changing) { reg = readl_relaxed(S5P_CLK_DIV6); reg &= ~S5P_CLKDIV6_ONEDRAM_MASK; reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT); writel_relaxed(reg, S5P_CLK_DIV6); do { reg = readl_relaxed(S5P_CLKDIV_STAT1); } while (reg & (1 << 15)); /* Reconfigure DRAM refresh counter value */ if (index != L4) { /* * DMC0 : 166Mhz * DMC1 : 200Mhz */ s5pv210_set_refresh(DMC0, 166000); s5pv210_set_refresh(DMC1, 200000); } else { /* * DMC0 : 83Mhz * DMC1 : 100Mhz */ s5pv210_set_refresh(DMC0, 83000); s5pv210_set_refresh(DMC1, 100000); } } if (new_freq < old_freq) { regulator_set_voltage(int_regulator, int_volt, int_volt_max); regulator_set_voltage(arm_regulator, arm_volt, arm_volt_max); } printk(KERN_DEBUG "Perf changed[L%d]\n", index); exit: mutex_unlock(&set_freq_lock); return ret; } static int check_mem_type(void __iomem *dmc_reg) { unsigned long val; val = readl_relaxed(dmc_reg + 0x4); val = (val & (0xf << 8)); return val >> 8; } static int s5pv210_cpu_init(struct cpufreq_policy *policy) { unsigned long mem_type; int ret; policy->clk = clk_get(NULL, "armclk"); if (IS_ERR(policy->clk)) return PTR_ERR(policy->clk); dmc0_clk = clk_get(NULL, "sclk_dmc0"); if (IS_ERR(dmc0_clk)) { ret = PTR_ERR(dmc0_clk); goto out_dmc0; } dmc1_clk = clk_get(NULL, "hclk_msys"); if (IS_ERR(dmc1_clk)) { ret = PTR_ERR(dmc1_clk); goto out_dmc1; } if (policy->cpu != 0) { ret = -EINVAL; goto out_dmc1; } /* * check_mem_type : This driver only support LPDDR & LPDDR2. * other memory type is not supported. */ mem_type = check_mem_type(dmc_base[0]); if ((mem_type != LPDDR) && (mem_type != LPDDR2)) { pr_err("CPUFreq doesn't support this memory type\n"); ret = -EINVAL; goto out_dmc1; } /* Find current refresh counter and frequency each DMC */ s5pv210_dram_conf[0].refresh = (readl_relaxed(dmc_base[0] + 0x30) * 1000); s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk); s5pv210_dram_conf[1].refresh = (readl_relaxed(dmc_base[1] + 0x30) * 1000); s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk); policy->suspend_freq = SLEEP_FREQ; return cpufreq_generic_init(policy, s5pv210_freq_table, 40000); out_dmc1: clk_put(dmc0_clk); out_dmc0: clk_put(policy->clk); return ret; } static int s5pv210_cpufreq_reboot_notifier_event(struct notifier_block *this, unsigned long event, void *ptr) { int ret; ret = cpufreq_driver_target(cpufreq_cpu_get(0), SLEEP_FREQ, 0); if (ret < 0) return NOTIFY_BAD; no_cpufreq_access = true; return NOTIFY_DONE; } static struct cpufreq_driver s5pv210_driver = { .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = s5pv210_target, .get = cpufreq_generic_get, .init = s5pv210_cpu_init, .name = "s5pv210", .suspend = cpufreq_generic_suspend, .resume = cpufreq_generic_suspend, /* We need to set SLEEP FREQ again */ }; static struct notifier_block s5pv210_cpufreq_reboot_notifier = { .notifier_call = s5pv210_cpufreq_reboot_notifier_event, }; static int s5pv210_cpufreq_probe(struct platform_device *pdev) { struct device_node *np; int id; /* * HACK: This is a temporary workaround to get access to clock * and DMC controller registers directly and remove static mappings * and dependencies on platform headers. It is necessary to enable * S5PV210 multi-platform support and will be removed together with * this whole driver as soon as S5PV210 gets migrated to use * cpufreq-dt driver. */ np = of_find_compatible_node(NULL, NULL, "samsung,s5pv210-clock"); if (!np) { pr_err("%s: failed to find clock controller DT node\n", __func__); return -ENODEV; } clk_base = of_iomap(np, 0); of_node_put(np); if (!clk_base) { pr_err("%s: failed to map clock registers\n", __func__); return -EFAULT; } for_each_compatible_node(np, NULL, "samsung,s5pv210-dmc") { id = of_alias_get_id(np, "dmc"); if (id < 0 || id >= ARRAY_SIZE(dmc_base)) { pr_err("%s: failed to get alias of dmc node '%pOFn'\n", __func__, np); of_node_put(np); return id; } dmc_base[id] = of_iomap(np, 0); if (!dmc_base[id]) { pr_err("%s: failed to map dmc%d registers\n", __func__, id); of_node_put(np); return -EFAULT; } } for (id = 0; id < ARRAY_SIZE(dmc_base); ++id) { if (!dmc_base[id]) { pr_err("%s: failed to find dmc%d node\n", __func__, id); return -ENODEV; } } arm_regulator = regulator_get(NULL, "vddarm"); if (IS_ERR(arm_regulator)) { pr_err("failed to get regulator vddarm\n"); return PTR_ERR(arm_regulator); } int_regulator = regulator_get(NULL, "vddint"); if (IS_ERR(int_regulator)) { pr_err("failed to get regulator vddint\n"); regulator_put(arm_regulator); return PTR_ERR(int_regulator); } register_reboot_notifier(&s5pv210_cpufreq_reboot_notifier); return cpufreq_register_driver(&s5pv210_driver); } static struct platform_driver s5pv210_cpufreq_platdrv = { .driver = { .name = "s5pv210-cpufreq", }, .probe = s5pv210_cpufreq_probe, }; builtin_platform_driver(s5pv210_cpufreq_platdrv);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1